R. Meneguette, R. D. De Grande, J. Ueyama, G. P. R. Filho, E. Madeira
Vehicular Edge Computing (VEC), based on the Edge Computing motivation and fundamentals, is a promising technology supporting Intelligent Transport Systems services, smart city applications, and urban computing. VEC can provide and manage computational resources closer to vehicles and end-users, providing access to services at lower latency and meeting the minimum execution requirements for each service type. This survey describes VEC’s concepts and technologies; we also present an overview of existing VEC architectures, discussing them and exemplifying them through layered designs. Besides, we describe the underlying vehicular communication in supporting resource allocation mechanisms. With the intent to overview the risks, breaches, and measures in VEC, we review related security approaches and methods. Finally, we conclude this survey work with an overview and study of VEC’s main challenges. Unlike other surveys in which they are focused on content caching and data offloading, this work proposes a taxonomy based on the architectures in which VEC serves as the central element. VEC supports such architectures in capturing and disseminating data and resources to offer services aimed at a smart city through their aggregation and the allocation in a secure manner.
{"title":"Vehicular Edge Computing: Architecture, Resource Management, Security, and Challenges","authors":"R. Meneguette, R. D. De Grande, J. Ueyama, G. P. R. Filho, E. Madeira","doi":"10.1145/3485129","DOIUrl":"https://doi.org/10.1145/3485129","url":null,"abstract":"Vehicular Edge Computing (VEC), based on the Edge Computing motivation and fundamentals, is a promising technology supporting Intelligent Transport Systems services, smart city applications, and urban computing. VEC can provide and manage computational resources closer to vehicles and end-users, providing access to services at lower latency and meeting the minimum execution requirements for each service type. This survey describes VEC’s concepts and technologies; we also present an overview of existing VEC architectures, discussing them and exemplifying them through layered designs. Besides, we describe the underlying vehicular communication in supporting resource allocation mechanisms. With the intent to overview the risks, breaches, and measures in VEC, we review related security approaches and methods. Finally, we conclude this survey work with an overview and study of VEC’s main challenges. Unlike other surveys in which they are focused on content caching and data offloading, this work proposes a taxonomy based on the architectures in which VEC serves as the central element. VEC supports such architectures in capturing and disseminating data and resources to offer services aimed at a smart city through their aggregation and the allocation in a secure manner.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"74 1","pages":"1 - 46"},"PeriodicalIF":0.0,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72676321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dinh C. Nguyen, Viet Quoc Pham, P. Pathirana, Ming Ding, A. Seneviratne, Zihuai Lin, O. Dobre, W. Hwang
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT) have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may be infeasible in realistic healthcare scenarios due to the high scalability of modern healthcare networks and growing data privacy concerns. Federated Learning (FL), as an emerging distributed collaborative AI paradigm, is particularly attractive for smart healthcare, by coordinating multiple clients (e.g., hospitals) to perform AI training without sharing raw data. Accordingly, we provide a comprehensive survey on the use of FL in smart healthcare. First, we present the recent advances in FL, the motivations, and the requirements of using FL in smart healthcare. The recent FL designs for smart healthcare are then discussed, ranging from resource-aware FL, secure and privacy-aware FL to incentive FL and personalized FL. Subsequently, we provide a state-of-the-art review on the emerging applications of FL in key healthcare domains, including health data management, remote health monitoring, medical imaging, and COVID-19 detection. Several recent FL-based smart healthcare projects are analyzed, and the key lessons learned from the survey are also highlighted. Finally, we discuss interesting research challenges and possible directions for future FL research in smart healthcare.
{"title":"Federated Learning for Smart Healthcare: A Survey","authors":"Dinh C. Nguyen, Viet Quoc Pham, P. Pathirana, Ming Ding, A. Seneviratne, Zihuai Lin, O. Dobre, W. Hwang","doi":"10.1145/3501296","DOIUrl":"https://doi.org/10.1145/3501296","url":null,"abstract":"Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT) have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may be infeasible in realistic healthcare scenarios due to the high scalability of modern healthcare networks and growing data privacy concerns. Federated Learning (FL), as an emerging distributed collaborative AI paradigm, is particularly attractive for smart healthcare, by coordinating multiple clients (e.g., hospitals) to perform AI training without sharing raw data. Accordingly, we provide a comprehensive survey on the use of FL in smart healthcare. First, we present the recent advances in FL, the motivations, and the requirements of using FL in smart healthcare. The recent FL designs for smart healthcare are then discussed, ranging from resource-aware FL, secure and privacy-aware FL to incentive FL and personalized FL. Subsequently, we provide a state-of-the-art review on the emerging applications of FL in key healthcare domains, including health data management, remote health monitoring, medical imaging, and COVID-19 detection. Several recent FL-based smart healthcare projects are analyzed, and the key lessons learned from the survey are also highlighted. Finally, we discuss interesting research challenges and possible directions for future FL research in smart healthcare.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"20 1","pages":"1 - 37"},"PeriodicalIF":0.0,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85342597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quality improvement methods are essential to gathering high-quality crowdsourced data, both for research and industry applications. A popular and broadly applicable method is task assignment that dynamically adjusts crowd workflow parameters. In this survey, we review task assignment methods that address: heterogeneous task assignment, question assignment, and plurality problems in crowdsourcing. We discuss and contrast how these methods estimate worker performance, and highlight potential challenges in their implementation. Finally, we discuss future research directions for task assignment methods, and how crowdsourcing platforms and other stakeholders can benefit from them.
{"title":"A Survey on Task Assignment in Crowdsourcing","authors":"Danula Hettiachchi, V. Kostakos, Jorge Gonçalves","doi":"10.1145/3494522","DOIUrl":"https://doi.org/10.1145/3494522","url":null,"abstract":"Quality improvement methods are essential to gathering high-quality crowdsourced data, both for research and industry applications. A popular and broadly applicable method is task assignment that dynamically adjusts crowd workflow parameters. In this survey, we review task assignment methods that address: heterogeneous task assignment, question assignment, and plurality problems in crowdsourcing. We discuss and contrast how these methods estimate worker performance, and highlight potential challenges in their implementation. Finally, we discuss future research directions for task assignment methods, and how crowdsourcing platforms and other stakeholders can benefit from them.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"126 1","pages":"1 - 35"},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81714380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huacheng Li, Chunhe Xia, Tianbo Wang, S. Wen, Chao Chen, Yang Xiang
Studying information diffusion in SNS (Social Networks Service) has remarkable significance in both academia and industry. Theoretically, it boosts the development of other subjects such as statistics, sociology, and data mining. Practically, diffusion modeling provides fundamental support for many downstream applications (e.g., public opinion monitoring, rumor source identification, and viral marketing). Tremendous efforts have been devoted to this area to understand and quantify information diffusion dynamics. This survey investigates and summarizes the emerging distinguished works in diffusion modeling. We first put forward a unified information diffusion concept in terms of three components: information, user decision, and social vectors, followed by a detailed introduction of the methodologies for diffusion modeling. And then, a new taxonomy adopting hybrid philosophy (i.e., granularity and techniques) is proposed, and we made a series of comparative studies on elementary diffusion models under our taxonomy from the aspects of assumptions, methods, and pros and cons. We further summarized representative diffusion modeling in special scenarios and significant downstream tasks based on these elementary models. Finally, open issues in this field following the methodology of diffusion modeling are discussed.
{"title":"Capturing Dynamics of Information Diffusion in SNS: A Survey of Methodology and Techniques","authors":"Huacheng Li, Chunhe Xia, Tianbo Wang, S. Wen, Chao Chen, Yang Xiang","doi":"10.1145/3485273","DOIUrl":"https://doi.org/10.1145/3485273","url":null,"abstract":"Studying information diffusion in SNS (Social Networks Service) has remarkable significance in both academia and industry. Theoretically, it boosts the development of other subjects such as statistics, sociology, and data mining. Practically, diffusion modeling provides fundamental support for many downstream applications (e.g., public opinion monitoring, rumor source identification, and viral marketing). Tremendous efforts have been devoted to this area to understand and quantify information diffusion dynamics. This survey investigates and summarizes the emerging distinguished works in diffusion modeling. We first put forward a unified information diffusion concept in terms of three components: information, user decision, and social vectors, followed by a detailed introduction of the methodologies for diffusion modeling. And then, a new taxonomy adopting hybrid philosophy (i.e., granularity and techniques) is proposed, and we made a series of comparative studies on elementary diffusion models under our taxonomy from the aspects of assumptions, methods, and pros and cons. We further summarized representative diffusion modeling in special scenarios and significant downstream tasks based on these elementary models. Finally, open issues in this field following the methodology of diffusion modeling are discussed.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"24 1","pages":"1 - 51"},"PeriodicalIF":0.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74063636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AI is widely thought to be poised to transform business, yet current perceptions of the scope of this transformation may be myopic. Recent progress in natural language processing involving transformer language models (TLMs) offers a potential avenue for AI-driven business and societal transformation that is beyond the scope of what most currently foresee. We review this recent progress as well as recent literature utilizing text mining in top IS journals to develop an outline for how future IS research can benefit from these new techniques. Our review of existing IS literature reveals that suboptimal text mining techniques are prevalent and that the more advanced TLMs could be applied to enhance and increase IS research involving text data, and to enable new IS research topics, thus creating more value for the research community. This is possible because these techniques make it easier to develop very powerful custom systems and their performance is superior to existing methods for a wide range of tasks and applications. Further, multilingual language models make possible higher quality text analytics for research in multiple languages. We also identify new avenues for IS research, like language user interfaces, that may offer even greater potential for future IS research.
{"title":"Deep Transfer Learning & Beyond: Transformer Language Models in Information Systems Research","authors":"Ross Gruetzemacher, D. Paradice","doi":"10.1145/3505245","DOIUrl":"https://doi.org/10.1145/3505245","url":null,"abstract":"AI is widely thought to be poised to transform business, yet current perceptions of the scope of this transformation may be myopic. Recent progress in natural language processing involving transformer language models (TLMs) offers a potential avenue for AI-driven business and societal transformation that is beyond the scope of what most currently foresee. We review this recent progress as well as recent literature utilizing text mining in top IS journals to develop an outline for how future IS research can benefit from these new techniques. Our review of existing IS literature reveals that suboptimal text mining techniques are prevalent and that the more advanced TLMs could be applied to enhance and increase IS research involving text data, and to enable new IS research topics, thus creating more value for the research community. This is possible because these techniques make it easier to develop very powerful custom systems and their performance is superior to existing methods for a wide range of tasks and applications. Further, multilingual language models make possible higher quality text analytics for research in multiple languages. We also identify new avenues for IS research, like language user interfaces, that may offer even greater potential for future IS research.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"22 1","pages":"1 - 35"},"PeriodicalIF":0.0,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85053410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Network representation learning (NRL) advances the conventional graph mining of social networks, knowledge graphs, and complex biomedical and physics information networks. Dozens of NRL algorithms have been reported in the literature. Most of them focus on learning node embeddings for homogeneous networks, but they differ in the specific encoding schemes and specific types of node semantics captured and used for learning node embedding. This article reviews the design principles and the different node embedding techniques for NRL over homogeneous networks. To facilitate the comparison of different node embedding algorithms, we introduce a unified reference framework to divide and generalize the node embedding learning process on a given network into preprocessing steps, node feature extraction steps, and node embedding model training for an NRL task such as link prediction and node clustering. With this unifying reference framework, we highlight the representative methods, models, and techniques used at different stages of the node embedding model learning process. This survey not only helps researchers and practitioners gain an in-depth understanding of different NRL techniques but also provides practical guidelines for designing and developing the next generation of NRL algorithms and systems.
{"title":"Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding","authors":"Jingya Zhou, Ling Liu, Wenqi Wei, Jianxi Fan","doi":"10.1145/3491206","DOIUrl":"https://doi.org/10.1145/3491206","url":null,"abstract":"Network representation learning (NRL) advances the conventional graph mining of social networks, knowledge graphs, and complex biomedical and physics information networks. Dozens of NRL algorithms have been reported in the literature. Most of them focus on learning node embeddings for homogeneous networks, but they differ in the specific encoding schemes and specific types of node semantics captured and used for learning node embedding. This article reviews the design principles and the different node embedding techniques for NRL over homogeneous networks. To facilitate the comparison of different node embedding algorithms, we introduce a unified reference framework to divide and generalize the node embedding learning process on a given network into preprocessing steps, node feature extraction steps, and node embedding model training for an NRL task such as link prediction and node clustering. With this unifying reference framework, we highlight the representative methods, models, and techniques used at different stages of the node embedding model learning process. This survey not only helps researchers and practitioners gain an in-depth understanding of different NRL techniques but also provides practical guidelines for designing and developing the next generation of NRL algorithms and systems.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"116 1","pages":"1 - 35"},"PeriodicalIF":0.0,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87827876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lázaro Bustio-Martínez, R. Cumplido, Martín Letras, Raudel Hernández-León, C. Feregrino-Uribe, José Hernández-Palancar
In data mining, Frequent Itemsets Mining is a technique used in several domains with notable results. However, the large volume of data in modern datasets increases the processing time of Frequent Itemset Mining algorithms, making them unsuitable for many real-world applications. Accordingly, proposing new methods for Frequent Itemset Mining to obtain frequent itemsets in a realistic amount of time is still an open problem. A successful alternative is to employ hardware acceleration using Graphics Processing Units (GPU) and Field Programmable Gates Arrays (FPGA). In this article, a comprehensive review of the state of the art of Frequent Itemsets Mining hardware acceleration is presented. Several approaches (FPGA and GPU based) were contrasted to show their weaknesses and strengths. This survey gathers the most relevant and the latest research efforts for improving the performance of Frequent Itemsets Mining regarding algorithms advances and modern development platforms. Furthermore, this survey organizes the current research on Frequent Itemsets Mining from the hardware perspective considering the source of the data, the development platform, and the baseline algorithm.
{"title":"FPGA/GPU-based Acceleration for Frequent Itemsets Mining: A Comprehensive Review","authors":"Lázaro Bustio-Martínez, R. Cumplido, Martín Letras, Raudel Hernández-León, C. Feregrino-Uribe, José Hernández-Palancar","doi":"10.1145/3472289","DOIUrl":"https://doi.org/10.1145/3472289","url":null,"abstract":"In data mining, Frequent Itemsets Mining is a technique used in several domains with notable results. However, the large volume of data in modern datasets increases the processing time of Frequent Itemset Mining algorithms, making them unsuitable for many real-world applications. Accordingly, proposing new methods for Frequent Itemset Mining to obtain frequent itemsets in a realistic amount of time is still an open problem. A successful alternative is to employ hardware acceleration using Graphics Processing Units (GPU) and Field Programmable Gates Arrays (FPGA). In this article, a comprehensive review of the state of the art of Frequent Itemsets Mining hardware acceleration is presented. Several approaches (FPGA and GPU based) were contrasted to show their weaknesses and strengths. This survey gathers the most relevant and the latest research efforts for improving the performance of Frequent Itemsets Mining regarding algorithms advances and modern development platforms. Furthermore, this survey organizes the current research on Frequent Itemsets Mining from the hardware perspective considering the source of the data, the development platform, and the baseline algorithm.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"82 1","pages":"1 - 35"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80143189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Decision-making based on machine learning systems, especially when this decision-making can affect human lives, is a subject of maximum interest in the Machine Learning community. It is, therefore, necessary to equip these systems with a means of estimating uncertainty in the predictions they emit in order to help practitioners make more informed decisions. In the present work, we introduce the topic of uncertainty estimation, and we analyze the peculiarities of such estimation when applied to classification systems. We analyze different methods that have been designed to provide classification systems based on deep learning with mechanisms for measuring the uncertainty of their predictions. We will take a look at how this uncertainty can be modeled and measured using different approaches, as well as practical considerations of different applications of uncertainty. Moreover, we review some of the properties that should be borne in mind when developing such metrics. All in all, the present survey aims at providing a pragmatic overview of the estimation of uncertainty in classification systems that can be very useful for both academic research and deep learning practitioners.
{"title":"A Survey on Uncertainty Estimation in Deep Learning Classification Systems from a Bayesian Perspective","authors":"José Mena, O. Pujol, Jordi Vitrià","doi":"10.1145/3477140","DOIUrl":"https://doi.org/10.1145/3477140","url":null,"abstract":"Decision-making based on machine learning systems, especially when this decision-making can affect human lives, is a subject of maximum interest in the Machine Learning community. It is, therefore, necessary to equip these systems with a means of estimating uncertainty in the predictions they emit in order to help practitioners make more informed decisions. In the present work, we introduce the topic of uncertainty estimation, and we analyze the peculiarities of such estimation when applied to classification systems. We analyze different methods that have been designed to provide classification systems based on deep learning with mechanisms for measuring the uncertainty of their predictions. We will take a look at how this uncertainty can be modeled and measured using different approaches, as well as practical considerations of different applications of uncertainty. Moreover, we review some of the properties that should be borne in mind when developing such metrics. All in all, the present survey aims at providing a pragmatic overview of the estimation of uncertainty in classification systems that can be very useful for both academic research and deep learning practitioners.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"4 1","pages":"1 - 35"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85420841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most existing surveys and reviews on web application vulnerability detection (WAVD) approaches focus on comparing and summarizing the approaches’ technical details. Although some studies have analyzed the efficiency and effectiveness of specific methods, there is a lack of a comprehensive and systematic analysis of the efficiency and effectiveness of various WAVD approaches. We conducted a systematic literature review (SLR) of WAVD approaches and analyzed their efficiency and effectiveness. We identified 105 primary studies out of 775 WAVD articles published between January 2008 and June 2019. Our study identified 10 categories of artifacts analyzed by the WAVD approaches and 8 categories of WAVD meta-approaches for analyzing the artifacts. Our study’s results also summarized and compared the effectiveness and efficiency of different WAVD approaches on detecting specific categories of web application vulnerabilities and which web applications and test suites are used to evaluate the WAVD approaches. To our knowledge, this is the first SLR that focuses on summarizing the effectiveness and efficiencies of WAVD approaches. Our study results can help security engineers choose and compare WAVD tools and help researchers identify research gaps.
{"title":"Efficiency and Effectiveness of Web Application Vulnerability Detection Approaches: A Review","authors":"Bing Zhang, Jingyue Li, Jiadong Ren, Guoyan Huang","doi":"10.1145/3474553","DOIUrl":"https://doi.org/10.1145/3474553","url":null,"abstract":"Most existing surveys and reviews on web application vulnerability detection (WAVD) approaches focus on comparing and summarizing the approaches’ technical details. Although some studies have analyzed the efficiency and effectiveness of specific methods, there is a lack of a comprehensive and systematic analysis of the efficiency and effectiveness of various WAVD approaches. We conducted a systematic literature review (SLR) of WAVD approaches and analyzed their efficiency and effectiveness. We identified 105 primary studies out of 775 WAVD articles published between January 2008 and June 2019. Our study identified 10 categories of artifacts analyzed by the WAVD approaches and 8 categories of WAVD meta-approaches for analyzing the artifacts. Our study’s results also summarized and compared the effectiveness and efficiency of different WAVD approaches on detecting specific categories of web application vulnerabilities and which web applications and test suites are used to evaluate the WAVD approaches. To our knowledge, this is the first SLR that focuses on summarizing the effectiveness and efficiencies of WAVD approaches. Our study results can help security engineers choose and compare WAVD tools and help researchers identify research gaps.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"58 1","pages":"1 - 35"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81617980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Network communication has become a part of everyday life, and the interconnection among devices and people will increase even more in the future. Nevertheless, prediction of Quality of Service parameters, particularly throughput, is quite a challenging task. In this survey, we provide an extensive insight into the literature on Transmission Control Protocol throughput prediction. The goal is to provide an overview of the used techniques and to elaborate on open aspects and white spots in this area. We assessed more than 35 approaches spanning from equation-based over various time smoothing to modern learning and location smoothing methods. In addition, different error functions for the evaluation of the approaches as well as publicly available recording tools and datasets are discussed. To conclude, we point out open challenges especially looking in the area of moving mobile network clients. The use of throughput prediction not only enables a more efficient use of the available bandwidth, the techniques shown in this work also result in more robust and stable communication.
{"title":"A Survey on Client Throughput Prediction Algorithms in Wired and Wireless Networks","authors":"Josef Schmid, A. Höß, Björn Schuller","doi":"10.1145/3477204","DOIUrl":"https://doi.org/10.1145/3477204","url":null,"abstract":"Network communication has become a part of everyday life, and the interconnection among devices and people will increase even more in the future. Nevertheless, prediction of Quality of Service parameters, particularly throughput, is quite a challenging task. In this survey, we provide an extensive insight into the literature on Transmission Control Protocol throughput prediction. The goal is to provide an overview of the used techniques and to elaborate on open aspects and white spots in this area. We assessed more than 35 approaches spanning from equation-based over various time smoothing to modern learning and location smoothing methods. In addition, different error functions for the evaluation of the approaches as well as publicly available recording tools and datasets are discussed. To conclude, we point out open challenges especially looking in the area of moving mobile network clients. The use of throughput prediction not only enables a more efficient use of the available bandwidth, the techniques shown in this work also result in more robust and stable communication.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"22 1","pages":"1 - 33"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80438309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}