D. M. V. Sato, Sheila Cristiana de Freitas, J. P. Barddal, E. Scalabrin
Concept drift in process mining (PM) is a challenge as classical methods assume processes are in a steady-state, i.e., events share the same process version. We conducted a systematic literature review on the intersection of these areas, and thus, we review concept drift in PM and bring forward a taxonomy of existing techniques for drift detection and online PM for evolving environments. Existing works depict that (i) PM still primarily focuses on offline analysis, and (ii) the assessment of concept drift techniques in processes is cumbersome due to the lack of common evaluation protocol, datasets, and metrics.
{"title":"A Survey on Concept Drift in Process Mining","authors":"D. M. V. Sato, Sheila Cristiana de Freitas, J. P. Barddal, E. Scalabrin","doi":"10.1145/3472752","DOIUrl":"https://doi.org/10.1145/3472752","url":null,"abstract":"Concept drift in process mining (PM) is a challenge as classical methods assume processes are in a steady-state, i.e., events share the same process version. We conducted a systematic literature review on the intersection of these areas, and thus, we review concept drift in PM and bring forward a taxonomy of existing techniques for drift detection and online PM for evolving environments. Existing works depict that (i) PM still primarily focuses on offline analysis, and (ii) the assessment of concept drift techniques in processes is cumbersome due to the lack of common evaluation protocol, datasets, and metrics.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"20 1","pages":"1 - 38"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91118519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy R. McIntosh, A. Kayes, Yi-Ping Phoebe Chen, Alex Ng, P. Watters
Although ransomware has been around since the early days of personal computers, its sophistication and aggression have increased substantially over the years. Ransomware, as a type of malware to extort ransom payments from victims, has evolved to deliver payloads in different attack vectors and on multiple platforms, and creating repeated disruptions and financial loss to many victims. Many studies have performed ransomware analysis and/or presented detection, defense, or prevention techniques for ransomware. However, because the ransomware landscape has evolved aggressively, many of those studies have become less relevant or even outdated. Previous surveys on anti-ransomware studies have compared the methods and results of the studies they surveyed, but none of those surveys has attempted to critique on the internal or external validity of those studies. In this survey, we first examined the up-to-date concept of ransomware, and listed the inadequacies in current ransomware research. We then proposed a set of unified metrics to evaluate published studies on ransomware mitigation, and applied the metrics to 118 such studies to comprehensively compare and contrast their pros and cons, with the attempt to evaluate their relative strengths and weaknesses. Finally, we forecast the future trends of ransomware evolution, and propose future research directions.
{"title":"Ransomware Mitigation in the Modern Era: A Comprehensive Review, Research Challenges, and Future Directions","authors":"Timothy R. McIntosh, A. Kayes, Yi-Ping Phoebe Chen, Alex Ng, P. Watters","doi":"10.1145/3479393","DOIUrl":"https://doi.org/10.1145/3479393","url":null,"abstract":"Although ransomware has been around since the early days of personal computers, its sophistication and aggression have increased substantially over the years. Ransomware, as a type of malware to extort ransom payments from victims, has evolved to deliver payloads in different attack vectors and on multiple platforms, and creating repeated disruptions and financial loss to many victims. Many studies have performed ransomware analysis and/or presented detection, defense, or prevention techniques for ransomware. However, because the ransomware landscape has evolved aggressively, many of those studies have become less relevant or even outdated. Previous surveys on anti-ransomware studies have compared the methods and results of the studies they surveyed, but none of those surveys has attempted to critique on the internal or external validity of those studies. In this survey, we first examined the up-to-date concept of ransomware, and listed the inadequacies in current ransomware research. We then proposed a set of unified metrics to evaluate published studies on ransomware mitigation, and applied the metrics to 118 such studies to comprehensively compare and contrast their pros and cons, with the attempt to evaluate their relative strengths and weaknesses. Finally, we forecast the future trends of ransomware evolution, and propose future research directions.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"31 1","pages":"1 - 36"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88275533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With capability of performing computations on encrypted data without needing the secret key, homomorphic encryption (HE) is a promising cryptographic technique that makes outsourced computations secure and privacy-preserving. A decade after Gentry’s breakthrough discovery of how we might support arbitrary computations on encrypted data, many studies followed and improved various aspects of HE, such as faster bootstrapping and ciphertext packing. However, the topic of how to support secure computations on ciphertexts encrypted under multiple keys does not receive enough attention. This capability is crucial in many application scenarios where data owners want to engage in joint computations and are preferred to protect their sensitive data under their own secret keys. Enabling this capability is a non-trivial task. In this article, we present a comprehensive survey of the state-of-the-art multi-key techniques and schemes that target different systems and threat models. In particular, we review recent constructions based on Threshold Homomorphic Encryption (ThHE) and Multi-Key Homomorphic Encryption (MKHE). We analyze these cryptographic techniques and schemes based on a new secure outsourced computation model and examine their complexities. We share lessons learned and draw observations for designing better schemes with reduced overheads.
{"title":"Computing Blindfolded on Data Homomorphically Encrypted under Multiple Keys: A Survey","authors":"Asma Aloufi, Peizhao Hu, Yongsoo Song, K. Lauter","doi":"10.1145/3477139","DOIUrl":"https://doi.org/10.1145/3477139","url":null,"abstract":"With capability of performing computations on encrypted data without needing the secret key, homomorphic encryption (HE) is a promising cryptographic technique that makes outsourced computations secure and privacy-preserving. A decade after Gentry’s breakthrough discovery of how we might support arbitrary computations on encrypted data, many studies followed and improved various aspects of HE, such as faster bootstrapping and ciphertext packing. However, the topic of how to support secure computations on ciphertexts encrypted under multiple keys does not receive enough attention. This capability is crucial in many application scenarios where data owners want to engage in joint computations and are preferred to protect their sensitive data under their own secret keys. Enabling this capability is a non-trivial task. In this article, we present a comprehensive survey of the state-of-the-art multi-key techniques and schemes that target different systems and threat models. In particular, we review recent constructions based on Threshold Homomorphic Encryption (ThHE) and Multi-Key Homomorphic Encryption (MKHE). We analyze these cryptographic techniques and schemes based on a new secure outsourced computation model and examine their complexities. We share lessons learned and draw observations for designing better schemes with reduced overheads.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"4 1","pages":"1 - 37"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78954164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pasika Sashmal Ranaweera, A. Jurcut, Madhusanka Liyanage
The future of mobile and internet technologies are manifesting advancements beyond the existing scope of science. The concepts of automated driving, augmented-reality, and machine-type-communication are quite sophisticated and require an elevation of the current mobile infrastructure for launching. The fifth-generation (5G) mobile technology serves as the solution, though it lacks a proximate networking infrastructure to satisfy the service guarantees. Multi-access Edge Computing (MEC) envisages such an edge computing platform. In this survey, we are revealing security vulnerabilities of key 5G-based use cases deployed in the MEC context. Probable security flows of each case are specified, while countermeasures are proposed for mitigating them.
{"title":"MEC-enabled 5G Use Cases: A Survey on Security Vulnerabilities and Countermeasures","authors":"Pasika Sashmal Ranaweera, A. Jurcut, Madhusanka Liyanage","doi":"10.1145/3474552","DOIUrl":"https://doi.org/10.1145/3474552","url":null,"abstract":"The future of mobile and internet technologies are manifesting advancements beyond the existing scope of science. The concepts of automated driving, augmented-reality, and machine-type-communication are quite sophisticated and require an elevation of the current mobile infrastructure for launching. The fifth-generation (5G) mobile technology serves as the solution, though it lacks a proximate networking infrastructure to satisfy the service guarantees. Multi-access Edge Computing (MEC) envisages such an edge computing platform. In this survey, we are revealing security vulnerabilities of key 5G-based use cases deployed in the MEC context. Probable security flows of each case are specified, while countermeasures are proposed for mitigating them.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"24 1","pages":"1 - 37"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78062700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Efstratios Kakaletsis, C. Symeonidis, Maria Tzelepi, Ioannis Mademlis, A. Tefas, N. Nikolaidis, I. Pitas
Recent years have seen an unprecedented spread of Unmanned Aerial Vehicles (UAVs, or “drones”), which are highly useful for both civilian and military applications. Flight safety is a crucial issue in UAV navigation, having to ensure accurate compliance with recently legislated rules and regulations. The emerging use of autonomous drones and UAV swarms raises additional issues, making it necessary to transfuse safety- and regulations-awareness to relevant algorithms and architectures. Computer vision plays a pivotal role in such autonomous functionalities. Although the main aspects of autonomous UAV technologies (e.g., path planning, navigation control, landing control, mapping and localization, target detection/tracking) are already mature and well-covered, ensuring safe flying in the vicinity of crowds, avoidance of passing over persons, or guaranteed emergency landing capabilities in case of malfunctions, are generally treated as an afterthought when designing autonomous UAV platforms for unstructured environments. This fact is reflected in the fragmentary coverage of the above issues in current literature. This overview attempts to remedy this situation, from the point of view of computer vision. It examines the field from multiple aspects, including regulations across the world and relevant current technologies. Finally, since very few attempts have been made so far towards a complete UAV safety flight and landing pipeline, an example computer vision-based UAV flight safety pipeline is introduced, taking into account all issues present in current autonomous drones. The content is relevant to any kind of autonomous drone flight (e.g., for movie/TV production, news-gathering, search and rescue, surveillance, inspection, mapping, wildlife monitoring, crowd monitoring/management), making this a topic of broad interest.
{"title":"Computer Vision for Autonomous UAV Flight Safety: An Overview and a Vision-based Safe Landing Pipeline Example","authors":"Efstratios Kakaletsis, C. Symeonidis, Maria Tzelepi, Ioannis Mademlis, A. Tefas, N. Nikolaidis, I. Pitas","doi":"10.1145/3472288","DOIUrl":"https://doi.org/10.1145/3472288","url":null,"abstract":"Recent years have seen an unprecedented spread of Unmanned Aerial Vehicles (UAVs, or “drones”), which are highly useful for both civilian and military applications. Flight safety is a crucial issue in UAV navigation, having to ensure accurate compliance with recently legislated rules and regulations. The emerging use of autonomous drones and UAV swarms raises additional issues, making it necessary to transfuse safety- and regulations-awareness to relevant algorithms and architectures. Computer vision plays a pivotal role in such autonomous functionalities. Although the main aspects of autonomous UAV technologies (e.g., path planning, navigation control, landing control, mapping and localization, target detection/tracking) are already mature and well-covered, ensuring safe flying in the vicinity of crowds, avoidance of passing over persons, or guaranteed emergency landing capabilities in case of malfunctions, are generally treated as an afterthought when designing autonomous UAV platforms for unstructured environments. This fact is reflected in the fragmentary coverage of the above issues in current literature. This overview attempts to remedy this situation, from the point of view of computer vision. It examines the field from multiple aspects, including regulations across the world and relevant current technologies. Finally, since very few attempts have been made so far towards a complete UAV safety flight and landing pipeline, an example computer vision-based UAV flight safety pipeline is introduced, taking into account all issues present in current autonomous drones. The content is relevant to any kind of autonomous drone flight (e.g., for movie/TV production, news-gathering, search and rescue, surveillance, inspection, mapping, wildlife monitoring, crowd monitoring/management), making this a topic of broad interest.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"11 1","pages":"1 - 37"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88239891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. A. Ridhawi, Ouns Bouachir, M. Aloqaily, A. Boukerche
Internet of Things (IoT) systems have advanced greatly in the past few years, especially with the support of Machine Learning (ML) and Artificial Intelligence (AI) solutions. Numerous AI-supported IoT devices are playing a significant role in providing complex and user-specific smart city services. Given the multitude of heterogeneous wireless networks, the plethora of computer and storage architectures and paradigms, and the abundance of mobile and vehicular IoT devices, true smart city experiences are only attainable through a cooperative intelligent and secure IoT framework. This article provides an extensive study on different cooperative systems and envisions a cooperative solution that supports the integration and collaboration among both centralized and distributed systems, in which intelligent AI-supported IoT devices such as smart UAVs provide support in the data collection, processing and service provisioning process. Moreover, secure and collaborative decentralized solutions such as Blockchain are considered in the service provisioning process to enable enhanced privacy and authentication features for IoT applications. As such, user-specific complex services and applications within smart city environments will be delivered and made available in a timely, secure, and efficient manner.
{"title":"Design Guidelines for Cooperative UAV-supported Services and Applications","authors":"I. A. Ridhawi, Ouns Bouachir, M. Aloqaily, A. Boukerche","doi":"10.1145/3467964","DOIUrl":"https://doi.org/10.1145/3467964","url":null,"abstract":"Internet of Things (IoT) systems have advanced greatly in the past few years, especially with the support of Machine Learning (ML) and Artificial Intelligence (AI) solutions. Numerous AI-supported IoT devices are playing a significant role in providing complex and user-specific smart city services. Given the multitude of heterogeneous wireless networks, the plethora of computer and storage architectures and paradigms, and the abundance of mobile and vehicular IoT devices, true smart city experiences are only attainable through a cooperative intelligent and secure IoT framework. This article provides an extensive study on different cooperative systems and envisions a cooperative solution that supports the integration and collaboration among both centralized and distributed systems, in which intelligent AI-supported IoT devices such as smart UAVs provide support in the data collection, processing and service provisioning process. Moreover, secure and collaborative decentralized solutions such as Blockchain are considered in the service provisioning process to enable enhanced privacy and authentication features for IoT applications. As such, user-specific complex services and applications within smart city environments will be delivered and made available in a timely, secure, and efficient manner.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"25 1","pages":"1 - 35"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91022126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Data-driven network intrusion detection (NID) has a tendency towards minority attack classes compared to normal traffic. Many datasets are collected in simulated environments rather than real-world networks. These challenges undermine the performance of intrusion detection machine learning models by fitting machine learning models to unrepresentative “sandbox” datasets. This survey presents a taxonomy with eight main challenges and explores common datasets from 1999 to 2020. Trends are analyzed on the challenges in the past decade and future directions are proposed on expanding NID into cloud-based environments, devising scalable models for large network data, and creating labeled datasets collected in real-world networks.
{"title":"A Survey on Data-driven Network Intrusion Detection","authors":"Dylan Chou, Meng Jiang","doi":"10.1145/3472753","DOIUrl":"https://doi.org/10.1145/3472753","url":null,"abstract":"Data-driven network intrusion detection (NID) has a tendency towards minority attack classes compared to normal traffic. Many datasets are collected in simulated environments rather than real-world networks. These challenges undermine the performance of intrusion detection machine learning models by fitting machine learning models to unrepresentative “sandbox” datasets. This survey presents a taxonomy with eight main challenges and explores common datasets from 1999 to 2020. Trends are analyzed on the challenges in the past decade and future directions are proposed on expanding NID into cloud-based environments, devising scalable models for large network data, and creating labeled datasets collected in real-world networks.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"45 1","pages":"1 - 36"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87047349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiongkuo Min, Ke Gu, Guangtao Zhai, Xiaokang Yang, Wenjun Zhang, P. Callet, Chang Wen Chen
Screen content, which is often computer-generated, has many characteristics distinctly different from conventional camera-captured natural scene content. Such characteristic differences impose major challenges to the corresponding content quality assessment, which plays a critical role to ensure and improve the final user-perceived quality of experience (QoE) in various screen content communication and networking systems. Quality assessment of such screen content has attracted much attention recently, primarily because the screen content grows explosively due to the prevalence of cloud and remote computing applications in recent years, and due to the fact that conventional quality assessment methods can not handle such content effectively. As the most technology-oriented part of QoE modeling, image/video content/media quality assessment has drawn wide attention from researchers, and a large amount of work has been carried out to tackle the problem of screen content quality assessment. This article is intended to provide a systematic and timely review on this emerging research field, including (1) background of natural scene vs. screen content quality assessment; (2) characteristics of natural scene vs. screen content; (3) overview of screen content quality assessment methodologies and measures; (4) relevant benchmarks and comprehensive evaluation of the state-of-the-art; (5) discussions on generalizations from screen content quality assessment to QoE assessment, and other techniques beyond QoE assessment; and (6) unresolved challenges and promising future research directions. Throughout this article, we focus on the differences and similarities between screen content and conventional natural scene content. We expect that this review article shall provide readers with an overview of the background, history, recent progress, and future of the emerging screen content quality assessment research.
{"title":"Screen Content Quality Assessment: Overview, Benchmark, and Beyond","authors":"Xiongkuo Min, Ke Gu, Guangtao Zhai, Xiaokang Yang, Wenjun Zhang, P. Callet, Chang Wen Chen","doi":"10.1145/3470970","DOIUrl":"https://doi.org/10.1145/3470970","url":null,"abstract":"Screen content, which is often computer-generated, has many characteristics distinctly different from conventional camera-captured natural scene content. Such characteristic differences impose major challenges to the corresponding content quality assessment, which plays a critical role to ensure and improve the final user-perceived quality of experience (QoE) in various screen content communication and networking systems. Quality assessment of such screen content has attracted much attention recently, primarily because the screen content grows explosively due to the prevalence of cloud and remote computing applications in recent years, and due to the fact that conventional quality assessment methods can not handle such content effectively. As the most technology-oriented part of QoE modeling, image/video content/media quality assessment has drawn wide attention from researchers, and a large amount of work has been carried out to tackle the problem of screen content quality assessment. This article is intended to provide a systematic and timely review on this emerging research field, including (1) background of natural scene vs. screen content quality assessment; (2) characteristics of natural scene vs. screen content; (3) overview of screen content quality assessment methodologies and measures; (4) relevant benchmarks and comprehensive evaluation of the state-of-the-art; (5) discussions on generalizations from screen content quality assessment to QoE assessment, and other techniques beyond QoE assessment; and (6) unresolved challenges and promising future research directions. Throughout this article, we focus on the differences and similarities between screen content and conventional natural scene content. We expect that this review article shall provide readers with an overview of the background, history, recent progress, and future of the emerging screen content quality assessment research.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"85 1","pages":"1 - 36"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80481793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no established consensus that prescribes how to extend these programming models to support iterative algorithms. In this survey, we review the research literature and identify how DDS handle control flow, such as iteration, from both the programming model and execution level perspectives. This survey will be of interest for both users and designers of DDS.
{"title":"Handling Iterations in Distributed Dataflow Systems","authors":"G. Gévay, Juan Soto, V. Markl","doi":"10.1145/3477602","DOIUrl":"https://doi.org/10.1145/3477602","url":null,"abstract":"Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no established consensus that prescribes how to extend these programming models to support iterative algorithms. In this survey, we review the research literature and identify how DDS handle control flow, such as iteration, from both the programming model and execution level perspectives. This survey will be of interest for both users and designers of DDS.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"22 1","pages":"1 - 38"},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82647370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Telikani, A. Tahmassebi, W. Banzhaf, A. Gandomi
Evolutionary Computation (EC) approaches are inspired by nature and solve optimization problems in a stochastic manner. They can offer a reliable and effective approach to address complex problems in real-world applications. EC algorithms have recently been used to improve the performance of Machine Learning (ML) models and the quality of their results. Evolutionary approaches can be used in all three parts of ML: preprocessing (e.g., feature selection and resampling), learning (e.g., parameter setting, membership functions, and neural network topology), and postprocessing (e.g., rule optimization, decision tree/support vectors pruning, and ensemble learning). This article investigates the role of EC algorithms in solving different ML challenges. We do not provide a comprehensive review of evolutionary ML approaches here; instead, we discuss how EC algorithms can contribute to ML by addressing conventional challenges of the artificial intelligence and ML communities. We look at the contributions of EC to ML in nine sub-fields: feature selection, resampling, classifiers, neural networks, reinforcement learning, clustering, association rule mining, and ensemble methods. For each category, we discuss evolutionary machine learning in terms of three aspects: problem formulation, search mechanisms, and fitness value computation. We also consider open issues and challenges that should be addressed in future work.
{"title":"Evolutionary Machine Learning: A Survey","authors":"A. Telikani, A. Tahmassebi, W. Banzhaf, A. Gandomi","doi":"10.1145/3467477","DOIUrl":"https://doi.org/10.1145/3467477","url":null,"abstract":"Evolutionary Computation (EC) approaches are inspired by nature and solve optimization problems in a stochastic manner. They can offer a reliable and effective approach to address complex problems in real-world applications. EC algorithms have recently been used to improve the performance of Machine Learning (ML) models and the quality of their results. Evolutionary approaches can be used in all three parts of ML: preprocessing (e.g., feature selection and resampling), learning (e.g., parameter setting, membership functions, and neural network topology), and postprocessing (e.g., rule optimization, decision tree/support vectors pruning, and ensemble learning). This article investigates the role of EC algorithms in solving different ML challenges. We do not provide a comprehensive review of evolutionary ML approaches here; instead, we discuss how EC algorithms can contribute to ML by addressing conventional challenges of the artificial intelligence and ML communities. We look at the contributions of EC to ML in nine sub-fields: feature selection, resampling, classifiers, neural networks, reinforcement learning, clustering, association rule mining, and ensemble methods. For each category, we discuss evolutionary machine learning in terms of three aspects: problem formulation, search mechanisms, and fitness value computation. We also consider open issues and challenges that should be addressed in future work.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"31 1","pages":"1 - 35"},"PeriodicalIF":0.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85192877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}