首页 > 最新文献

Acta physiologica Sinica最新文献

英文 中文
[Neurotrophin-associated mechanisms of delayed-onset muscle soreness: research progress and perspective]. [迟发性肌肉酸痛的神经营养素相关机制:研究进展与展望]。
Q3 Medicine Pub Date : 2024-04-25
Yun-Xiao Liu, Jing Lei, Hao-Jun You

Delayed-onset muscle soreness (DOMS) is a common phenomenon that occurs following a sudden increase in exercise intensity or unfamiliar exercise, significantly affecting athletic performance and efficacy in athletes and fitness individuals. DOMS is characterized by allodynia and hyperalgesia, and their mechanisms remain unclear. Recent studies have reported that neurotrophic factors, such as nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF), are involved in the development and maintenance of DOMS. This article provides a review of the research progress on the signaling pathways related to the involvement of NGF and GDNF in DOMS, hoping to provide novel insights into the mechanisms underlying allodynia and hyperalgesia in DOMS, as well as potential targeted treatment.

延迟性肌肉酸痛(DOMS)是一种常见现象,发生在运动强度突然增加或不熟悉的运动之后,严重影响运动员和健身者的运动表现和效果。DOMS 的特点是异动和痛觉亢进,其机制尚不清楚。最近的研究报告称,神经生长因子(NGF)和胶质细胞衍生神经营养因子(GDNF)等神经营养因子参与了 DOMS 的发生和维持。本文综述了与 NGF 和 GDNF 参与 DOMS 相关的信号通路的研究进展,希望能对 DOMS 中异痛症和痛觉减退的机制以及潜在的靶向治疗提供新的见解。
{"title":"[Neurotrophin-associated mechanisms of delayed-onset muscle soreness: research progress and perspective].","authors":"Yun-Xiao Liu, Jing Lei, Hao-Jun You","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Delayed-onset muscle soreness (DOMS) is a common phenomenon that occurs following a sudden increase in exercise intensity or unfamiliar exercise, significantly affecting athletic performance and efficacy in athletes and fitness individuals. DOMS is characterized by allodynia and hyperalgesia, and their mechanisms remain unclear. Recent studies have reported that neurotrophic factors, such as nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF), are involved in the development and maintenance of DOMS. This article provides a review of the research progress on the signaling pathways related to the involvement of NGF and GDNF in DOMS, hoping to provide novel insights into the mechanisms underlying allodynia and hyperalgesia in DOMS, as well as potential targeted treatment.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Microtubule-associated tumor suppressor 1 inhibits hemin-induced apoptosis of vascular endothelial cells via hemeoxygenase 1]. [微管相关肿瘤抑制因子 1 通过血红素氧合酶 1 抑制血红素诱导的血管内皮细胞凋亡】。]
Q3 Medicine Pub Date : 2024-04-25
Sheng-Yun Wu, Ke-Ru Cheng, Yan-Yun Zhou, Yin-Fang Wang

This study aimed to investigate the effects of microtubule associated tumor suppressor 1 (MTUS1) on hemeoxygenase 1 (HMOX1) expression and hemin-induced apoptosis of vascular endothelial cells and its regulatory mechanism. RNA sequencing, RT-qPCR and Western blot were used to assess altered genes of hemin binding proteins, the expression of cAMP response element-binding protein (CREB) and nuclear respiratory factor 2 (NRF2), hemin-induced HMOX1 expression in MTUS1 knockdown human umbilical vein endothelial cells (HUVEC), and the effect of overexpression of CREB and NRF2 on HMOX1 expression in MTUS1 knockdown 293T cells. The effect of MTUS1 or HMOX1 knockdown on hemin-induced apoptosis in HUVEC, and the overexpression of NRF2 on hemin-induced apoptosis in MTUS1 knockdown 293T cells were assayed with CCK8 and Western blot. The results showed that MTUS1 was knocked down significantly in HUVEC by siRNA (P < 0.01), accompanied by decreased HMOX1 expression (P < 0.01). The increased HMOX1 expression induced by hemin was also inhibited by MTUS1 knockdown (P < 0.01). And the apoptosis of HUVEC induced by hemin was amplified by MTUS1 or HMOX1 knockdown (P < 0.01). Moreover the expression of CREB and NRF2 were both inhibited by MTUS1 knockdown in HUVEC (P < 0.01). The decreased HMOX1 regulated by MTUS1 knockdown could be rescued partly by overexpression of NRF2 (P < 0.01), however, not by overexpression of CREB. And the MTUS1 knockdown mediated decreased 293T cells viability induced by hemin could be partly rescued by NRF2 overexpression (P < 0.01). These results suggest that MTUS1 can inhibit hemin-induced apoptosis of HUVEC, and the mechanism maybe related to MTUS1/NRF2/HMOX1 pathway.

本研究旨在探讨微管相关肿瘤抑制因子1(MTUS1)对血红素氧合酶1(HMOX1)表达和血红素诱导血管内皮细胞凋亡的影响及其调控机制。采用RNA测序、RT-qPCR和Western blot等方法评估了MTUS1敲除的人脐静脉内皮细胞(HUVEC)中血红素结合蛋白基因的改变、cAMP反应元件结合蛋白(CREB)和核呼吸因子2(NRF2)的表达、血红素诱导的HMOX1的表达,以及过表达CREB和NRF2对MTUS1敲除的293T细胞中HMOX1表达的影响。CCK8和Western blot检测了MTUS1或HMOX1敲除对海明诱导的HUVEC细胞凋亡的影响,以及NRF2过表达对海明诱导的MTUS1敲除293T细胞凋亡的影响。结果表明,siRNA能显著敲除HUVEC中的MTUS1(P<0.01),同时HMOX1的表达也降低(P<0.01)。MTUS1敲除也抑制了hemin诱导的HMOX1表达增加(P < 0.01)。MTUS1或HMOX1敲除后,hemin诱导的HUVEC细胞凋亡被放大(P < 0.01)。此外,MTUS1敲除还抑制了CREB和NRF2在HUVEC中的表达(P < 0.01)。过量表达 NRF2 可以部分缓解 MTUS1 敲除导致的 HMOX1 减少(P < 0.01),但过量表达 CREB 则无法缓解。而NRF2的过量表达可部分缓解MTUS1敲除介导的海明诱导的293T细胞活力下降(P < 0.01)。这些结果表明,MTUS1能抑制hemin诱导的HUVEC细胞凋亡,其机制可能与MTUS1/NRF2/HMOX1通路有关。
{"title":"[Microtubule-associated tumor suppressor 1 inhibits hemin-induced apoptosis of vascular endothelial cells via hemeoxygenase 1].","authors":"Sheng-Yun Wu, Ke-Ru Cheng, Yan-Yun Zhou, Yin-Fang Wang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This study aimed to investigate the effects of microtubule associated tumor suppressor 1 (MTUS1) on hemeoxygenase 1 (HMOX1) expression and hemin-induced apoptosis of vascular endothelial cells and its regulatory mechanism. RNA sequencing, RT-qPCR and Western blot were used to assess altered genes of hemin binding proteins, the expression of cAMP response element-binding protein (CREB) and nuclear respiratory factor 2 (NRF2), hemin-induced HMOX1 expression in MTUS1 knockdown human umbilical vein endothelial cells (HUVEC), and the effect of overexpression of CREB and NRF2 on HMOX1 expression in MTUS1 knockdown 293T cells. The effect of MTUS1 or HMOX1 knockdown on hemin-induced apoptosis in HUVEC, and the overexpression of NRF2 on hemin-induced apoptosis in MTUS1 knockdown 293T cells were assayed with CCK8 and Western blot. The results showed that MTUS1 was knocked down significantly in HUVEC by siRNA (P < 0.01), accompanied by decreased HMOX1 expression (P < 0.01). The increased HMOX1 expression induced by hemin was also inhibited by MTUS1 knockdown (P < 0.01). And the apoptosis of HUVEC induced by hemin was amplified by MTUS1 or HMOX1 knockdown (P < 0.01). Moreover the expression of CREB and NRF2 were both inhibited by MTUS1 knockdown in HUVEC (P < 0.01). The decreased HMOX1 regulated by MTUS1 knockdown could be rescued partly by overexpression of NRF2 (P < 0.01), however, not by overexpression of CREB. And the MTUS1 knockdown mediated decreased 293T cells viability induced by hemin could be partly rescued by NRF2 overexpression (P < 0.01). These results suggest that MTUS1 can inhibit hemin-induced apoptosis of HUVEC, and the mechanism maybe related to MTUS1/NRF2/HMOX1 pathway.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of prostaglandin E2 and its receptors in chronic liver disease. 前列腺素 E2 及其受体在慢性肝病中的作用。
Q3 Medicine Pub Date : 2024-04-25
Zhi-Qiang Lin, Yao Yao, Yu-Fei Zhang, Xiao-Yan Zhang, You-Fei Guan

Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E2 (PGE2), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE2 are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE2 and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE2 and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE2-EP receptors system in treating CLD with various etiologies.

慢性肝病(CLD)是全球主要的健康负担,其发病率和死亡率不断上升。虽然许多疾病都可导致慢性肝病,进而导致肝硬化和肝细胞癌,但病毒性肝炎、药物性肝损伤、酒精性肝病和非酒精性脂肪肝是最常见的罪魁祸首。肝脏中产生的前列腺素 E2(PGE2)是一种重要的脂质介质,来源于ω-6 多不饱和脂肪酸--花生四烯酸,在肝脏稳态中发挥着关键作用。PGE2 的生理效应通过四类 E 型前列腺素(EP)受体(即 EP1、EP2、EP3 和 EP4)介导。近年来,越来越多的研究阐明了 PGE2 和 EP 受体在调节肝功能和 CLD 发病机制中的作用,从而产生了新的潜在临床影响。在这篇综述中,我们概述了 PGE2 的生物合成和调控,并讨论了其合成酶和受体在维持正常肝功能以及 CLD 的发生和发展中的作用。我们还讨论了 PGE2-EP 受体系统在治疗各种病因引起的慢性肝病中的潜力。
{"title":"Role of prostaglandin E<sub>2</sub> and its receptors in chronic liver disease.","authors":"Zhi-Qiang Lin, Yao Yao, Yu-Fei Zhang, Xiao-Yan Zhang, You-Fei Guan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E<sub>2</sub> (PGE<sub>2</sub>), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE<sub>2</sub> are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE<sub>2</sub> and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE<sub>2</sub> and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE<sub>2</sub>-EP receptors system in treating CLD with various etiologies.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Exosomes derived from bone marrow mesenchymal stem cells regulate NF-κB pathway and reduce lung ischemia-reperfusion injury in rats by miR-335]. [骨髓间充质干细胞提取的外泌体通过 miR-335 调控 NF-κB 通路并减轻大鼠肺缺血再灌注损伤]
Q3 Medicine Pub Date : 2024-04-25
Bing Zhang, Chao Meng, Ji-Yu Kang, Hua-Cheng Zhou

This study aimed to investigate the effect of exosomes derived from bone marrow mesenchymal stem cells (BMSCs-EXO) on lung ischemia-reperfusion injury (IRI) in rats and to explore the role of miR-335. The model of rat lung IRI was established by clipping the hilum of left lung for 60 min and opening for 180 min. Forty Sprague-Dawley rats were randomly divided into sham group, IRI group, IRI+PBS group, IRI+EXO group, and IRI+miR-335 inhibitor EXO (IRI+inhibitor-EXO) group (n = 8). Rats in the sham group underwent thoracotomies without IRI. Rats in the IRI group were used to establish IRI model without any additional treatment. In the IRI+PBS, IRI+EXO, and IRI+inhibitor-EXO groups, the rats were used to establish IRI model and given PBS, EXO from BMSCs without any treatment, and EXO from BMSCs with miR-335 inhibitor treatment before reperfusion, respectively. Blood gases were analyzed during the experiment. Lung tissue wet/dry ratio (W/D), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), myeloperoxidase (MPO), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured at the end of reperfusion. Mitochondria were observed by electron microscopy and the Flameng scores were counted. Lung histopathology and apoptosis (TUNEL staining) were observed by light microscopy, and the lung injury scores (LIS) and apoptosis index (AI) were detected. The miR-335 expression was detected by RT-qPCR, and the expression of caspase-3, cleaved-caspase-3, caspase-9, cleaved-caspase-9, and NF-κB proteins were detected by Western blot at the end of reperfusion. The results showed that compared with the sham group, the oxygenation index, pH, and base excess (BE) were significantly lower in the IRI group and IRI+PBS group after reperfusion, whereas those indices were significantly higher in the IRI+EXO group than those in the IRI+PBS group (P < 0.05). Compared with the sham group, there were significant increases in W/D, IL-1β, TNF-α, MPO, MDA, LIS, AI, Flameng score, caspase-3, cleaved-caspase-3, caspase-9, and cleaved-caspase-9, however significant decreases in the SOD, miR-335 and NF-κB in the IRI group (P < 0.05). These indices in the IRI and IRI+PBS groups showed no significant differences. Compared with the IRI+PBS group, there were significant decreases in W/D, IL-1β, TNF-α, MPO, MDA, LIS, AI, Flameng score, caspase-3, cleaved-caspase-3, caspase-9, and cleaved-caspase-9, however significant increases in the SOD, miR-335 and NF-κB in the IRI+EXO group (P < 0.05). While, the changes of the above mentioned indices were reversed in the IRI+inhibitor-EXO group compared with IRI+EXO group, which were still better than those in the IRI+PBS group (P < 0.05). The results suggest that BMSCs-EXO could attenuate lung IRI in rats, activate NF-κB pathway, and maintain mitochondrial stability by up-regulating miR-335.

本研究旨在探讨骨髓间充质干细胞外泌体(BMSCs-EXO)对大鼠肺缺血再灌注损伤(IRI)的影响以及miR-335的作用。大鼠肺缺血再灌注损伤模型是通过剪开左肺肺门60分钟并开放180分钟而建立的。40只Sprague-Dawley大鼠被随机分为假组、IRI组、IRI+PBS组、IRI+EXO组和IRI+miR-335抑制剂EXO(IRI+inhibitor-EXO)组(n = 8)。假组大鼠在不进行 IRI 的情况下进行开胸手术。IRI组大鼠用于建立IRI模型,无任何额外治疗。IRI+PBS组、IRI+EXO组和IRI+抑制剂-EXO组的大鼠用于建立IRI模型,并在再灌注前分别给予PBS、未做任何处理的来自BMSCs的EXO和含有miR-335抑制剂的来自BMSCs的EXO。实验期间对血气进行分析。再灌注结束时测量肺组织干湿比(W/D)、白细胞介素 1β(IL-1β)、肿瘤坏死因子α(TNF-α)、髓过氧化物酶(MPO)、丙二醛(MDA)和超氧化物歧化酶(SOD)。用电子显微镜观察线粒体,并计算弗拉明评分。用光学显微镜观察肺组织病理学和细胞凋亡(TUNEL 染色),并检测肺损伤评分(LIS)和细胞凋亡指数(AI)。用 RT-qPCR 检测 miR-335 的表达,用 Western blot 检测再灌注结束时 caspase-3、裂解-caspase-3、caspase-9、裂解-caspase-9 和 NF-κB 蛋白的表达。结果显示,与假组相比较,IRI组和IRI+PBS组再灌注后的氧合指数、pH值和碱过量(BE)明显降低,而IRI+EXO组的这些指数明显高于IRI+PBS组(P<0.05)。与假体组相比,IRI 组的 W/D、IL-1β、TNF-α、MPO、MDA、LIS、AI、Flameng 评分、caspase-3、裂解-caspase-3、caspase-9 和裂解-caspase-9 均明显升高,而 SOD、miR-335 和 NF-κB 则明显降低(P < 0.05)。这些指标在 IRI 组和 IRI+PBS 组中没有明显差异。与 IRI+PBS 组相比,IRI+EXO 组的 W/D、IL-1β、TNF-α、MPO、MDA、LIS、AI、Flameng 评分、caspase-3、裂解-caspase-3、caspase-9 和裂解-caspase-9 显著下降,但 SOD、miR-335 和 NF-κB 显著增加(P < 0.05)。与 IRI+EXO 组相比,IRI+抑制剂-EXO 组上述指标的变化有所逆转,但仍优于 IRI+PBS 组(P < 0.05)。结果表明,BMSCs-EXO 可通过上调 miR-335 减轻大鼠肺 IRI,激活 NF-κB 通路,维持线粒体稳定性。
{"title":"[Exosomes derived from bone marrow mesenchymal stem cells regulate NF-κB pathway and reduce lung ischemia-reperfusion injury in rats by miR-335].","authors":"Bing Zhang, Chao Meng, Ji-Yu Kang, Hua-Cheng Zhou","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This study aimed to investigate the effect of exosomes derived from bone marrow mesenchymal stem cells (BMSCs-EXO) on lung ischemia-reperfusion injury (IRI) in rats and to explore the role of miR-335. The model of rat lung IRI was established by clipping the hilum of left lung for 60 min and opening for 180 min. Forty Sprague-Dawley rats were randomly divided into sham group, IRI group, IRI+PBS group, IRI+EXO group, and IRI+miR-335 inhibitor EXO (IRI+inhibitor-EXO) group (n = 8). Rats in the sham group underwent thoracotomies without IRI. Rats in the IRI group were used to establish IRI model without any additional treatment. In the IRI+PBS, IRI+EXO, and IRI+inhibitor-EXO groups, the rats were used to establish IRI model and given PBS, EXO from BMSCs without any treatment, and EXO from BMSCs with miR-335 inhibitor treatment before reperfusion, respectively. Blood gases were analyzed during the experiment. Lung tissue wet/dry ratio (W/D), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), myeloperoxidase (MPO), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured at the end of reperfusion. Mitochondria were observed by electron microscopy and the Flameng scores were counted. Lung histopathology and apoptosis (TUNEL staining) were observed by light microscopy, and the lung injury scores (LIS) and apoptosis index (AI) were detected. The miR-335 expression was detected by RT-qPCR, and the expression of caspase-3, cleaved-caspase-3, caspase-9, cleaved-caspase-9, and NF-κB proteins were detected by Western blot at the end of reperfusion. The results showed that compared with the sham group, the oxygenation index, pH, and base excess (BE) were significantly lower in the IRI group and IRI+PBS group after reperfusion, whereas those indices were significantly higher in the IRI+EXO group than those in the IRI+PBS group (P < 0.05). Compared with the sham group, there were significant increases in W/D, IL-1β, TNF-α, MPO, MDA, LIS, AI, Flameng score, caspase-3, cleaved-caspase-3, caspase-9, and cleaved-caspase-9, however significant decreases in the SOD, miR-335 and NF-κB in the IRI group (P < 0.05). These indices in the IRI and IRI+PBS groups showed no significant differences. Compared with the IRI+PBS group, there were significant decreases in W/D, IL-1β, TNF-α, MPO, MDA, LIS, AI, Flameng score, caspase-3, cleaved-caspase-3, caspase-9, and cleaved-caspase-9, however significant increases in the SOD, miR-335 and NF-κB in the IRI+EXO group (P < 0.05). While, the changes of the above mentioned indices were reversed in the IRI+inhibitor-EXO group compared with IRI+EXO group, which were still better than those in the IRI+PBS group (P < 0.05). The results suggest that BMSCs-EXO could attenuate lung IRI in rats, activate NF-κB pathway, and maintain mitochondrial stability by up-regulating miR-335.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[High-intensity interval training (HIIT) induces hepatic ketone body production possibly through altering expression of mTORC1, PPARα and FGF21 in mice]. [高强度间歇训练(HIIT)可能通过改变小鼠体内 mTORC1、PPARα 和 FGF21 的表达诱导肝酮体的产生】。]
Q3 Medicine Pub Date : 2024-04-25
Jun Liu, Shu-Jie Lou

The present study aims to investigate the production of ketone body in the liver of mice after 6 weeks of high-intensity interval training (HIIT) intervention and explore the possible mechanisms. Male C57BL/6J mice (7-week-old) were randomly divided into control and HIIT groups. The control group did not engage in exercise, while the HIIT group underwent a 6-week HIIT (10° slope treadmill exercise). Changes in weight and body composition were recorded, and blood ketone body levels were measured before, immediately after, and 1 h after each HIIT exercise. After 6-week HIIT, the levels of free fatty acids in the liver and serum were detected using reagent kits, and expression levels of regulatory factors and key enzymes of ketone body production in the mouse liver were detected by Western blot and qPCR. The results showed that, the blood ketone body levels in the HIIT group significantly increased immediately after a single HIIT and 1 h after HIIT, compared with that before HIIT. The body weight of the control group gradually increased within 6 weeks, while the HIIT group mice did not show significant weight gain. After 6-week HIIT, compared with the control group, the HIIT group showed decreased body fat ratio, increased lean body weight ratio, and increased free fatty acid levels in liver and serum. Liver carnitine palmitoyl transferase-I (CPT-I), peroxisome proliferator activated receptor α (PPARα), and fibroblast growth factor 21 (FGF21) protein expression levels were up-regulated, whereas mammalian target of rapamycin complex 1 (mTORC1) protein expression level was significantly down-regulated in the HIIT group, compared with those in the control group. These results suggest that HIIT induces hepatic ketone body production through altering mTORC1, PPARα and FGF21 expression in mice.

本研究旨在调查小鼠在接受 6 周高强度间歇训练(HIIT)干预后肝脏中酮体的产生情况,并探讨其可能的机制。雄性 C57BL/6J 小鼠(7 周大)被随机分为对照组和 HIIT 组。对照组不进行运动,而HIIT组则进行为期6周的HIIT(10°斜坡跑步机运动)。记录体重和身体成分的变化,并在每次 HIIT 运动前、运动后和运动后 1 小时测量血液中的酮体水平。在 6 周的 HIIT 运动后,使用试剂盒检测肝脏和血清中游离脂肪酸的水平,并通过 Western 印迹和 qPCR 检测小鼠肝脏中酮体产生的调节因子和关键酶的表达水平。结果表明,HIIT 组在单次 HIIT 后立即和 HIIT 后 1 h 的血酮体水平较 HIIT 前明显升高。对照组小鼠的体重在 6 周内逐渐增加,而 HIIT 组小鼠的体重没有明显增加。经过 6 周的 HIIT 后,与对照组相比,HIIT 组的体脂比下降,瘦体重比增加,肝脏和血清中的游离脂肪酸水平升高。与对照组相比,HIIT 组肝脏肉碱棕榈酰基转移酶Ⅰ(CPT-Ⅰ)、过氧化物酶体增殖激活受体α(PPARα)和成纤维细胞生长因子 21(FGF21)蛋白表达水平上调,而哺乳动物雷帕霉素靶复合物 1(mTORC1)蛋白表达水平显著下调。这些结果表明,HIIT 通过改变小鼠体内 mTORC1、PPARα 和 FGF21 的表达诱导肝酮体的产生。
{"title":"[High-intensity interval training (HIIT) induces hepatic ketone body production possibly through altering expression of mTORC1, PPARα and FGF21 in mice].","authors":"Jun Liu, Shu-Jie Lou","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The present study aims to investigate the production of ketone body in the liver of mice after 6 weeks of high-intensity interval training (HIIT) intervention and explore the possible mechanisms. Male C57BL/6J mice (7-week-old) were randomly divided into control and HIIT groups. The control group did not engage in exercise, while the HIIT group underwent a 6-week HIIT (10° slope treadmill exercise). Changes in weight and body composition were recorded, and blood ketone body levels were measured before, immediately after, and 1 h after each HIIT exercise. After 6-week HIIT, the levels of free fatty acids in the liver and serum were detected using reagent kits, and expression levels of regulatory factors and key enzymes of ketone body production in the mouse liver were detected by Western blot and qPCR. The results showed that, the blood ketone body levels in the HIIT group significantly increased immediately after a single HIIT and 1 h after HIIT, compared with that before HIIT. The body weight of the control group gradually increased within 6 weeks, while the HIIT group mice did not show significant weight gain. After 6-week HIIT, compared with the control group, the HIIT group showed decreased body fat ratio, increased lean body weight ratio, and increased free fatty acid levels in liver and serum. Liver carnitine palmitoyl transferase-I (CPT-I), peroxisome proliferator activated receptor α (PPARα), and fibroblast growth factor 21 (FGF21) protein expression levels were up-regulated, whereas mammalian target of rapamycin complex 1 (mTORC1) protein expression level was significantly down-regulated in the HIIT group, compared with those in the control group. These results suggest that HIIT induces hepatic ketone body production through altering mTORC1, PPARα and FGF21 expression in mice.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140848257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress on the regulatory mechanisms of Irisin on cognitive dysfunction in patients with Alzheimer's disease and the interventional role of Irisin in associated diseases. 关于鸢尾素对阿尔茨海默病患者认知功能障碍的调控机制以及鸢尾素在相关疾病中的干预作用的研究进展。
Q3 Medicine Pub Date : 2024-04-25
Tian Lan, Zong-Cheng Guo, Hao-Ran Gu, Lu Qin, En-Peng He

Irisin, a peptide produced during exercise, is believed to play a role in regulating energy levels within the body. Moreover, Irisin has the ability to traverse the blood-brain barrier and engage in various pathophysiological processes within the central nervous system. An increasing body of research identifies Irisin as a significant therapeutic target for neurodegenerative diseases, indicating a strong link between Irisin and the development of cognitive impairments. In this paper, we present a concise review of effects of different types of exercise on Irisin production, and the mechanisms underlying the Irisin's intervention in various diseases including metabolic diseases, kidney injury and depression. Following this, we delve into an in-depth exploration of its role in modulating cognitive dysfunction among patients with Alzheimer's disease (AD), focusing on recent advancements in three critical areas: neuroinflammation, mitochondrial dysfunction, and protein misfolding. Finally, we put forth 3 hypotheses: (1) exercise-induced fibronectin type III domain containing protein 5 (FNDC5) stimulation and subsequent Irisin cleavage may be associated with the stress response in energy metabolism; (2) Irisin, as a myokine, likely plays a role in mitochondrial repair mechanisms to ameliorate cognitive impairment in AD patients; (3) Irisin is a homeostatic factor that maintains energy homeostasis and is closely related to the dynamic stability of the body's internal environment.

鸢尾素是一种在运动过程中产生的多肽,据信在调节体内能量水平方面发挥着作用。此外,鸢尾素还能穿过血脑屏障,参与中枢神经系统内的各种病理生理过程。越来越多的研究发现,鸢尾素是神经退行性疾病的重要治疗靶点,这表明鸢尾素与认知障碍的发展之间存在密切联系。在本文中,我们简要回顾了不同类型的运动对鸢尾素分泌的影响,以及鸢尾素干预各种疾病(包括代谢性疾病、肾损伤和抑郁症)的机制。随后,我们深入探讨了鸢尾素在调节阿尔茨海默病患者(AD)认知功能障碍方面的作用,重点关注神经炎症、线粒体功能障碍和蛋白质错误折叠这三个关键领域的最新进展。最后,我们提出了三个假设:(1)运动诱导的纤连蛋白Ⅲ型结构域含蛋白5(FNDC5)刺激和随后的鸢尾素裂解可能与能量代谢中的应激反应有关;(2)鸢尾素作为一种肌动素,可能在线粒体修复机制中发挥作用,从而改善阿尔茨海默病患者的认知功能障碍;(3)鸢尾素是一种维持能量平衡的平衡因子,与机体内环境的动态稳定性密切相关。
{"title":"Research progress on the regulatory mechanisms of Irisin on cognitive dysfunction in patients with Alzheimer's disease and the interventional role of Irisin in associated diseases.","authors":"Tian Lan, Zong-Cheng Guo, Hao-Ran Gu, Lu Qin, En-Peng He","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Irisin, a peptide produced during exercise, is believed to play a role in regulating energy levels within the body. Moreover, Irisin has the ability to traverse the blood-brain barrier and engage in various pathophysiological processes within the central nervous system. An increasing body of research identifies Irisin as a significant therapeutic target for neurodegenerative diseases, indicating a strong link between Irisin and the development of cognitive impairments. In this paper, we present a concise review of effects of different types of exercise on Irisin production, and the mechanisms underlying the Irisin's intervention in various diseases including metabolic diseases, kidney injury and depression. Following this, we delve into an in-depth exploration of its role in modulating cognitive dysfunction among patients with Alzheimer's disease (AD), focusing on recent advancements in three critical areas: neuroinflammation, mitochondrial dysfunction, and protein misfolding. Finally, we put forth 3 hypotheses: (1) exercise-induced fibronectin type III domain containing protein 5 (FNDC5) stimulation and subsequent Irisin cleavage may be associated with the stress response in energy metabolism; (2) Irisin, as a myokine, likely plays a role in mitochondrial repair mechanisms to ameliorate cognitive impairment in AD patients; (3) Irisin is a homeostatic factor that maintains energy homeostasis and is closely related to the dynamic stability of the body's internal environment.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Research progress of non-coding RNA involved in glycolysis regulation of hepatocellular carcinoma]. [参与肝癌糖酵解调控的非编码 RNA 的研究进展]。
Q3 Medicine Pub Date : 2024-04-25
Xiao-Feng Hu, Qing Zhang, Mei-Lv Liang, Qing-Niao Zhou, Rui-Qiang Zhao, Zu-Kang Gong, Wen-Zhen Lin

Liver cancer is a common tumor of digestive system. Hepatocellular carcinoma (HCC) is a common type of liver cancer, which has a high degree of malignancy and ranks among the top causes of cancer-related death in the world. Metabolic reprogramming is considered to be an important marker of carcinogenesis. Glucose metabolism is one of the main ways for cells to produce energy. Glycolysis, as the basic reaction of glucose metabolism, plays an important role in cell metabolism. Therefore, the regulation of glycolysis is of great significance to the proliferation and evolution of tumors. More and more non-coding RNAs (ncRNA) have been proved to play an important role in the regulation of tumor glycolysis. This article reviews the role of ncRNA in the regulation of HCC glycolysis and its related mechanisms. At the same time, the prospect of targeted therapy for HCC based on the related mechanisms of glycolysis regulation is put forward.

肝癌是一种常见的消化系统肿瘤。肝细胞癌(HCC)是一种常见的肝癌,恶性程度高,是世界上与癌症相关的死亡原因中最主要的一种。代谢重编程被认为是致癌的一个重要标志。葡萄糖代谢是细胞产生能量的主要途径之一。糖酵解作为葡萄糖代谢的基本反应,在细胞代谢中发挥着重要作用。因此,糖酵解的调控对肿瘤的增殖和进化具有重要意义。越来越多的非编码 RNA(ncRNA)被证实在肿瘤糖酵解的调控中发挥着重要作用。本文综述了 ncRNA 在 HCC 糖酵解调控中的作用及其相关机制。同时,基于糖酵解调控的相关机制,展望了HCC的靶向治疗。
{"title":"[Research progress of non-coding RNA involved in glycolysis regulation of hepatocellular carcinoma].","authors":"Xiao-Feng Hu, Qing Zhang, Mei-Lv Liang, Qing-Niao Zhou, Rui-Qiang Zhao, Zu-Kang Gong, Wen-Zhen Lin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Liver cancer is a common tumor of digestive system. Hepatocellular carcinoma (HCC) is a common type of liver cancer, which has a high degree of malignancy and ranks among the top causes of cancer-related death in the world. Metabolic reprogramming is considered to be an important marker of carcinogenesis. Glucose metabolism is one of the main ways for cells to produce energy. Glycolysis, as the basic reaction of glucose metabolism, plays an important role in cell metabolism. Therefore, the regulation of glycolysis is of great significance to the proliferation and evolution of tumors. More and more non-coding RNAs (ncRNA) have been proved to play an important role in the regulation of tumor glycolysis. This article reviews the role of ncRNA in the regulation of HCC glycolysis and its related mechanisms. At the same time, the prospect of targeted therapy for HCC based on the related mechanisms of glycolysis regulation is put forward.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Advances in the study of the actin nucleation factor Spire]. [肌动蛋白成核因子 Spire 的研究进展]。
Q3 Medicine Pub Date : 2024-04-25
Tao Pang, Li-Xia Zhang, An-Na Bai, Wen Yang, Li-Xia Hao

There are three main classes of actin nucleation factors: Arp2/3 complexes, Spire and Formin. Spire assembles microfilaments by nucleating stable longitudinal tetramers and binding actin to the growing end of the microfilament. As early as 1999, Wellington et al. identified Spire as an actin nucleating agent, however, over the years, most studies have focused on Arp2/3 and Formin proteins; there has been relatively less research on Spire as a member of the actin nucleating factors. Recent studies have shown that Spire is involved in the vesicular transport through the synthesis of actin and plays an important role in neural development. In this paper, we reviewed the structure, expression and function of Spire, and its association with disease in order to identify meaningful potential directions for studies on Spire.

肌动蛋白成核因子主要有三类:Arp2/3 复合物、Spire 和 Formin。Spire 通过核化稳定的纵向四聚体并将肌动蛋白结合到微丝的生长端来组装微丝。早在 1999 年,Wellington 等人就发现 Spire 是一种肌动蛋白成核因子,但多年来,大多数研究都集中在 Arp2/3 和 Formin 蛋白上,对 Spire 作为肌动蛋白成核因子成员的研究相对较少。最近的研究表明,Spire 通过合成肌动蛋白参与囊泡运输,并在神经发育中发挥重要作用。本文综述了 Spire 的结构、表达和功能及其与疾病的关系,以确定有意义的 Spire 潜在研究方向。
{"title":"[Advances in the study of the actin nucleation factor Spire].","authors":"Tao Pang, Li-Xia Zhang, An-Na Bai, Wen Yang, Li-Xia Hao","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>There are three main classes of actin nucleation factors: Arp2/3 complexes, Spire and Formin. Spire assembles microfilaments by nucleating stable longitudinal tetramers and binding actin to the growing end of the microfilament. As early as 1999, Wellington et al. identified Spire as an actin nucleating agent, however, over the years, most studies have focused on Arp2/3 and Formin proteins; there has been relatively less research on Spire as a member of the actin nucleating factors. Recent studies have shown that Spire is involved in the vesicular transport through the synthesis of actin and plays an important role in neural development. In this paper, we reviewed the structure, expression and function of Spire, and its association with disease in order to identify meaningful potential directions for studies on Spire.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140846856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Deficiency of cathepsin K improves ischemic angiogenesis in high-fat diet fed mice]. [缺乏 cathepsin K 可改善高脂饮食喂养小鼠的缺血性血管生成]。
Q3 Medicine Pub Date : 2024-02-25
Xin-Yi Wang, Xu Wang, Zhen-Jie He, Shi-Piao Chen, Wei-Jian Li, Ren-Shan Cui, Hai-Ying Jiang

The present study aims to investigate the effect of cathepsin K (CatK) on ischemic angiogenesis in high-fat diet fed mice. The mice were subjected to unilateral hindlimb ischemic surgery, and the ischemic blood flow was measured with a laser Doppler blood flow imager. Immunohistochemical staining was used to observe the quantity of new capillaries in the ischemic lower extremity, and Western blot was used to detect the expression of insulin receptor substrate-1 (IRS-1), p-Akt, Akt and vascular endothelial growth factor (VEGF). Firstly, the effect of high-fat diet on ischemic angiogenesis was observed in wild-type mice, which were randomly divided into control group and high-fat diet group and were fed with normal diet or 60% high-fat diet respectively for 16 weeks. The results showed the body weight and the plasma CatK concentration of the high-fat diet group was significantly increased compared with the control group (P < 0.05), and the blood flow recovery of the high-fat diet group was significantly lower than control group (P < 0.05). Then, wild-type and CatK knock out (CatK-/-) mice were both fed with high-fat diet to further observe the effect and mechanism of CatK on ischemic angiogenesis under high-fat diet. The results showed that the blood flow recovery in the CatK-/- group was significantly greater than the wild-type group, and the number of CD31 positive cells was significantly increased (P < 0.05). At the same time, the protein expression levels of IRS-1, p-Akt and VEGF in the ischemic skeletal muscle were significantly increased in the CatK-/- group compared with the wild-type group (P < 0.05). These results suggest that the deficiency of CatK improves ischemic angiogenesis in high-fat diet fed mice through IRS-1-Akt-VEGF signaling pathway.

本研究旨在探讨 cathepsin K(CatK)对高脂饮食喂养小鼠缺血性血管生成的影响。小鼠接受单侧后肢缺血手术,用激光多普勒血流成像仪测量缺血血流量。免疫组化染色观察缺血下肢新生毛细血管的数量,Western blot检测胰岛素受体底物-1(IRS-1)、p-Akt、Akt和血管内皮生长因子(VEGF)的表达。首先,观察高脂饮食对野生型小鼠缺血性血管生成的影响。将野生型小鼠随机分为对照组和高脂饮食组,分别以正常饮食或60%高脂饮食喂养16周。结果显示,与对照组相比,高脂饮食组的体重和血浆CatK浓度明显增加(P<0.05),而高脂饮食组的血流量恢复明显低于对照组(P<0.05)。然后,野生型小鼠和CatK基因敲除(CatK-/-)小鼠均以高脂饮食喂养,进一步观察CatK对高脂饮食下缺血性血管生成的影响和机制。结果显示,CatK-/-组的血流量恢复明显高于野生型组,CD31阳性细胞数量明显增加(P<0.05)。同时,与野生型相比,CatK-/-组缺血骨骼肌中IRS-1、p-Akt和VEGF的蛋白表达水平明显升高(P < 0.05)。这些结果表明,缺乏CatK可通过IRS-1-Akt-VEGF信号通路改善高脂饮食喂养小鼠的缺血性血管生成。
{"title":"[Deficiency of cathepsin K improves ischemic angiogenesis in high-fat diet fed mice].","authors":"Xin-Yi Wang, Xu Wang, Zhen-Jie He, Shi-Piao Chen, Wei-Jian Li, Ren-Shan Cui, Hai-Ying Jiang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The present study aims to investigate the effect of cathepsin K (CatK) on ischemic angiogenesis in high-fat diet fed mice. The mice were subjected to unilateral hindlimb ischemic surgery, and the ischemic blood flow was measured with a laser Doppler blood flow imager. Immunohistochemical staining was used to observe the quantity of new capillaries in the ischemic lower extremity, and Western blot was used to detect the expression of insulin receptor substrate-1 (IRS-1), p-Akt, Akt and vascular endothelial growth factor (VEGF). Firstly, the effect of high-fat diet on ischemic angiogenesis was observed in wild-type mice, which were randomly divided into control group and high-fat diet group and were fed with normal diet or 60% high-fat diet respectively for 16 weeks. The results showed the body weight and the plasma CatK concentration of the high-fat diet group was significantly increased compared with the control group (P < 0.05), and the blood flow recovery of the high-fat diet group was significantly lower than control group (P < 0.05). Then, wild-type and CatK knock out (CatK<sup>-/-</sup>) mice were both fed with high-fat diet to further observe the effect and mechanism of CatK on ischemic angiogenesis under high-fat diet. The results showed that the blood flow recovery in the CatK<sup>-/-</sup> group was significantly greater than the wild-type group, and the number of CD31 positive cells was significantly increased (P < 0.05). At the same time, the protein expression levels of IRS-1, p-Akt and VEGF in the ischemic skeletal muscle were significantly increased in the CatK<sup>-/-</sup> group compared with the wild-type group (P < 0.05). These results suggest that the deficiency of CatK improves ischemic angiogenesis in high-fat diet fed mice through IRS-1-Akt-VEGF signaling pathway.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Research progress of trace amine-associated receptor 1 signaling pathways]. [痕量胺相关受体 1 信号通路的研究进展]。
Q3 Medicine Pub Date : 2024-02-25
Meng Sun, Chen-Chen Zhang, Ji-Tao Li, Tian-Mei Si, Yun-Ai Su

Trace amine-associated receptor 1 (TAAR1) is a classical type of G-protein-coupled receptor, which is widely distributed in the brain of mammals, especially in the limbic system and the region rich in monoaminergic neurons, and it is a highly conserved TAAR subtype in all species. TAAR1 can specifically respond to endogenous trace amines in the central nervous system and peripheral tissues, and plays an important role in the pathophysiological mechanisms involving the dysregulation of monoamine system and glutamate system leading to mental disorders. In addition, TAAR1 modulator can act on inwardly rectifying potassium channels and regulate synaptic transmission and neuronal activity. According to the latest research findings, TAAR1 exerts a series of functions by regulating signal pathways and substrate phosphorylation, which is related to emotion, cognition, fear and addiction. Therefore, we conducted a detailed review of relevant studies on the TAAR1 signaling pathways, aiming at revealing the great potential of TAAR1 as a new target for drug treatment of neuropsychiatric disorders.

痕量胺相关受体1(TAAR1)是一种经典的G蛋白偶联受体,广泛分布于哺乳动物大脑,尤其是边缘系统和单胺类神经元丰富的区域,是所有物种中高度保守的TAAR亚型。TAAR1 能对中枢神经系统和外周组织中的内源性微量胺做出特异性反应,在单胺系统和谷氨酸系统失调导致精神障碍的病理生理机制中发挥着重要作用。此外,TAAR1 调节剂还能作用于内向整流钾通道,调节突触传递和神经元活动。最新研究发现,TAAR1 通过调控信号通路和底物磷酸化发挥一系列功能,与情绪、认知、恐惧和成瘾有关。因此,我们对 TAAR1 信号通路的相关研究进行了详细综述,旨在揭示 TAAR1 作为神经精神疾病药物治疗新靶点的巨大潜力。
{"title":"[Research progress of trace amine-associated receptor 1 signaling pathways].","authors":"Meng Sun, Chen-Chen Zhang, Ji-Tao Li, Tian-Mei Si, Yun-Ai Su","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Trace amine-associated receptor 1 (TAAR1) is a classical type of G-protein-coupled receptor, which is widely distributed in the brain of mammals, especially in the limbic system and the region rich in monoaminergic neurons, and it is a highly conserved TAAR subtype in all species. TAAR1 can specifically respond to endogenous trace amines in the central nervous system and peripheral tissues, and plays an important role in the pathophysiological mechanisms involving the dysregulation of monoamine system and glutamate system leading to mental disorders. In addition, TAAR1 modulator can act on inwardly rectifying potassium channels and regulate synaptic transmission and neuronal activity. According to the latest research findings, TAAR1 exerts a series of functions by regulating signal pathways and substrate phosphorylation, which is related to emotion, cognition, fear and addiction. Therefore, we conducted a detailed review of relevant studies on the TAAR1 signaling pathways, aiming at revealing the great potential of TAAR1 as a new target for drug treatment of neuropsychiatric disorders.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta physiologica Sinica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1