Pub Date : 2024-11-14DOI: 10.1007/s11738-024-03708-x
Jie Wang, Aimin Lv, Linna Yao, Man Zhang, Hailing Fang, Juanping Jiang, Jianjun Zhu, Ying Zheng
Bletilla striata is a perennial herb of the orchid family with its tubers frequently used in medicine, food, chemistry, and cosmetics industries. Polysaccharide, total phenolic, and militarine are the main bioactive components of B. striata that have been widely used for the treatment of hematemesis, hemoptysis, and traumatic bleeding due to the efficacy of arresting bleeding with astringent action. As the yield and quality of medicinal materials are closely related to the harvest time, it is of great significance to choose the optimal harvest time of B. striata. In the present study, effects of four different harvest times of 2-year-old B. striata were compared based on their morphological characteristics and bioactive compounds contents. The results showed that the fresh weight and drying rate of B. striata showed non-significant difference among four different harvest times. However, the content of B. striata polysaccharide (BSP) was firstly decreased and then gradually stabilized with the delaying of the harvest time. The contents of total phenolic and militarine in the B. striata harvested on Sep. 23 were the highest. Under the comprehensive consideration of B. striata quality and yield, the results indicated that it is more reasonable to harvest B. striata in late September.
{"title":"Effects of harvest times on the production and quality of Bletilla striata","authors":"Jie Wang, Aimin Lv, Linna Yao, Man Zhang, Hailing Fang, Juanping Jiang, Jianjun Zhu, Ying Zheng","doi":"10.1007/s11738-024-03708-x","DOIUrl":"10.1007/s11738-024-03708-x","url":null,"abstract":"<div><p><i>Bletilla striata</i> is a perennial herb of the orchid family with its tubers frequently used in medicine, food, chemistry, and cosmetics industries. Polysaccharide, total phenolic, and militarine are the main bioactive components of <i>B. striata</i> that have been widely used for the treatment of hematemesis, hemoptysis, and traumatic bleeding due to the efficacy of arresting bleeding with astringent action. As the yield and quality of medicinal materials are closely related to the harvest time, it is of great significance to choose the optimal harvest time of <i>B. striata</i>. In the present study, effects of four different harvest times of 2-year-old <i>B. striata</i> were compared based on their morphological characteristics and bioactive compounds contents. The results showed that the fresh weight and drying rate of <i>B. striata</i> showed non-significant difference among four different harvest times. However, the content of <i>B. striata</i> polysaccharide (BSP) was firstly decreased and then gradually stabilized with the delaying of the harvest time. The contents of total phenolic and militarine in the <i>B. striata</i> harvested on Sep. 23 were the highest. Under the comprehensive consideration of <i>B. striata</i> quality and yield, the results indicated that it is more reasonable to harvest <i>B. striata</i> in late September.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 12","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1007/s11738-024-03733-w
Agata Wdowiak, Anna Podgórska, Bożena Szal
Calcium ions (Ca2+) are absorbed from the soil by the root cells before being distributed throughout the plant. The transport of Ca2+ to aboveground parts relies on the movement of xylem, which is influenced by the transpiration rate of individual organs. The final distribution of Ca2+ in tissues and cells depends on the effective function of channels and transporters that facilitate Ca2+ movement through plasma and specific intracellular membranes. Local fluctuations in free Ca2+ concentrations serve as a mechanism to elicit cellular responses, characterized by distinct calcium signatures, or to enable long-distance signaling in a cell-to-cell network. The specificity of individual Ca2+ transport proteins is primarily determined through studies in plants with induced changes in the expression of these proteins. Concurrently, it is recognized that plant cells contain significant reserves of Ca2+ both in the labile and in the permanently bound states, which influences various aspects such as biomechanical properties or the defensive capabilities of the cells. The diverse roles of Ca2+ in plant cells highlight the importance of a thorough understanding of Ca2+ metabolism.
{"title":"Calcium in plants: an important element of cell physiology and structure, signaling, and stress responses","authors":"Agata Wdowiak, Anna Podgórska, Bożena Szal","doi":"10.1007/s11738-024-03733-w","DOIUrl":"10.1007/s11738-024-03733-w","url":null,"abstract":"<div><p>Calcium ions (Ca<sup>2+</sup>) are absorbed from the soil by the root cells before being distributed throughout the plant. The transport of Ca<sup>2+</sup> to aboveground parts relies on the movement of xylem, which is influenced by the transpiration rate of individual organs. The final distribution of Ca<sup>2+</sup> in tissues and cells depends on the effective function of channels and transporters that facilitate Ca<sup>2+</sup> movement through plasma and specific intracellular membranes. Local fluctuations in free Ca<sup>2+</sup> concentrations serve as a mechanism to elicit cellular responses, characterized by distinct calcium signatures, or to enable long-distance signaling in a cell-to-cell network. The specificity of individual Ca<sup>2+</sup> transport proteins is primarily determined through studies in plants with induced changes in the expression of these proteins. Concurrently, it is recognized that plant cells contain significant reserves of Ca<sup>2+</sup> both in the labile and in the permanently bound states, which influences various aspects such as biomechanical properties or the defensive capabilities of the cells. The diverse roles of Ca<sup>2+</sup> in plant cells highlight the importance of a thorough understanding of Ca<sup>2+</sup> metabolism.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 12","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11738-024-03733-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1007/s11738-024-03734-9
Meenakshi Dangwal, Nishu Chahar, Sandip Das
Ovate family proteins (OFPs) are plant-specific, transcriptional repressors characterized by an OVATE domain. The OFP family has been analyzed only from a handful and functionally characterized from even fewer species. There is a gap in cataloging the complete compendium of OFP family across Gramineae although the complete genome sequence for several species are now available. In the present study, we identified and cataloged homologs of OFPs across ten Gramineae members to analyze gene and protein structure and properties, evolutionary relationship, expression pattern, and predict interacting partners. A positive correlation was found between genome-size and OFP family size, with Triticum genome harboring the maximum number; most of the Gramineae OFPs are intronless. Comparative analysis revealed variation in gene sizes, physico-chemical properties of proteins, and their structures including motifs. Phylogenetic reconstruction reflected homolog-based clustering. Expression analysis in Oryza revealed spatio-temporal variation with maximum expression in reproductive tissues. Prediction of interactome showed homeobox domain containing proteins as major interacting partners. The study thus form foundation for future functional analysis of role of OFPs in regulating economically important traits.
{"title":"Identification and comparative genomics of OVATE family members from Gramineae uncovers sequence and structural diversity, evolutionary trends, and insights into functional features","authors":"Meenakshi Dangwal, Nishu Chahar, Sandip Das","doi":"10.1007/s11738-024-03734-9","DOIUrl":"10.1007/s11738-024-03734-9","url":null,"abstract":"<div><p>Ovate family proteins (OFPs) are plant-specific, transcriptional repressors characterized by an OVATE domain. The OFP family has been analyzed only from a handful and functionally characterized from even fewer species. There is a gap in cataloging the complete compendium of OFP family across Gramineae although the complete genome sequence for several species are now available. In the present study, we identified and cataloged homologs of OFPs across ten Gramineae members to analyze gene and protein structure and properties, evolutionary relationship, expression pattern, and predict interacting partners. A positive correlation was found between genome-size and OFP family size, with <i>Triticum</i> genome harboring the maximum number; most of the Gramineae OFPs are intronless. Comparative analysis revealed variation in gene sizes, physico-chemical properties of proteins, and their structures including motifs. Phylogenetic reconstruction reflected homolog-based clustering. Expression analysis in <i>Oryza</i> revealed spatio-temporal variation with maximum expression in reproductive tissues. Prediction of interactome showed homeobox domain containing proteins as major interacting partners. The study thus form foundation for future functional analysis of role of OFPs in regulating economically important traits.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 12","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1007/s11738-024-03740-x
Muhammad Farooq, Rafiq Ahmad, Muhammad Shahzad, Khalid Ahmad, Yasar Sajjad, Amjad Hassan, Abdul Nazir, Mohammad Maroof Shah, Bibi Kalsoom, Sabaz Ali Khan
Pea is the third most widely grown leguminous vegetable crop globally. The crop is fairly easy to grow but is salt and drought-sensitive, limiting its yield. This study aimed to explore the morphological and biochemical responses of peas under salt stress and water-deficit stress. Three pea varieties (Climax, Green grass, Meteor) were subjected to different levels [5.4 mM (Control), 50 mM, 75 mM, and 100 mM of NaCl] of salt stress. The water-deficit stress was administered by watering 100%, 75%, and 50% of field capacity. Morphological parameters showed a significant reduction under salt and water-deficit stresses in all three varieties. The highest relative water content under various levels of both stresses was 38.3% which was significantly lower than the control treatment. Chlorophyll content index (CCI) declined significantly in all three varieties, however, Climax exhibited a noteworthy CCI of 43.7 at 100 mM salt treatment, significantly higher than Green grass (25.9 CCI) and Meteor (35.9 CCI) at the same treatment. Significant accumulation of proline content was observed under both stresses, where 100 g of fresh weight of Climax showed proline content as 0.043 mg against 100 mM salt and 0.040 mg against 50% water-deficit treatments. Similar trends were recorded for water-deficit stress, indicating a shared response to both stress types. These findings provide insights into the effects of salt and water-deficit stress on pea crops, specifically focusing on the role of proline. The insights gained may aid in developing strategies to mitigate these stresses for enhanced pea crop productivity.
豌豆是全球种植面积第三大的豆科蔬菜作物。该作物相当容易种植,但对盐和干旱敏感,限制了其产量。本研究旨在探讨豌豆在盐胁迫和缺水胁迫下的形态和生化反应。三个豌豆品种(Climax、Green grass 和 Meteor)分别受到不同程度的盐胁迫 [5.4 mM(对照)、50 mM、75 mM 和 100 mM NaCl]。缺水胁迫的浇水量分别为田间水量的 100%、75% 和 50%。在盐胁迫和缺水胁迫下,所有三个品种的形态参数都明显下降。在不同程度的两种胁迫下,最高相对含水量为 38.3%,明显低于对照处理。所有三个品种的叶绿素含量指数(CCI)都明显下降,但 Climax 在 100 mM 盐分处理下的 CCI 值为 43.7,明显高于相同处理下的 Green grass(25.9 CCI)和 Meteor(35.9 CCI)。在两种胁迫下都观察到了脯氨酸含量的显著积累,在 100 毫摩尔食盐处理和 50%缺水处理中,100 克 Climax 鲜重的脯氨酸含量分别为 0.043 毫克和 0.040 毫克。缺水胁迫也有类似的趋势,表明对两种胁迫类型都有共同的反应。这些研究结果为了解盐胁迫和缺水胁迫对豌豆作物的影响,特别是脯氨酸的作用提供了重要依据。这些发现有助于制定减轻这些胁迫的策略,从而提高豌豆作物的产量。
{"title":"Evaluation of morphological and biochemical variations in peas under two widespread abiotic stresses","authors":"Muhammad Farooq, Rafiq Ahmad, Muhammad Shahzad, Khalid Ahmad, Yasar Sajjad, Amjad Hassan, Abdul Nazir, Mohammad Maroof Shah, Bibi Kalsoom, Sabaz Ali Khan","doi":"10.1007/s11738-024-03740-x","DOIUrl":"10.1007/s11738-024-03740-x","url":null,"abstract":"<div><p>Pea is the third most widely grown leguminous vegetable crop globally. The crop is fairly easy to grow but is salt and drought-sensitive, limiting its yield. This study aimed to explore the morphological and biochemical responses of peas under salt stress and water-deficit stress. Three pea varieties (Climax, Green grass, Meteor) were subjected to different levels [5.4 mM (Control), 50 mM, 75 mM, and 100 mM of NaCl] of salt stress. The water-deficit stress was administered by watering 100%, 75%, and 50% of field capacity. Morphological parameters showed a significant reduction under salt and water-deficit stresses in all three varieties. The highest relative water content under various levels of both stresses was 38.3% which was significantly lower than the control treatment. Chlorophyll content index (CCI) declined significantly in all three varieties, however, Climax exhibited a noteworthy CCI of 43.7 at 100 mM salt treatment, significantly higher than Green grass (25.9 CCI) and Meteor (35.9 CCI) at the same treatment. Significant accumulation of proline content was observed under both stresses, where 100 g of fresh weight of Climax showed proline content as 0.043 mg against 100 mM salt and 0.040 mg against 50% water-deficit treatments. Similar trends were recorded for water-deficit stress, indicating a shared response to both stress types. These findings provide insights into the effects of salt and water-deficit stress on pea crops, specifically focusing on the role of proline. The insights gained may aid in developing strategies to mitigate these stresses for enhanced pea crop productivity.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 12","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1007/s11738-024-03744-7
Huitong Sang, Xia Zhang, Hongyan Hao, Haiyun Li
Many phenolics are known to possess allelopathic activity, but the allelopathic effect of pyrogallol has not been previously reported. Here, the present experiment was conducted to investigate the effects of commercially obtained pyrogallol at different concentrations on the seed germination and seedling growth of L. perenne. The results showed that (1) Pyrogallol treatment inhibited L. perenne seed germination, as evidenced by a decrease in the final germination rate and a delay in germination peaks. (2) Pyrogallol treatment reduced L. perenne plumule length, radicle length, fine root length, and fine root surface area, higher pyrogallol concentrations reduced the proportion of fine roots. (3) Higher concentrations (2.00 g/L) of pyrogallol resulted in decreased protein content and increased membrane lipid peroxidation. (4) Spraying pyrogallol inhibited the growth of L. perenne seedlings, as manifested by a decrease in plant height and biomass. Overall, our findings indicate that pyrogallol is one of the allelochemicals present in aqueous extracts of K. integrifoliola leaves that inhibits the seed germination and seedling growth of L. perenne.
众所周知,许多酚类物质都具有等位病理活性,但焦谷醇的等位病理效应此前尚未见报道。本实验研究了不同浓度的市售焦酚对珍珠果种子萌发和幼苗生长的影响。结果表明:(1)焦棓酚处理会抑制珍珠鸡种子的萌发,表现为最终萌发率下降和萌发峰延迟。(2)焦棓酚处理会降低珍珠鸡羽叶长度、胚根长度、细根长度和细根表面积,焦棓酚浓度越高,细根比例越低。(3)较高浓度(2.00 g/L)的焦棓酚会导致蛋白质含量降低和膜脂过氧化增加。(4) 喷施焦枯醇会抑制珍珠棉幼苗的生长,表现为植株高度和生物量的下降。总之,我们的研究结果表明,焦酚是 K. integrifoliola 叶片水提取物中的一种等位化学物质,它能抑制 L. perenne 的种子萌发和幼苗生长。
{"title":"Allelopathic effect of pyrogallol on the seed germination of Lolium perenne","authors":"Huitong Sang, Xia Zhang, Hongyan Hao, Haiyun Li","doi":"10.1007/s11738-024-03744-7","DOIUrl":"10.1007/s11738-024-03744-7","url":null,"abstract":"<div><p>Many phenolics are known to possess allelopathic activity, but the allelopathic effect of pyrogallol has not been previously reported. Here, the present experiment was conducted to investigate the effects of commercially obtained pyrogallol at different concentrations on the seed germination and seedling growth of <i>L. perenne</i>. The results showed that (1) Pyrogallol treatment inhibited <i>L. perenne</i> seed germination, as evidenced by a decrease in the final germination rate and a delay in germination peaks. (2) Pyrogallol treatment reduced <i>L. perenne</i> plumule length, radicle length, fine root length, and fine root surface area, higher pyrogallol concentrations reduced the proportion of fine roots. (3) Higher concentrations (2.00 g/L) of pyrogallol resulted in decreased protein content and increased membrane lipid peroxidation. (4) Spraying pyrogallol inhibited the growth of <i>L. perenne</i> seedlings, as manifested by a decrease in plant height and biomass. Overall, our findings indicate that pyrogallol is one of the allelochemicals present in aqueous extracts of <i>K. integrifoliola</i> leaves that inhibits the seed germination and seedling growth of <i>L. perenne</i>.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 12","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1007/s11738-024-03739-4
Dhananjay A. Hongal, A. D. Munshi, Akshay Talukdar, Anjan Das, N. Pradeepkumara, M. Karthik Kumar, Jyoti Kumari, Viswanathan Chinnusamy, J. K. Ranjan, T. K. Behera, S. S. Dey
Cucumber is an important vegetable crop that suffers from significant yield loss because of sub-optimal temperatures during the growing season. High temperature affects the plant's health and reduces the quality and quantity of the final harvest. Huge diversity in terms of different economically important traits, including wide temperature adaptation, is recorded in indigenous cucumber germplasm because of its Indian origin. It is necessary to identify the key traits and genotypes with the contrasting response from a large set of germplasm associated with heat stress response for understanding the physio-biochemical and molecular network associated with heat tolerance. A set of 123 germplasm was evaluated in a growth chamber with temperature stress treatment (40 °C/35 °C) for two subsequent seasons. Besides, 10 selected genotypes based on their response in the seedling stage were grown under natural field conditions with high temperatures to validate the physio-biochemical response in the seedling stage and yield parameters in the reproductive stage. Among the different parameters, slow degradation of chlorophyll, higher anti-oxidant enzyme activity, higher membrane stability index, and higher canopy temperature depression were identified as key traits explaining the heat stress response in cucumbers. Besides, the photosynthetic activities of the tolerant genotypes at the reproductive stage were also higher under field conditions, resulting in higher economic yield. Heat tolerance index was developed for 123 genotypes for seven physiological traits recorded in the present study. The optimised screening technique in the seedling stage and their validation for yield response under natural field facilitated the evaluation of a large number of genotypes for use in breeding for heat stress tolerance in cucumbers. Besides, the identified germplasm, WBC-13, DGC-103 and DARL-106 with effective heat stress tolerance will be instrumental in understanding the molecular basis of heat tolerance and designing climate-smart cucumber cultivars.
{"title":"Role of important physiological traits and development of heat tolerance index in a large set of diverse cucumber germplasm","authors":"Dhananjay A. Hongal, A. D. Munshi, Akshay Talukdar, Anjan Das, N. Pradeepkumara, M. Karthik Kumar, Jyoti Kumari, Viswanathan Chinnusamy, J. K. Ranjan, T. K. Behera, S. S. Dey","doi":"10.1007/s11738-024-03739-4","DOIUrl":"10.1007/s11738-024-03739-4","url":null,"abstract":"<div><p>Cucumber is an important vegetable crop that suffers from significant yield loss because of sub-optimal temperatures during the growing season. High temperature affects the plant's health and reduces the quality and quantity of the final harvest. Huge diversity in terms of different economically important traits, including wide temperature adaptation, is recorded in indigenous cucumber germplasm because of its Indian origin. It is necessary to identify the key traits and genotypes with the contrasting response from a large set of germplasm associated with heat stress response for understanding the physio-biochemical and molecular network associated with heat tolerance. A set of 123 germplasm was evaluated in a growth chamber with temperature stress treatment (40 °C/35 °C) for two subsequent seasons. Besides, 10 selected genotypes based on their response in the seedling stage were grown under natural field conditions with high temperatures to validate the physio-biochemical response in the seedling stage and yield parameters in the reproductive stage. Among the different parameters, slow degradation of chlorophyll, higher anti-oxidant enzyme activity, higher membrane stability index, and higher canopy temperature depression were identified as key traits explaining the heat stress response in cucumbers. Besides, the photosynthetic activities of the tolerant genotypes at the reproductive stage were also higher under field conditions, resulting in higher economic yield. Heat tolerance index was developed for 123 genotypes for seven physiological traits recorded in the present study. The optimised screening technique in the seedling stage and their validation for yield response under natural field facilitated the evaluation of a large number of genotypes for use in breeding for heat stress tolerance in cucumbers. Besides, the identified germplasm, WBC-13, DGC-103 and DARL-106 with effective heat stress tolerance will be instrumental in understanding the molecular basis of heat tolerance and designing climate-smart cucumber cultivars.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 12","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1007/s11738-024-03738-5
João Paulo Alves de Barros, Milton Costa Lima Neto, Nielson Dinivan da Silva Brito, Pedro José Herminio, Hugo Rafael Bentzen Santos, Adriano do Nascimento Simões, Vitor Gomes Nunes, André Luiz Alves de Lima, Eduardo Soares de Souza, Sérgio Luiz Ferreira-Silva
This work aimed to evaluate how the C3-CAM shift could contribute to photoprotection and attenuate losses of CO2 uptake in Pereskia aculeata plants under water stress. Plants were subjected to treatments: well-watered (WW), water deficit (WD), and recovery (Rec) in two experimental conditions (greenhouse and growth chamber). Induction of the C3-CAM shift by drought was assessed by leaf acidification, carbohydrate content, photochemical activity, gas exchange, and stomata density and closure during diurnal and nocturnal periods. Leaf acidity was reduced during the night period in WW-plants and increased in WD-plants, suggesting active accumulation of organic acids associated with CAM induction by drought. This apparent CAM induction in WD-plants was associated to increase carbohydrates and significant reduction of leaf water potential (ΨW). WD-plants showed a positive carbon balance associated with a higher net-CO2 uptake (PN) during night period compared to WW-plants. Moreover, WW-plants presented negative values for PN associated with a negative carbon balance at night. In both conditions (WW and WD) plants showed PN near zero at night. However, a positive carbon balance associated with a slight stomatal aperture at during the day and strong closure during night in the WD-plants, suggests that C3-CAM shift, able to maintain CO2 uptake, presented a better trend toward the CAM-cycling model. Together, this study shows that CO2 uptake conferred by C3-CAM shift under drought contributed to photoprotection and better photosynthetic recovery after rehydration of Pereskia aculeata plants.
{"title":"The C3-CAM shift is crucial to the maintenance of the photosynthetic apparatus integrity in Pereskia aculeata under prolonged and severe drought","authors":"João Paulo Alves de Barros, Milton Costa Lima Neto, Nielson Dinivan da Silva Brito, Pedro José Herminio, Hugo Rafael Bentzen Santos, Adriano do Nascimento Simões, Vitor Gomes Nunes, André Luiz Alves de Lima, Eduardo Soares de Souza, Sérgio Luiz Ferreira-Silva","doi":"10.1007/s11738-024-03738-5","DOIUrl":"10.1007/s11738-024-03738-5","url":null,"abstract":"<div><p>This work aimed to evaluate how the C3-CAM shift could contribute to photoprotection and attenuate losses of CO<sub>2</sub> uptake in <i>Pereskia aculeata</i> plants under water stress. Plants were subjected to treatments: well-watered (WW), water deficit (WD), and recovery (Rec) in two experimental conditions (greenhouse and growth chamber). Induction of the C3-CAM shift by drought was assessed by leaf acidification, carbohydrate content, photochemical activity, gas exchange, and stomata density and closure during diurnal and nocturnal periods. Leaf acidity was reduced during the night period in WW-plants and increased in WD-plants, suggesting active accumulation of organic acids associated with CAM induction by drought. This apparent CAM induction in WD-plants was associated to increase carbohydrates and significant reduction of leaf water potential (Ψ<sub>W</sub>). WD-plants showed a positive carbon balance associated with a higher net-CO<sub>2</sub> uptake (P<sub>N</sub>) during night period compared to WW-plants. Moreover, WW-plants presented negative values for P<sub>N</sub> associated with a negative carbon balance at night. In both conditions (WW and WD) plants showed P<sub>N</sub> near zero at night. However, a positive carbon balance associated with a slight stomatal aperture at during the day and strong closure during night in the WD-plants, suggests that C3-CAM shift, able to maintain CO<sub>2</sub> uptake, presented a better trend toward the CAM-cycling model. Together, this study shows that CO<sub>2</sub> uptake conferred by C3-CAM shift under drought contributed to photoprotection and better photosynthetic recovery after rehydration of <i>Pereskia aculeata</i> plants.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 12","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1007/s11738-024-03742-9
Damla Kızılkaya, Emre İlhan, Murat Aydın, Ayşe Gül Kasapoğlu, Esma Yiğider, Aras Türkoğlu, Adem Güneş, Kamil Haliloğlu
Wheat, a glycophyte plant that is the main staple food for the majority of the world’s population, is considerably sensitive to salinity and alkalinity stress. The goal of this study was to investigate antioxidant enzyme activity and elemental analyses to determine the response of three wheat genotypes to alkaline stress during the early development period as well as to examine DNA damage caused by alkaline stress using the inter simple sequence repeats (ISSR) molecular markers. The results demonstrated that NaHCO3 treatments affected the amount and ratio of Na and K in all genotypes’ roots and leaves. Furthermore, NaHCO3 treatment had a significant impact on H2O2 contents and malondialdehyde (MDA) levels of genotypes which exhibited varying abilities to reduce reactive oxygen species-induced damage and stress severity affected enzymatic antioxidant systems (SOD, CAT, and POD activities). The ISSR results revealed that genomic template stability rates decreased in response to alkaline stress. Overall, the data revealed significant genotype by alkaline salt exposure interaction, indicating that genetic response to alkaline salt stress may be different with respect to cultivars. In our study, cv. Çetinel 2000 had more enzymatic and non-enzymatic activity compared to cv. Aytin-98 and Tir genotypes under concentrations NaHCO3 concentration, while latter two genotypes varied responses under the different concentrations. Our research also showed that genetic variability does exist in wheat for alkaline salt tolerant/resistant genes, further research using transcriptomic techniques is required to establish the gene expression profiles of wheat genotypes under such stress conditions to assess the genetic information about the related genes.
小麦是一种糖生植物,是世界大多数人口的主要主食,对盐度和碱度胁迫相当敏感。本研究的目的是调查抗氧化酶活性和元素分析,以确定三种小麦基因型在发育早期对碱性胁迫的反应,并利用简单序列间重复(ISSR)分子标记检查碱性胁迫造成的 DNA 损伤。结果表明,NaHCO3处理影响了所有基因型根和叶中Na和K的含量和比例。此外,NaHCO3 处理对各基因型的 H2O2 含量和丙二醛(MDA)水平有显著影响,这些基因型在减少活性氧引起的损伤和胁迫严重程度对酶抗氧化系统(SOD、CAT 和 POD 活性)的影响方面表现出不同的能力。ISSR 结果显示,基因组模板的稳定率在碱性胁迫下有所下降。总之,数据显示基因型与碱盐胁迫有显著的交互作用,表明不同品种对碱盐胁迫的遗传响应可能不同。在我们的研究中,cv.Çetinel 2000 与 Aytin-98 和 Tir 基因组相比,具有更高的酶活性和非酶活性。Aytin-98 和 Tir 基因型在高浓度 NaHCO3 条件下的酶和非酶活性更高,而后两种基因型在不同浓度条件下的反应各不相同。我们的研究还表明,小麦耐碱盐/抗碱盐基因确实存在遗传变异,因此需要利用转录组技术开展进一步研究,以确定小麦基因型在这种胁迫条件下的基因表达谱,从而评估相关基因的遗传信息。
{"title":"Investigation of biochemical and molecular changes in wheat genotypes under alkaline salt stress","authors":"Damla Kızılkaya, Emre İlhan, Murat Aydın, Ayşe Gül Kasapoğlu, Esma Yiğider, Aras Türkoğlu, Adem Güneş, Kamil Haliloğlu","doi":"10.1007/s11738-024-03742-9","DOIUrl":"10.1007/s11738-024-03742-9","url":null,"abstract":"<div><p>Wheat, a glycophyte plant that is the main staple food for the majority of the world’s population, is considerably sensitive to salinity and alkalinity stress. The goal of this study was to investigate antioxidant enzyme activity and elemental analyses to determine the response of three wheat genotypes to alkaline stress during the early development period as well as to examine DNA damage caused by alkaline stress using the inter simple sequence repeats (ISSR) molecular markers. The results demonstrated that NaHCO<sub>3</sub> treatments affected the amount and ratio of Na and K in all genotypes’ roots and leaves. Furthermore, NaHCO<sub>3</sub> treatment had a significant impact on H<sub>2</sub>O<sub>2</sub> contents and malondialdehyde (MDA) levels of genotypes which exhibited varying abilities to reduce reactive oxygen species-induced damage and stress severity affected enzymatic antioxidant systems (SOD, CAT, and POD activities). The ISSR results revealed that genomic template stability rates decreased in response to alkaline stress. Overall, the data revealed significant genotype by alkaline salt exposure interaction, indicating that genetic response to alkaline salt stress may be different with respect to cultivars. In our study, cv. Çetinel 2000 had more enzymatic and non-enzymatic activity compared to cv. Aytin-98 and Tir genotypes under concentrations NaHCO<sub>3</sub> concentration, while latter two genotypes varied responses under the different concentrations. Our research also showed that genetic variability does exist in wheat for alkaline salt tolerant/resistant genes, further research using transcriptomic techniques is required to establish the gene expression profiles of wheat genotypes under such stress conditions to assess the genetic information about the related genes.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 12","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents data on the seed germination ecophysiology of three Arabis species endemic to Cyprus: Arabis cypria, Arabis kennedyae and Arabis purpurea. Final seed germination in the dark, as a function of temperature, presented different responses among species and among seed lots of the same species. Different degrees of seed dormancy were also identified among different seed lots. In all cases, maximum final germination was achieved between 10–20 °C. Red light irradiation is the most efficient treatment for dormancy breakage in all three species, which implies phytochrome control of seed germination. As a result, seed germination in nature is expected to take place on the soil surface and not under canopy cover. The small seed size, the light requirement for germination and the variable germination patterns among different seed lots of the three studied species imply the formation of soil seed banks, perhaps as an essential part of their survival strategy. The value of the data presented in this paper is discussed in relation to the ex-situ conservation of the studied species.
本文介绍了塞浦路斯特有的三个Arabis物种的种子萌发生态生理学数据:Arabis cypria、Arabis kennedyae 和 Arabis purpurea。作为温度的函数,不同物种和同一物种不同批次种子在黑暗中的最终萌发情况各不相同。不同批次种子的休眠程度也不同。在所有情况下,种子的最终萌发都在 10-20 °C 之间达到最大值。红光照射是打破所有三个物种休眠的最有效方法,这意味着植物色素对种子萌发的控制。因此,自然界中的种子萌发预计是在土壤表面而非树冠覆盖下进行的。所研究的三个物种的种子体积小、萌发对光照的要求高,而且不同种子批次的萌发模式各不相同,这意味着它们会形成土壤种子库,这或许是它们生存策略的重要组成部分。本文所提供数据的价值与所研究物种的异地保护有关。
{"title":"Seed germination ecophysiology and conservation of three endemic Arabis species (Brassicaceae) of Cyprus","authors":"Marios Andreou, Emily Panayiotou, Demetra Paraskeva-Hadjichambi, Costas Kadis, Kyriacos Georghiou","doi":"10.1007/s11738-024-03735-8","DOIUrl":"10.1007/s11738-024-03735-8","url":null,"abstract":"<div><p>This paper presents data on the seed germination ecophysiology of three Arabis species endemic to Cyprus: <i>Arabis cypria, Arabis kennedyae</i> and <i>Arabis purpurea</i>. Final seed germination in the dark, as a function of temperature, presented different responses among species and among seed lots of the same species. Different degrees of seed dormancy were also identified among different seed lots. In all cases, maximum final germination was achieved between 10–20 °C. Red light irradiation is the most efficient treatment for dormancy breakage in all three species, which implies phytochrome control of seed germination. As a result, seed germination in nature is expected to take place on the soil surface and not under canopy cover. The small seed size, the light requirement for germination and the variable germination patterns among different seed lots of the three studied species imply the formation of soil seed banks, perhaps as an essential part of their survival strategy. The value of the data presented in this paper is discussed in relation to the ex-situ conservation of the studied species.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 11","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1007/s11738-024-03717-w
Nazoora Mujahid, Muhammad Shahbaz
Soil salinization limits the crop yield. Strigolactone GR24 is a plant growth regulator regulating environmental responses and enables the plant to tolerate stress by modulating morphology and physiology. Ajwain is a medicinal crop as well as a seed spice. The current experiment was designed to inspect the possible potential of GR24 as seed priming in mitigating the disastrous consequences of salinity in ajwain. Two ajwain populations, one from University of Agriculture, Faisalabad and the other from Peshawar were used for this study. Pre-sowing seed treatments (0, water-soaked, 0.001, 0.01, and 0.1 mg/L GR24) were given for 3 h. Salt stress at 100 mM NaCl was applied after 77 days of seed sowing. Salt stress reduced the yield and disturbed the distribution of ions in ajwain plants. The GR24 seed priming inhibited shoot Na+ uptake (33.81%), increased Ca2+ uptake and use efficiency (71.41%, 37.24%), K+ uptake and use efficiency (72.13%, 31.25%) and yield parameters including umbels/plant (31.22%), total seed weight (165%), and total number of seeds per plant (16.45%). Faisalabad population exhibited more umbels per plant and 1000 seed weight while Peshawar population accumulated less shoot Na+. Of different levels used for seed soaking, GR24 at 0.1 mg/L more effectively enabled the plant to adjust with elevated salt levels in the soil.
{"title":"Seed priming with strigolactone GR24 develops tolerance toward salinity in ajwain (Trachyspermum ammi L.) by improving mineral nutrient contents and yield","authors":"Nazoora Mujahid, Muhammad Shahbaz","doi":"10.1007/s11738-024-03717-w","DOIUrl":"10.1007/s11738-024-03717-w","url":null,"abstract":"<div><p>Soil salinization limits the crop yield. Strigolactone GR24 is a plant growth regulator regulating environmental responses and enables the plant to tolerate stress by modulating morphology and physiology. Ajwain is a medicinal crop as well as a seed spice. The current experiment was designed to inspect the possible potential of GR24 as seed priming in mitigating the disastrous consequences of salinity in ajwain. Two ajwain populations, one from University of Agriculture, Faisalabad and the other from Peshawar were used for this study. Pre-sowing seed treatments (0, water-soaked, 0.001, 0.01, and 0.1 mg/L GR24) were given for 3 h. Salt stress at 100 mM NaCl was applied after 77 days of seed sowing. Salt stress reduced the yield and disturbed the distribution of ions in ajwain plants. The GR24 seed priming inhibited shoot Na<sup>+</sup> uptake (33.81%), increased Ca<sup>2+</sup> uptake and use efficiency (71.41%, 37.24%), K<sup>+</sup> uptake and use efficiency (72.13%, 31.25%) and yield parameters including umbels/plant (31.22%), total seed weight (165%), and total number of seeds per plant (16.45%). Faisalabad population exhibited more umbels per plant and 1000 seed weight while Peshawar population accumulated less shoot Na<sup>+</sup>. Of different levels used for seed soaking, GR24 at 0.1 mg/L more effectively enabled the plant to adjust with elevated salt levels in the soil.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 11","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}