Pub Date : 2024-07-01Epub Date: 2024-06-28DOI: 10.1107/S2059798324005515
Michal Szczygiel, Urszula Derewenda, Steve Scheiner, Wladek Minor, Zygmunt S Derewenda
Tryptophan is the most prominent amino acid found in proteins, with multiple functional roles. Its side chain is made up of the hydrophobic indole moiety, with two groups that act as donors in hydrogen bonds: the Nϵ-H group, which is a potent donor in canonical hydrogen bonds, and a polarized Cδ1-H group, which is capable of forming weaker, noncanonical hydrogen bonds. Due to adjacent electron-withdrawing moieties, C-H...O hydrogen bonds are ubiquitous in macromolecules, albeit contingent on the polarization of the donor C-H group. Consequently, Cα-H groups (adjacent to the carbonyl and amino groups of flanking peptide bonds), as well as the Cϵ1-H and Cδ2-H groups of histidines (adjacent to imidazole N atoms), are known to serve as donors in hydrogen bonds, for example stabilizing parallel and antiparallel β-sheets. However, the nature and the functional role of interactions involving the Cδ1-H group of the indole ring of tryptophan are not well characterized. Here, data mining of high-resolution (r ≤ 1.5 Å) crystal structures from the Protein Data Bank was performed and ubiquitous close contacts between the Cδ1-H groups of tryptophan and a range of electronegative acceptors were identified, specifically main-chain carbonyl O atoms immediately upstream and downstream in the polypeptide chain. The stereochemical analysis shows that most of the interactions bear all of the hallmarks of proper hydrogen bonds. At the same time, their cohesive nature is confirmed by quantum-chemical calculations, which reveal interaction energies of 1.5-3.0 kcal mol-1, depending on the specific stereochemistry.
{"title":"A structural role for tryptophan in proteins, and the ubiquitous Trp C<sup>δ1</sup>-H...O=C (backbone) hydrogen bond.","authors":"Michal Szczygiel, Urszula Derewenda, Steve Scheiner, Wladek Minor, Zygmunt S Derewenda","doi":"10.1107/S2059798324005515","DOIUrl":"10.1107/S2059798324005515","url":null,"abstract":"<p><p>Tryptophan is the most prominent amino acid found in proteins, with multiple functional roles. Its side chain is made up of the hydrophobic indole moiety, with two groups that act as donors in hydrogen bonds: the N<sup>ϵ</sup>-H group, which is a potent donor in canonical hydrogen bonds, and a polarized C<sup>δ1</sup>-H group, which is capable of forming weaker, noncanonical hydrogen bonds. Due to adjacent electron-withdrawing moieties, C-H...O hydrogen bonds are ubiquitous in macromolecules, albeit contingent on the polarization of the donor C-H group. Consequently, C<sup>α</sup>-H groups (adjacent to the carbonyl and amino groups of flanking peptide bonds), as well as the C<sup>ϵ1</sup>-H and C<sup>δ2</sup>-H groups of histidines (adjacent to imidazole N atoms), are known to serve as donors in hydrogen bonds, for example stabilizing parallel and antiparallel β-sheets. However, the nature and the functional role of interactions involving the C<sup>δ1</sup>-H group of the indole ring of tryptophan are not well characterized. Here, data mining of high-resolution (r ≤ 1.5 Å) crystal structures from the Protein Data Bank was performed and ubiquitous close contacts between the C<sup>δ1</sup>-H groups of tryptophan and a range of electronegative acceptors were identified, specifically main-chain carbonyl O atoms immediately upstream and downstream in the polypeptide chain. The stereochemical analysis shows that most of the interactions bear all of the hallmarks of proper hydrogen bonds. At the same time, their cohesive nature is confirmed by quantum-chemical calculations, which reveal interaction energies of 1.5-3.0 kcal mol<sup>-1</sup>, depending on the specific stereochemistry.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"551-562"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-27DOI: 10.1107/S2059798324005229
Swati Yadav, Kutti R Vinothkumar
The formation of a vitrified thin film embedded with randomly oriented macromolecules is an essential prerequisite for cryogenic sample electron microscopy. Most commonly, this is achieved using the plunge-freeze method first described nearly 40 years ago. Although this is a robust method, the behaviour of different macromolecules shows great variation upon freezing and often needs to be optimized to obtain an isotropic, high-resolution reconstruction. For a macromolecule in such a film, the probability of encountering the air-water interface in the time between blotting and freezing and adopting preferred orientations is very high. 3D reconstruction using preferentially oriented particles often leads to anisotropic and uninterpretable maps. Currently, there are no general solutions to this prevalent issue, but several approaches largely focusing on sample preparation with the use of additives and novel grid modifications have been attempted. In this study, the effect of physical and chemical factors on the orientations of macromolecules was investigated through an analysis of selected well studied macromolecules, and important parameters that determine the behaviour of proteins on cryo-EM grids were revealed. These insights highlight the nature of the interactions that cause preferred orientations and can be utilized to systematically address orientation bias for any given macromolecule and to provide a framework to design small-molecule additives to enhance sample stability and behaviour.
{"title":"Factors affecting macromolecule orientations in thin films formed in cryo-EM.","authors":"Swati Yadav, Kutti R Vinothkumar","doi":"10.1107/S2059798324005229","DOIUrl":"10.1107/S2059798324005229","url":null,"abstract":"<p><p>The formation of a vitrified thin film embedded with randomly oriented macromolecules is an essential prerequisite for cryogenic sample electron microscopy. Most commonly, this is achieved using the plunge-freeze method first described nearly 40 years ago. Although this is a robust method, the behaviour of different macromolecules shows great variation upon freezing and often needs to be optimized to obtain an isotropic, high-resolution reconstruction. For a macromolecule in such a film, the probability of encountering the air-water interface in the time between blotting and freezing and adopting preferred orientations is very high. 3D reconstruction using preferentially oriented particles often leads to anisotropic and uninterpretable maps. Currently, there are no general solutions to this prevalent issue, but several approaches largely focusing on sample preparation with the use of additives and novel grid modifications have been attempted. In this study, the effect of physical and chemical factors on the orientations of macromolecules was investigated through an analysis of selected well studied macromolecules, and important parameters that determine the behaviour of proteins on cryo-EM grids were revealed. These insights highlight the nature of the interactions that cause preferred orientations and can be utilized to systematically address orientation bias for any given macromolecule and to provide a framework to design small-molecule additives to enhance sample stability and behaviour.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"535-550"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-27DOI: 10.1107/S2059798324005217
Pavol Skubák
When solving a structure of a protein from single-wavelength anomalous diffraction X-ray data, the initial phases obtained by phasing from an anomalously scattering substructure usually need to be improved by an iterated electron-density modification. In this manuscript, the use of convolutional neural networks (CNNs) for segmentation of the initial experimental phasing electron-density maps is proposed. The results reported demonstrate that a CNN with U-net architecture, trained on several thousands of electron-density maps generated mainly using X-ray data from the Protein Data Bank in a supervised learning, can improve current density-modification methods.
在利用单波长反常衍射 X 射线数据求解蛋白质结构时,通常需要通过迭代电子密度修改来改进从反常散射子结构相位得到的初始相位。本手稿提出使用卷积神经网络(CNN)对初始实验相位电子密度图进行分割。报告结果表明,主要利用蛋白质数据库中的 X 射线数据生成的数千张电子密度图进行监督学习训练的 U 型网络架构卷积神经网络可以改进当前的密度修正方法。
{"title":"Deep-learning map segmentation for protein X-ray crystallographic structure determination.","authors":"Pavol Skubák","doi":"10.1107/S2059798324005217","DOIUrl":"10.1107/S2059798324005217","url":null,"abstract":"<p><p>When solving a structure of a protein from single-wavelength anomalous diffraction X-ray data, the initial phases obtained by phasing from an anomalously scattering substructure usually need to be improved by an iterated electron-density modification. In this manuscript, the use of convolutional neural networks (CNNs) for segmentation of the initial experimental phasing electron-density maps is proposed. The results reported demonstrate that a CNN with U-net architecture, trained on several thousands of electron-density maps generated mainly using X-ray data from the Protein Data Bank in a supervised learning, can improve current density-modification methods.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"528-534"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-27DOI: 10.1107/S2059798324005114
Amar Prajapati, Airi Palva, Ingemar von Ossowski, Vengadesan Krishnan
Sortase-dependent pili are long surface appendages that mediate attachment, colonization and biofilm formation in certain genera and species of Gram-positive bacteria. Ligilactobacillus ruminis is an autochthonous gut commensal that relies on sortase-dependent LrpCBA pili for host adherence and persistence. X-ray crystal structure snapshots of the backbone pilin LrpA were captured in two atypical bent conformations leading to a zigzag morphology in the LrpCBA pilus structure. Small-angle X-ray scattering and structural analysis revealed that LrpA also adopts the typical linear conformation, resulting in an elongated pilus morphology. Various conformational analyses and biophysical experiments helped to demonstrate that a hinge region located at the end of the flexible N-terminal domain of LrpA facilitates a new closure-and-twist motion for assembling dynamic pili during the assembly process and host attachment. Further, the incongruent combination of flexible domain-driven conformational dynamics and rigid isopeptide bond-driven stability observed in the LrpCBA pilus might also extend to the sortase-dependent pili of other bacteria colonizing a host.
分选酶依赖性纤毛是一种长的表面附属物,在某些革兰氏阳性菌属和菌种中介导附着、定殖和生物膜的形成。反刍假丝酵母菌是一种自生肠道共生菌,它依赖于分选酶依赖性 LrpCBA 纤毛来粘附宿主并持续存在。在两种非典型弯曲构象中捕捉到了主干纤毛蛋白 LrpA 的 X 射线晶体结构快照,这两种构象导致 LrpCBA 纤毛结构呈之字形。小角 X 射线散射和结构分析表明,LrpA 也采用了典型的线性构象,从而形成了拉长的柔毛形态。各种构象分析和生物物理实验证明,位于 LrpA 柔性 N 端结构域末端的铰链区在组装过程和宿主附着过程中促进了新的闭合-扭转运动,从而组装出动态的纤毛虫。此外,在 LrpCBA 纤毛中观察到的柔性结构域驱动的构象动力学和刚性异肽键驱动的稳定性的不协调组合,也可能延伸到其他细菌定殖宿主时依靠分选酶的纤毛。
{"title":"The crystal structure of the N-terminal domain of the backbone pilin LrpA reveals a new closure-and-twist motion for assembling dynamic pili in Ligilactobacillus ruminis.","authors":"Amar Prajapati, Airi Palva, Ingemar von Ossowski, Vengadesan Krishnan","doi":"10.1107/S2059798324005114","DOIUrl":"10.1107/S2059798324005114","url":null,"abstract":"<p><p>Sortase-dependent pili are long surface appendages that mediate attachment, colonization and biofilm formation in certain genera and species of Gram-positive bacteria. Ligilactobacillus ruminis is an autochthonous gut commensal that relies on sortase-dependent LrpCBA pili for host adherence and persistence. X-ray crystal structure snapshots of the backbone pilin LrpA were captured in two atypical bent conformations leading to a zigzag morphology in the LrpCBA pilus structure. Small-angle X-ray scattering and structural analysis revealed that LrpA also adopts the typical linear conformation, resulting in an elongated pilus morphology. Various conformational analyses and biophysical experiments helped to demonstrate that a hinge region located at the end of the flexible N-terminal domain of LrpA facilitates a new closure-and-twist motion for assembling dynamic pili during the assembly process and host attachment. Further, the incongruent combination of flexible domain-driven conformational dynamics and rigid isopeptide bond-driven stability observed in the LrpCBA pilus might also extend to the sortase-dependent pili of other bacteria colonizing a host.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"474-492"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-27DOI: 10.1107/S2059798324005461
Alexander Wlodawer, Zbigniew Dauter, Jacek Lubkowski, Joanna I Loch, Dariusz Brzezinski, Miroslaw Gilski, Mariusz Jaskolski
The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.
{"title":"Towards a dependable data set of structures for L-asparaginase research.","authors":"Alexander Wlodawer, Zbigniew Dauter, Jacek Lubkowski, Joanna I Loch, Dariusz Brzezinski, Miroslaw Gilski, Mariusz Jaskolski","doi":"10.1107/S2059798324005461","DOIUrl":"10.1107/S2059798324005461","url":null,"abstract":"<p><p>The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"506-527"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-06-03DOI: 10.1107/S2059798324004546
James M Parkhurst, Trond Varslot, Maud Dumoux, C Alistair Siebert, Michele Darrow, Mark Basham, Angus Kirkland, Michael Grange, Gwyndaf Evans, James H Naismith
For cryo-electron tomography (cryo-ET) of beam-sensitive biological specimens, a planar sample geometry is typically used. As the sample is tilted, the effective thickness of the sample along the direction of the electron beam increases and the signal-to-noise ratio concomitantly decreases, limiting the transfer of information at high tilt angles. In addition, the tilt range where data can be collected is limited by a combination of various sample-environment constraints, including the limited space in the objective lens pole piece and the possible use of fixed conductive braids to cool the specimen. Consequently, most tilt series are limited to a maximum of ±70°, leading to the presence of a missing wedge in Fourier space. The acquisition of cryo-ET data without a missing wedge, for example using a cylindrical sample geometry, is hence attractive for volumetric analysis of low-symmetry structures such as organelles or vesicles, lysis events, pore formation or filaments for which the missing information cannot be compensated by averaging techniques. Irrespective of the geometry, electron-beam damage to the specimen is an issue and the first images acquired will transfer more high-resolution information than those acquired last. There is also an inherent trade-off between higher sampling in Fourier space and avoiding beam damage to the sample. Finally, the necessity of using a sufficient electron fluence to align the tilt images means that this fluence needs to be fractionated across a small number of images; therefore, the order of data acquisition is also a factor to consider. Here, an n-helix tilt scheme is described and simulated which uses overlapping and interleaved tilt series to maximize the use of a pillar geometry, allowing the entire pillar volume to be reconstructed as a single unit. Three related tilt schemes are also evaluated that extend the continuous and classic dose-symmetric tilt schemes for cryo-ET to pillar samples to enable the collection of isotropic information across all spatial frequencies. A fourfold dose-symmetric scheme is proposed which provides a practical compromise between uniform information transfer and complexity of data acquisition.
在对电子束敏感的生物样本进行低温电子断层成像(cryo-ET)时,通常使用平面样本几何形状。随着样本的倾斜,样本沿电子束方向的有效厚度增加,信噪比随之降低,从而限制了高倾斜角度下的信息传输。此外,可采集数据的倾斜范围还受到各种样品环境限制的综合影响,包括物镜极片的有限空间和使用固定导电编织物冷却试样的可能性。因此,大多数倾斜系列的最大值都限制在 ±70°,导致傅立叶空间中出现一个缺失的楔形。因此,对于细胞器或囊泡、裂解事件、孔隙形成或丝状物等低对称性结构的容积分析而言,获取无缺失楔形的低温电子显微镜数据(例如使用圆柱形样品几何结构)是非常有吸引力的,因为平均技术无法弥补缺失的信息。无论采用哪种几何结构,电子束对试样的损伤都是一个问题,而且最先获得的图像将比最后获得的图像传递更多的高分辨率信息。在傅立叶空间的高采样率和避免电子束对样品的损伤之间也存在固有的权衡问题。最后,由于必须使用足够的电子通量来对齐倾斜图像,这就意味着需要在少量图像中分散电子通量;因此,数据采集的顺序也是一个需要考虑的因素。这里描述并模拟了一种 n 螺旋倾斜方案,该方案使用重叠和交错的倾斜序列来最大限度地利用支柱几何形状,从而将整个支柱体积作为一个单元进行重建。此外,还评估了三种相关的倾斜方案,它们将用于低温电子显微镜的连续和经典剂量对称倾斜方案扩展到了柱状样本,从而能够收集所有空间频率的各向同性信息。提出的四倍剂量对称方案在均匀信息传输和数据采集复杂性之间提供了实用的折中方案。
{"title":"Pillar data-acquisition strategies for cryo-electron tomography of beam-sensitive biological samples.","authors":"James M Parkhurst, Trond Varslot, Maud Dumoux, C Alistair Siebert, Michele Darrow, Mark Basham, Angus Kirkland, Michael Grange, Gwyndaf Evans, James H Naismith","doi":"10.1107/S2059798324004546","DOIUrl":"10.1107/S2059798324004546","url":null,"abstract":"<p><p>For cryo-electron tomography (cryo-ET) of beam-sensitive biological specimens, a planar sample geometry is typically used. As the sample is tilted, the effective thickness of the sample along the direction of the electron beam increases and the signal-to-noise ratio concomitantly decreases, limiting the transfer of information at high tilt angles. In addition, the tilt range where data can be collected is limited by a combination of various sample-environment constraints, including the limited space in the objective lens pole piece and the possible use of fixed conductive braids to cool the specimen. Consequently, most tilt series are limited to a maximum of ±70°, leading to the presence of a missing wedge in Fourier space. The acquisition of cryo-ET data without a missing wedge, for example using a cylindrical sample geometry, is hence attractive for volumetric analysis of low-symmetry structures such as organelles or vesicles, lysis events, pore formation or filaments for which the missing information cannot be compensated by averaging techniques. Irrespective of the geometry, electron-beam damage to the specimen is an issue and the first images acquired will transfer more high-resolution information than those acquired last. There is also an inherent trade-off between higher sampling in Fourier space and avoiding beam damage to the sample. Finally, the necessity of using a sufficient electron fluence to align the tilt images means that this fluence needs to be fractionated across a small number of images; therefore, the order of data acquisition is also a factor to consider. Here, an n-helix tilt scheme is described and simulated which uses overlapping and interleaved tilt series to maximize the use of a pillar geometry, allowing the entire pillar volume to be reconstructed as a single unit. Three related tilt schemes are also evaluated that extend the continuous and classic dose-symmetric tilt schemes for cryo-ET to pillar samples to enable the collection of isotropic information across all spatial frequencies. A fourfold dose-symmetric scheme is proposed which provides a practical compromise between uniform information transfer and complexity of data acquisition.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"421-438"},"PeriodicalIF":2.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-06-05DOI: 10.1107/S2059798324004480
Shumeng Ma, Shymaa Damfo, Matthew W Bowler, Vitaliy Mykhaylyk, Frank Kozielski
Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.
利用 X 射线晶体学技术进行基于片段的药物设计是一项强大的技术,可以针对生物靶标开发新的先导化合物或探针分子。这项研究解决了确定电子密度不完全的低占位片段结合方向的需求,这是进一步开发分子前的重要步骤。卤素原子具有独特的电负性、立体效应和疏水特性,因此在药物研发中发挥着多重作用。含有卤素原子的片段在 "先导-命中 "研发过程中是很有希望的起点,因为它们通常会与靶蛋白建立卤素键,从而有可能增强结合亲和力和选择性,并抵消耐药性。本研究的目的是明确确定含有硫和/或氯、溴和碘取代基组合的 SARS-CoV-2 非结构蛋白 1(nsp1)片段的结合方向。通过采用异常散射和泛数据集密度分析(PanDDA)技术,重点研究了精心挑选的 nsp1 类似物的结合方向。比较了从标准 X 射线和长波长 X 射线收集的衍射数据中得出的异常差分傅立叶图。在不同能量下采集的含碘片段图谱中观察到的差异被归因于特定位点的辐射损伤,这种辐射损伤源于 I 原子对 X 射线的强烈吸收,很可能导致 C-I 键的裂解。本文介绍了一种可靠有效的数据收集策略,既能明确确定含硫和/或卤原子的低占位片段的结合方向,又能减轻辐射损伤。
{"title":"High-confidence placement of low-occupancy fragments into electron density using the anomalous signal of sulfur and halogen atoms.","authors":"Shumeng Ma, Shymaa Damfo, Matthew W Bowler, Vitaliy Mykhaylyk, Frank Kozielski","doi":"10.1107/S2059798324004480","DOIUrl":"10.1107/S2059798324004480","url":null,"abstract":"<p><p>Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"80 Pt 6","pages":"451-463"},"PeriodicalIF":2.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141260530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-28DOI: 10.1107/S2059798324004066
Marta Alberti, Giulio Poli, Luca Broggini, Stefano Sainas, Menico Rizzi, Donatella Boschi, Davide M Ferraris, Elena Martino, Stefano Ricagno, Tiziano Tuccinardi, Marco L Lolli, Riccardo Miggiano
Over the years, human dihydroorotate dehydrogenase (hDHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy. In the present work, using X-ray crystallography, an atypical rearrangement was identified in the binding pose of a potent inhibitor characterized by a polar pyridine-based moiety (compound 18). The crystal structure shows that upon binding compound 18 the dynamics of a protein loop involved in a gating mechanism at the cofactor-binding site is modulated by the presence of three water molecules, thus fine-tuning the polarity/hydrophobicity of the binding pocket. These solvent molecules are engaged in the formation of a hydrogen-bond mesh in which one of them establishes a direct contact with the pyridine moiety of compound 18, thus paving the way for a reappraisal of the inhibition of hDHODH. Using an integrated approach, the thermodynamics of such a modulation is described by means of isothermal titration calorimetry coupled with molecular modelling. These structural insights will guide future drug design to obtain a finer Kd/logD7.4 balance and identify membrane-permeable molecules with a drug-like profile in terms of water solubility.
{"title":"An alternative conformation of the N-terminal loop of human dihydroorotate dehydrogenase drives binding to a potent antiproliferative agent.","authors":"Marta Alberti, Giulio Poli, Luca Broggini, Stefano Sainas, Menico Rizzi, Donatella Boschi, Davide M Ferraris, Elena Martino, Stefano Ricagno, Tiziano Tuccinardi, Marco L Lolli, Riccardo Miggiano","doi":"10.1107/S2059798324004066","DOIUrl":"10.1107/S2059798324004066","url":null,"abstract":"<p><p>Over the years, human dihydroorotate dehydrogenase (hDHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy. In the present work, using X-ray crystallography, an atypical rearrangement was identified in the binding pose of a potent inhibitor characterized by a polar pyridine-based moiety (compound 18). The crystal structure shows that upon binding compound 18 the dynamics of a protein loop involved in a gating mechanism at the cofactor-binding site is modulated by the presence of three water molecules, thus fine-tuning the polarity/hydrophobicity of the binding pocket. These solvent molecules are engaged in the formation of a hydrogen-bond mesh in which one of them establishes a direct contact with the pyridine moiety of compound 18, thus paving the way for a reappraisal of the inhibition of hDHODH. Using an integrated approach, the thermodynamics of such a modulation is described by means of isothermal titration calorimetry coupled with molecular modelling. These structural insights will guide future drug design to obtain a finer K<sub>d</sub>/logD<sub>7.4</sub> balance and identify membrane-permeable molecules with a drug-like profile in terms of water solubility.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"386-396"},"PeriodicalIF":2.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-28DOI: 10.1107/S2059798324003723
William C Gasper, Sarah Gardner, Adam Ross, Sarah A Oppelt, Karen N Allen, Dean R Tolan
Over the past forty years there has been a drastic increase in fructose-related diseases, including obesity, heart disease and diabetes. Ketohexokinase (KHK), the first enzyme in the liver fructolysis pathway, catalyzes the ATP-dependent phosphorylation of fructose to fructose 1-phosphate. Understanding the role of KHK in disease-related processes is crucial for the management and prevention of this growing epidemic. Molecular insight into the structure-function relationship in ligand binding and catalysis by KHK is needed for the design of therapeutic inhibitory ligands. Ketohexokinase has two isoforms: ketohexokinase A (KHK-A) is produced ubiquitously at low levels, whereas ketohexokinase C (KHK-C) is found at much higher levels, specifically in the liver, kidneys and intestines. Structures of the unliganded and liganded human isoforms KHK-A and KHK-C are known, as well as structures of unliganded and inhibitor-bound mouse KHK-C (mKHK-C), which shares 90% sequence identity with human KHK-C. Here, a high-resolution X-ray crystal structure of mKHK-C refined to 1.79 Å resolution is presented. The structure was determined in a complex with both the substrate fructose and the product of catalysis, ADP, providing a view of the Michaelis-like complex of the mouse ortholog. Comparison to unliganded structures suggests that KHK undergoes a conformational change upon binding of substrates that places the enzyme in a catalytically competent form in which the β-sheet domain from one subunit rotates by 16.2°, acting as a lid for the opposing active site. Similar kinetic parameters were calculated for the mouse and human enzymes and indicate that mice may be a suitable animal model for the study of fructose-related diseases. Knowledge of the similarity between the mouse and human enzymes is important for understanding preclinical efforts towards targeting this enzyme, and this ground-state, Michaelis-like complex suggests that a conformational change plays a role in the catalytic function of KHK-C.
{"title":"Michaelis-like complex of mouse ketohexokinase isoform C.","authors":"William C Gasper, Sarah Gardner, Adam Ross, Sarah A Oppelt, Karen N Allen, Dean R Tolan","doi":"10.1107/S2059798324003723","DOIUrl":"10.1107/S2059798324003723","url":null,"abstract":"<p><p>Over the past forty years there has been a drastic increase in fructose-related diseases, including obesity, heart disease and diabetes. Ketohexokinase (KHK), the first enzyme in the liver fructolysis pathway, catalyzes the ATP-dependent phosphorylation of fructose to fructose 1-phosphate. Understanding the role of KHK in disease-related processes is crucial for the management and prevention of this growing epidemic. Molecular insight into the structure-function relationship in ligand binding and catalysis by KHK is needed for the design of therapeutic inhibitory ligands. Ketohexokinase has two isoforms: ketohexokinase A (KHK-A) is produced ubiquitously at low levels, whereas ketohexokinase C (KHK-C) is found at much higher levels, specifically in the liver, kidneys and intestines. Structures of the unliganded and liganded human isoforms KHK-A and KHK-C are known, as well as structures of unliganded and inhibitor-bound mouse KHK-C (mKHK-C), which shares 90% sequence identity with human KHK-C. Here, a high-resolution X-ray crystal structure of mKHK-C refined to 1.79 Å resolution is presented. The structure was determined in a complex with both the substrate fructose and the product of catalysis, ADP, providing a view of the Michaelis-like complex of the mouse ortholog. Comparison to unliganded structures suggests that KHK undergoes a conformational change upon binding of substrates that places the enzyme in a catalytically competent form in which the β-sheet domain from one subunit rotates by 16.2°, acting as a lid for the opposing active site. Similar kinetic parameters were calculated for the mouse and human enzymes and indicate that mice may be a suitable animal model for the study of fructose-related diseases. Knowledge of the similarity between the mouse and human enzymes is important for understanding preclinical efforts towards targeting this enzyme, and this ground-state, Michaelis-like complex suggests that a conformational change plays a role in the catalytic function of KHK-C.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"377-385"},"PeriodicalIF":2.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-06-04DOI: 10.1107/S2059798324004881
Carol Herre, Alex Ho, Ben Eisenbraun, James Vincent, Thomas Nicholson, Giorgos Boutsioukis, Peter A Meyer, Michelle Ottaviano, Kurt L Krause, Jason Key, Piotr Sliz
The expansive scientific software ecosystem, characterized by millions of titles across various platforms and formats, poses significant challenges in maintaining reproducibility and provenance in scientific research. The diversity of independently developed applications, evolving versions and heterogeneous components highlights the need for rigorous methodologies to navigate these complexities. In response to these challenges, the SBGrid team builds, installs and configures over 530 specialized software applications for use in the on-premises and cloud-based computing environments of SBGrid Consortium members. To address the intricacies of supporting this diverse application collection, the team has developed the Capsule Software Execution Environment, generally referred to as Capsules. Capsules rely on a collection of programmatically generated bash scripts that work together to isolate the runtime environment of one application from all other applications, thereby providing a transparent cross-platform solution without requiring specialized tools or elevated account privileges for researchers. Capsules facilitate modular, secure software distribution while maintaining a centralized, conflict-free environment. The SBGrid platform, which combines Capsules with the SBGrid collection of structural biology applications, aligns with FAIR goals by enhancing the findability, accessibility, interoperability and reusability of scientific software, ensuring seamless functionality across diverse computing environments. Its adaptability enables application beyond structural biology into other scientific fields.
{"title":"Introduction of the Capsules environment to support further growth of the SBGrid structural biology software collection.","authors":"Carol Herre, Alex Ho, Ben Eisenbraun, James Vincent, Thomas Nicholson, Giorgos Boutsioukis, Peter A Meyer, Michelle Ottaviano, Kurt L Krause, Jason Key, Piotr Sliz","doi":"10.1107/S2059798324004881","DOIUrl":"10.1107/S2059798324004881","url":null,"abstract":"<p><p>The expansive scientific software ecosystem, characterized by millions of titles across various platforms and formats, poses significant challenges in maintaining reproducibility and provenance in scientific research. The diversity of independently developed applications, evolving versions and heterogeneous components highlights the need for rigorous methodologies to navigate these complexities. In response to these challenges, the SBGrid team builds, installs and configures over 530 specialized software applications for use in the on-premises and cloud-based computing environments of SBGrid Consortium members. To address the intricacies of supporting this diverse application collection, the team has developed the Capsule Software Execution Environment, generally referred to as Capsules. Capsules rely on a collection of programmatically generated bash scripts that work together to isolate the runtime environment of one application from all other applications, thereby providing a transparent cross-platform solution without requiring specialized tools or elevated account privileges for researchers. Capsules facilitate modular, secure software distribution while maintaining a centralized, conflict-free environment. The SBGrid platform, which combines Capsules with the SBGrid collection of structural biology applications, aligns with FAIR goals by enhancing the findability, accessibility, interoperability and reusability of scientific software, ensuring seamless functionality across diverse computing environments. Its adaptability enables application beyond structural biology into other scientific fields.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"439-450"},"PeriodicalIF":2.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}