Phokion G. Kolaitis, R. Pichler, Emanuel Sallinger, V. Savenkov
During the past 15 years, schema mappings have been extensively used in formalizing and studying such critical data interoperability tasks as data exchange and data integration. Much of the work has focused on GLAV mappings, i.e., schema mappings specified by source-to-target tuple-generating dependencies (s-t tgds), and on schema mappings specified by second-order tgds (SO tgds), which constitute the closure of GLAV mappings under composition. In addition, nested GLAV mappings have also been considered, i.e., schema mappings specified by nested tgds, which have expressive power intermediate between s-t tgds and SO tgds. Even though nested GLAV mappings have been used in data exchange systems, such as IBM’s Clio, no systematic investigation of this class of schema mappings has been carried out so far. In this article, we embark on such an investigation by focusing on the basic reasoning tasks, algorithmic problems, and structural properties of nested GLAV mappings. One of our main results is the decidability of the implication problem for nested tgds. We also analyze the structure of the core of universal solutions with respect to nested GLAV mappings and develop useful tools for telling apart SO tgds from nested tgds. By discovering deeper structural properties of nested GLAV mappings, we show that also the following problem is decidable: Given a nested GLAV mapping, is it logically equivalent to a GLAV mapping?
{"title":"On the Language of Nested Tuple Generating Dependencies","authors":"Phokion G. Kolaitis, R. Pichler, Emanuel Sallinger, V. Savenkov","doi":"10.1145/3369554","DOIUrl":"https://doi.org/10.1145/3369554","url":null,"abstract":"During the past 15 years, schema mappings have been extensively used in formalizing and studying such critical data interoperability tasks as data exchange and data integration. Much of the work has focused on GLAV mappings, i.e., schema mappings specified by source-to-target tuple-generating dependencies (s-t tgds), and on schema mappings specified by second-order tgds (SO tgds), which constitute the closure of GLAV mappings under composition. In addition, nested GLAV mappings have also been considered, i.e., schema mappings specified by nested tgds, which have expressive power intermediate between s-t tgds and SO tgds. Even though nested GLAV mappings have been used in data exchange systems, such as IBM’s Clio, no systematic investigation of this class of schema mappings has been carried out so far. In this article, we embark on such an investigation by focusing on the basic reasoning tasks, algorithmic problems, and structural properties of nested GLAV mappings. One of our main results is the decidability of the implication problem for nested tgds. We also analyze the structure of the core of universal solutions with respect to nested GLAV mappings and develop useful tools for telling apart SO tgds from nested tgds. By discovering deeper structural properties of nested GLAV mappings, we show that also the following problem is decidable: Given a nested GLAV mapping, is it logically equivalent to a GLAV mapping?","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"9 1","pages":"1 - 59"},"PeriodicalIF":0.0,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73044704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Numeric inconsistencies are common in real-life knowledge bases and social networks. To catch such errors, we extend graph functional dependencies with linear arithmetic expressions and built-in comparison predicates, referred to as numeric graph dependencies (NGDs). We study fundamental problems for NGDs. We show that their satisfiability, implication, and validation problems are Σp2-complete, Πp2-complete, and coNP-complete, respectively. However, if we allow non-linear arithmetic expressions, even of degree at most 2, the satisfiability and implication problems become undecidable. In other words, NGDs strike a balance between expressivity and complexity. To make practical use of NGDs, we develop an incremental algorithm IncDect to detect errors in a graph G using NGDs in response to updates ΔG to G. We show that the incremental validation problem is coNP-complete. Nonetheless, algorithm IncDect is localizable, i.e., its cost is determined by small neighbors of nodes in ΔG instead of the entire G. Moreover, we parallelize IncDect such that it guarantees to reduce running time with the increase of processors. In addition, to strike a balance between the efficiency and accuracy, we also develop polynomial-time parallel algorithms for detection and incremental detection of top-ranked inconsistencies. Using real-life and synthetic graphs, we experimentally verify the scalability and efficiency of the algorithms.
{"title":"Catching Numeric Inconsistencies in Graphs","authors":"W. Fan, Xueli Liu, Ping Lu, Chao Tian","doi":"10.1145/3385031","DOIUrl":"https://doi.org/10.1145/3385031","url":null,"abstract":"Numeric inconsistencies are common in real-life knowledge bases and social networks. To catch such errors, we extend graph functional dependencies with linear arithmetic expressions and built-in comparison predicates, referred to as numeric graph dependencies (NGDs). We study fundamental problems for NGDs. We show that their satisfiability, implication, and validation problems are Σp2-complete, Πp2-complete, and coNP-complete, respectively. However, if we allow non-linear arithmetic expressions, even of degree at most 2, the satisfiability and implication problems become undecidable. In other words, NGDs strike a balance between expressivity and complexity. To make practical use of NGDs, we develop an incremental algorithm IncDect to detect errors in a graph G using NGDs in response to updates ΔG to G. We show that the incremental validation problem is coNP-complete. Nonetheless, algorithm IncDect is localizable, i.e., its cost is determined by small neighbors of nodes in ΔG instead of the entire G. Moreover, we parallelize IncDect such that it guarantees to reduce running time with the increase of processors. In addition, to strike a balance between the efficiency and accuracy, we also develop polynomial-time parallel algorithms for detection and incremental detection of top-ranked inconsistencies. Using real-life and synthetic graphs, we experimentally verify the scalability and efficiency of the algorithms.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"38 1","pages":"1 - 47"},"PeriodicalIF":0.0,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81174168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huanchen Zhang, Hyeontaek Lim, Viktor Leis, D. Andersen, M. Kaminsky, K. Keeton, Andrew Pavlo
We present the Succinct Range Filter (SuRF), a fast and compact data structure for approximate membership tests. Unlike traditional Bloom filters, SuRF supports both single-key lookups and common range queries: open-range queries, closed-range queries, and range counts. SuRF is based on a new data structure called the Fast Succinct Trie (FST) that matches the point and range query performance of state-of-the-art order-preserving indexes, while consuming only 10 bits per trie node. The false-positive rates in SuRF for both point and range queries are tunable to satisfy different application needs. We evaluate SuRF in RocksDB as a replacement for its Bloom filters to reduce I/O by filtering requests before they access on-disk data structures. Our experiments on a 100-GB dataset show that replacing RocksDB’s Bloom filters with SuRFs speeds up open-seek (without upper-bound) and closed-seek (with upper-bound) queries by up to 1.5× and 5× with a modest cost on the worst-case (all-missing) point query throughput due to slightly higher false-positive rate.
{"title":"Succinct Range Filters","authors":"Huanchen Zhang, Hyeontaek Lim, Viktor Leis, D. Andersen, M. Kaminsky, K. Keeton, Andrew Pavlo","doi":"10.1145/3375660","DOIUrl":"https://doi.org/10.1145/3375660","url":null,"abstract":"We present the Succinct Range Filter (SuRF), a fast and compact data structure for approximate membership tests. Unlike traditional Bloom filters, SuRF supports both single-key lookups and common range queries: open-range queries, closed-range queries, and range counts. SuRF is based on a new data structure called the Fast Succinct Trie (FST) that matches the point and range query performance of state-of-the-art order-preserving indexes, while consuming only 10 bits per trie node. The false-positive rates in SuRF for both point and range queries are tunable to satisfy different application needs. We evaluate SuRF in RocksDB as a replacement for its Bloom filters to reduce I/O by filtering requests before they access on-disk data structures. Our experiments on a 100-GB dataset show that replacing RocksDB’s Bloom filters with SuRFs speeds up open-seek (without upper-bound) and closed-seek (with upper-bound) queries by up to 1.5× and 5× with a modest cost on the worst-case (all-missing) point query throughput due to slightly higher false-positive rate.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"5 1","pages":"1 - 31"},"PeriodicalIF":0.0,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77783726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Benedikt, P. Bourhis, Louis Jachiet, Efthymia Tsamoura
We study the design of data publishing mechanisms that allow a collection of autonomous distributed data sources to collaborate to support queries. A common mechanism for data publishing is via views: functions that expose derived data to users, usually specified as declarative queries. Our autonomy assumption is that the views must be on individual sources, but with the intention of supporting integrated queries. In deciding what data to expose to users, two considerations must be balanced. The views must be sufficiently expressive to support queries that users want to ask—the utility of the publishing mechanism. But there may also be some expressiveness restrictions. Here, we consider two restrictions, a minimal information requirement, saying that the views should reveal as little as possible while supporting the utility query, and a non-disclosure requirement, formalizing the need to prevent external users from computing information that data owners do not want revealed. We investigate the problem of designing views that satisfy both expressiveness and inexpressiveness requirements, for views in a restricted information systems - query languages (conjunctive queries), and for arbitrary views.
{"title":"Balancing Expressiveness and Inexpressiveness in View Design","authors":"Michael Benedikt, P. Bourhis, Louis Jachiet, Efthymia Tsamoura","doi":"10.1145/3488370","DOIUrl":"https://doi.org/10.1145/3488370","url":null,"abstract":"We study the design of data publishing mechanisms that allow a collection of autonomous distributed data sources to collaborate to support queries. A common mechanism for data publishing is via views: functions that expose derived data to users, usually specified as declarative queries. Our autonomy assumption is that the views must be on individual sources, but with the intention of supporting integrated queries. In deciding what data to expose to users, two considerations must be balanced. The views must be sufficiently expressive to support queries that users want to ask—the utility of the publishing mechanism. But there may also be some expressiveness restrictions. Here, we consider two restrictions, a minimal information requirement, saying that the views should reveal as little as possible while supporting the utility query, and a non-disclosure requirement, formalizing the need to prevent external users from computing information that data owners do not want revealed. We investigate the problem of designing views that satisfy both expressiveness and inexpressiveness requirements, for views in a restricted information systems - query languages (conjunctive queries), and for arbitrary views.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"14 1","pages":"1 - 40"},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75190534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Zhang, Ryan McKenna, Ios Kotsogiannis, G. Bissias, Michael Hay, Ashwin Machanavajjhala, G. Miklau
The adoption of differential privacy is growing, but the complexity of designing private, efficient, and accurate algorithms is still high. We propose a novel programming framework and system, εKTELO for implementing both existing and new privacy algorithms. For the task of answering linear counting queries, we show that nearly all existing algorithms can be composed from operators, each conforming to one of a small number of operator classes. While past programming frameworks have helped to ensure the privacy of programs, the novelty of our framework is its significant support for authoring accurate and efficient (as well as private) programs. After describing the design and architecture of the εKTELO system, we show that εKTELO is expressive, allows for safer implementations through code reuse, and allows both privacy novices and experts to easily design algorithms. We provide a number of novel implementation techniques to support the generality and scalability of εKTELO operators. These include methods to automatically compute lossless reductions of the data representation, implicit matrices that avoid materialized state but still support computations, and iterative inference implementations that generalize techniques from the privacy literature. We demonstrate the utility of εKTELO by designing several new state-of-the-art algorithms, most of which result from simple re-combinations of operators defined in the framework. We study the accuracy and scalability of εKTELO plans in a thorough empirical evaluation.
{"title":"εKTELO","authors":"Dan Zhang, Ryan McKenna, Ios Kotsogiannis, G. Bissias, Michael Hay, Ashwin Machanavajjhala, G. Miklau","doi":"10.1145/3362032","DOIUrl":"https://doi.org/10.1145/3362032","url":null,"abstract":"The adoption of differential privacy is growing, but the complexity of designing private, efficient, and accurate algorithms is still high. We propose a novel programming framework and system, εKTELO for implementing both existing and new privacy algorithms. For the task of answering linear counting queries, we show that nearly all existing algorithms can be composed from operators, each conforming to one of a small number of operator classes. While past programming frameworks have helped to ensure the privacy of programs, the novelty of our framework is its significant support for authoring accurate and efficient (as well as private) programs. After describing the design and architecture of the εKTELO system, we show that εKTELO is expressive, allows for safer implementations through code reuse, and allows both privacy novices and experts to easily design algorithms. We provide a number of novel implementation techniques to support the generality and scalability of εKTELO operators. These include methods to automatically compute lossless reductions of the data representation, implicit matrices that avoid materialized state but still support computations, and iterative inference implementations that generalize techniques from the privacy literature. We demonstrate the utility of εKTELO by designing several new state-of-the-art algorithms, most of which result from simple re-combinations of operators defined in the framework. We study the accuracy and scalability of εKTELO plans in a thorough empirical evaluation.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"15 1","pages":"1 - 44"},"PeriodicalIF":0.0,"publicationDate":"2020-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82642546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ben McCamish, Vahid Ghadakchi, Arash Termehchy, B. Touri, E. Cotilla-Sánchez, Liang Huang, Soravit Changpinyo
As most users do not precisely know the structure and/or the content of databases, their queries do not exactly reflect their information needs. The database management system (DBMS) may interact with users and use their feedback on the returned results to learn the information needs behind their queries. Current query interfaces assume that users do not learn and modify the way they express their information needs in the form of queries during their interaction with the DBMS. Using a real-world interaction workload, we show that users learn and modify how to express their information needs during their interactions with the DBMS and their learning is accurately modeled by a well-known reinforcement learning mechanism. As current data interaction systems assume that users do not modify their strategies, they cannot discover the information needs behind users’ queries effectively. We model the interaction between the user and the DBMS as a game with identical interest between two rational agents whose goal is to establish a common language for representing information needs in the form of queries. We propose a reinforcement learning method that learns and answers the information needs behind queries and adapts to the changes in users’ strategies and proves that it improves the effectiveness of answering queries, stochastically speaking. We propose two efficient implementations of this method over large relational databases. Our extensive empirical studies over real-world query workloads indicate that our algorithms are efficient and effective.
{"title":"A Game-theoretic Approach to Data Interaction","authors":"Ben McCamish, Vahid Ghadakchi, Arash Termehchy, B. Touri, E. Cotilla-Sánchez, Liang Huang, Soravit Changpinyo","doi":"10.1145/3351450","DOIUrl":"https://doi.org/10.1145/3351450","url":null,"abstract":"As most users do not precisely know the structure and/or the content of databases, their queries do not exactly reflect their information needs. The database management system (DBMS) may interact with users and use their feedback on the returned results to learn the information needs behind their queries. Current query interfaces assume that users do not learn and modify the way they express their information needs in the form of queries during their interaction with the DBMS. Using a real-world interaction workload, we show that users learn and modify how to express their information needs during their interactions with the DBMS and their learning is accurately modeled by a well-known reinforcement learning mechanism. As current data interaction systems assume that users do not modify their strategies, they cannot discover the information needs behind users’ queries effectively. We model the interaction between the user and the DBMS as a game with identical interest between two rational agents whose goal is to establish a common language for representing information needs in the form of queries. We propose a reinforcement learning method that learns and answers the information needs behind queries and adapts to the changes in users’ strategies and proves that it improves the effectiveness of answering queries, stochastically speaking. We propose two efficient implementations of this method over large relational databases. Our extensive empirical studies over real-world query workloads indicate that our algorithms are efficient and effective.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"170 1","pages":"1 - 44"},"PeriodicalIF":0.0,"publicationDate":"2020-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77468158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The commoditization of high-performance networking has sparked research interest in the RDMA capability of this hardware. One-sided RDMA primitives, in particular, have generated substantial excitement due to the ability to directly access remote memory from within an application without involving the TCP/IP stack or the remote CPU. This article considers how to leverage RDMA to improve the analytical performance of parallel database systems. To shuffle data efficiently using RDMA, one needs to consider a complex design space that includes (1) the number of open connections, (2) the contention for the shared network interface, (3) the RDMA transport function, and (4) how much memory should be reserved to exchange data between nodes during query processing. We contribute eight designs that capture salient tradeoffs in this design space as well as an adaptive algorithm to dynamically manage RDMA-registered memory. We comprehensively evaluate how transport-layer decisions impact the query performance of a database system for different generations of InfiniBand. We find that a shuffling operator that uses the RDMA Send/Receive transport function over the Unreliable Datagram transport service can transmit data up to 4× faster than an RDMA-capable MPI implementation in a 16-node cluster. The response time of TPC-H queries improves by as much as 2×.
{"title":"Design and Evaluation of an RDMA-aware Data Shuffling Operator for Parallel Database Systems","authors":"Feilong Liu, Lingyan Yin, Spyros Blanas","doi":"10.1145/3360900","DOIUrl":"https://doi.org/10.1145/3360900","url":null,"abstract":"The commoditization of high-performance networking has sparked research interest in the RDMA capability of this hardware. One-sided RDMA primitives, in particular, have generated substantial excitement due to the ability to directly access remote memory from within an application without involving the TCP/IP stack or the remote CPU. This article considers how to leverage RDMA to improve the analytical performance of parallel database systems. To shuffle data efficiently using RDMA, one needs to consider a complex design space that includes (1) the number of open connections, (2) the contention for the shared network interface, (3) the RDMA transport function, and (4) how much memory should be reserved to exchange data between nodes during query processing. We contribute eight designs that capture salient tradeoffs in this design space as well as an adaptive algorithm to dynamically manage RDMA-registered memory. We comprehensively evaluate how transport-layer decisions impact the query performance of a database system for different generations of InfiniBand. We find that a shuffling operator that uses the RDMA Send/Receive transport function over the Unreliable Datagram transport service can transmit data up to 4× faster than an RDMA-capable MPI implementation in a 16-node cluster. The response time of TPC-H queries improves by as much as 2×.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"34 1","pages":"1 - 45"},"PeriodicalIF":0.0,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79486412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regular path queries (RPQs) are a central component of graph databases. We investigate decision and enumeration problems concerning the evaluation of RPQs under several semantics that have recently been considered: arbitrary paths, shortest paths, paths without node repetitions (simple paths), and paths without edge repetitions (trails). Whereas arbitrary and shortest paths can be dealt with efficiently, simple paths and trails become computationally difficult already for very small RPQs. We study RPQ evaluation for simple paths and trails from a parameterized complexity perspective and define a class of simple transitive expressions that is prominent in practice and for which we can prove dichotomies for the evaluation problem. We observe that, even though simple path and trail semantics are intractable for RPQs in general, they are feasible for the vast majority of RPQs that are used in practice. At the heart of this study is a result of independent interest: the two disjoint paths problem in directed graphs is W[1]-hard if parameterized by the length of one of the two paths.
{"title":"Dichotomies for Evaluating Simple Regular Path Queries","authors":"W. Martens, T. Trautner","doi":"10.1145/3331446","DOIUrl":"https://doi.org/10.1145/3331446","url":null,"abstract":"Regular path queries (RPQs) are a central component of graph databases. We investigate decision and enumeration problems concerning the evaluation of RPQs under several semantics that have recently been considered: arbitrary paths, shortest paths, paths without node repetitions (simple paths), and paths without edge repetitions (trails). Whereas arbitrary and shortest paths can be dealt with efficiently, simple paths and trails become computationally difficult already for very small RPQs. We study RPQ evaluation for simple paths and trails from a parameterized complexity perspective and define a class of simple transitive expressions that is prominent in practice and for which we can prove dichotomies for the evaluation problem. We observe that, even though simple path and trail semantics are intractable for RPQs in general, they are feasible for the vast majority of RPQs that are used in practice. At the heart of this study is a result of independent interest: the two disjoint paths problem in directed graphs is W[1]-hard if parameterized by the length of one of the two paths.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"11 1","pages":"1 - 46"},"PeriodicalIF":0.0,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87559568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Seidemann, Nikolaus Glombiewski, Michael Körber, B. Seeger
Reactive security monitoring, self-driving cars, the Internet of Things (IoT), and many other novel applications require systems for both writing events arriving at very high and fluctuating rates to persistent storage as well as supporting analytical ad hoc queries. As standard database systems are not capable of delivering the required write performance, log-based systems, key-value stores, and other write-optimized data stores have emerged recently. However, the drawbacks of these systems are a fair query performance and the lack of suitable instant recovery mechanisms in case of system failures. In this article, we present ChronicleDB, a novel database system with a storage layout tailored for high write performance under fluctuating data rates and powerful indexing capabilities to support a variety of queries. In addition, ChronicleDB offers low-cost fault tolerance and instant recovery within milliseconds. Unlike previous work, ChronicleDB is designed either as a serverless library to be tightly integrated in an application or as a standalone database server. Our results of an experimental evaluation with real and synthetic data reveal that ChronicleDB clearly outperforms competing systems with respect to both write and query performance.
{"title":"ChronicleDB","authors":"M. Seidemann, Nikolaus Glombiewski, Michael Körber, B. Seeger","doi":"10.1145/3342357","DOIUrl":"https://doi.org/10.1145/3342357","url":null,"abstract":"Reactive security monitoring, self-driving cars, the Internet of Things (IoT), and many other novel applications require systems for both writing events arriving at very high and fluctuating rates to persistent storage as well as supporting analytical ad hoc queries. As standard database systems are not capable of delivering the required write performance, log-based systems, key-value stores, and other write-optimized data stores have emerged recently. However, the drawbacks of these systems are a fair query performance and the lack of suitable instant recovery mechanisms in case of system failures. In this article, we present ChronicleDB, a novel database system with a storage layout tailored for high write performance under fluctuating data rates and powerful indexing capabilities to support a variety of queries. In addition, ChronicleDB offers low-cost fault tolerance and instant recovery within milliseconds. Unlike previous work, ChronicleDB is designed either as a serverless library to be tightly integrated in an application or as a standalone database server. Our results of an experimental evaluation with real and synthetic data reveal that ChronicleDB clearly outperforms competing systems with respect to both write and query performance.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"1 1","pages":"1 - 45"},"PeriodicalIF":0.0,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73491543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei, Wenqing Lin, Y. Yang, N. Tang
Given a graph G, a source node s, and a target node t, the personalized PageRank (PPR) of t with respect to s is the probability that a random walk starting from s terminates at t. An important variant of the PPR query is single-source PPR (SSPPR), which enumerates all nodes in G and returns the top-k nodes with the highest PPR values with respect to a given source s. PPR in general and SSPPR in particular have important applications in web search and social networks, e.g., in Twitter’s Who-To-Follow recommendation service. However, PPR computation is known to be expensive on large graphs and resistant to indexing. Consequently, previous solutions either use heuristics, which do not guarantee result quality, or rely on the strong computing power of modern data centers, which is costly. Motivated by this, we propose effective index-free and index-based algorithms for approximate PPR processing, with rigorous guarantees on result quality. We first present FORA, an approximate SSPPR solution that combines two existing methods—Forward Push (which is fast but does not guarantee quality) and Monte Carlo Random Walk (accurate but slow)—in a simple and yet non-trivial way, leading to both high accuracy and efficiency. Further, FORA includes a simple and effective indexing scheme, as well as a module for top-k selection with high pruning power. Extensive experiments demonstrate that the proposed solutions are orders of magnitude more efficient than their respective competitors. Notably, on a billion-edge Twitter dataset, FORA answers a top-500 approximate SSPPR query within 1s, using a single commodity server.
{"title":"Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries","authors":"Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei, Wenqing Lin, Y. Yang, N. Tang","doi":"10.1145/3360902","DOIUrl":"https://doi.org/10.1145/3360902","url":null,"abstract":"Given a graph G, a source node s, and a target node t, the personalized PageRank (PPR) of t with respect to s is the probability that a random walk starting from s terminates at t. An important variant of the PPR query is single-source PPR (SSPPR), which enumerates all nodes in G and returns the top-k nodes with the highest PPR values with respect to a given source s. PPR in general and SSPPR in particular have important applications in web search and social networks, e.g., in Twitter’s Who-To-Follow recommendation service. However, PPR computation is known to be expensive on large graphs and resistant to indexing. Consequently, previous solutions either use heuristics, which do not guarantee result quality, or rely on the strong computing power of modern data centers, which is costly. Motivated by this, we propose effective index-free and index-based algorithms for approximate PPR processing, with rigorous guarantees on result quality. We first present FORA, an approximate SSPPR solution that combines two existing methods—Forward Push (which is fast but does not guarantee quality) and Monte Carlo Random Walk (accurate but slow)—in a simple and yet non-trivial way, leading to both high accuracy and efficiency. Further, FORA includes a simple and effective indexing scheme, as well as a module for top-k selection with high pruning power. Extensive experiments demonstrate that the proposed solutions are orders of magnitude more efficient than their respective competitors. Notably, on a billion-edge Twitter dataset, FORA answers a top-500 approximate SSPPR query within 1s, using a single commodity server.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"63 1","pages":"1 - 37"},"PeriodicalIF":0.0,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89697303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}