Noise, as an unavoidable stress (pressure) source in the modern life, affects animals in many ways, both behaviorally and physiologically. Behavioral changes may be driven by changes in hormone secretion in animals. When animals face with noise stress, the neuroendocrine systems, mainly the hypothalamic-pituitary-adrenal (HPA) axis, are activated, which promotes the secretion and release of stress hormones, and then leads to a series of behavioral changes. The behavioral changes can be easily observed, but the changes in physiological indicators such as hormone levels need to be accurately measured. Currently, many studies have measured the variations of stress hormone levels in animals under different noise conditions. Taking glucocorticoid as an example, this paper summarizes the different measurement methods of stress hormones, especially the non-invasive measurement methods, and compares the advantages and shortcomings of them. It provides a variety of measurement choices for the study of related issues, and also helps us to further understand the sources of animal stress, in order to provide a better habitat for animals.
{"title":"[Noise exposure-induced stress response and its measurement methods].","authors":"Zi-Hui Fan, Jian-Wen Zou, Qi-Cai Chen, Zi-Ying Fu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Noise, as an unavoidable stress (pressure) source in the modern life, affects animals in many ways, both behaviorally and physiologically. Behavioral changes may be driven by changes in hormone secretion in animals. When animals face with noise stress, the neuroendocrine systems, mainly the hypothalamic-pituitary-adrenal (HPA) axis, are activated, which promotes the secretion and release of stress hormones, and then leads to a series of behavioral changes. The behavioral changes can be easily observed, but the changes in physiological indicators such as hormone levels need to be accurately measured. Currently, many studies have measured the variations of stress hormone levels in animals under different noise conditions. Taking glucocorticoid as an example, this paper summarizes the different measurement methods of stress hormones, especially the non-invasive measurement methods, and compares the advantages and shortcomings of them. It provides a variety of measurement choices for the study of related issues, and also helps us to further understand the sources of animal stress, in order to provide a better habitat for animals.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 3","pages":"407-417"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The incidence of diabetes mellitus is increasing, and the sleep quality of patients with diabetes mellitus is often affected. Baduanjin may act on biological rhythm of the body, skeletal muscle glucose metabolism, skeletal muscle fibers and suprachiasmatic nucleus (SCN) by regulating the expression of Bmal1 gene, thus regulating the blood glucose level and circadian rhythm of patients with type 2 diabetes mellitus (T2DM) and improving their physiological functions. This article reviews the regulatory effect and mechanism of Baduanjin on Bmal1 gene expression in diabetes patients, and discusses the possibility of Baduanjin to improve the sleep quality of T2DM patients by regulating Bmal1 gene expression. This review can provide a new field for the clinical application of traditional Chinese Qigong Baduanjin, and provide a new scientific basis for exercise therapy of diabetes.
{"title":"[Baduanjin improves sleep quality in patients with type 2 diabetes possibly via regulating Bmal1 gene].","authors":"Zi-Xuan Dong, Zhan-Ke Ma","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The incidence of diabetes mellitus is increasing, and the sleep quality of patients with diabetes mellitus is often affected. Baduanjin may act on biological rhythm of the body, skeletal muscle glucose metabolism, skeletal muscle fibers and suprachiasmatic nucleus (SCN) by regulating the expression of Bmal1 gene, thus regulating the blood glucose level and circadian rhythm of patients with type 2 diabetes mellitus (T2DM) and improving their physiological functions. This article reviews the regulatory effect and mechanism of Baduanjin on Bmal1 gene expression in diabetes patients, and discusses the possibility of Baduanjin to improve the sleep quality of T2DM patients by regulating Bmal1 gene expression. This review can provide a new field for the clinical application of traditional Chinese Qigong Baduanjin, and provide a new scientific basis for exercise therapy of diabetes.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 3","pages":"447-456"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min-Yuan Wang, Jia-Mei Li, Yi-Lin Wu, Yi Zhang, Ting Hu, Wen-Jun Su, Ji-Feng Feng, Chun-Lei Jiang
The role of the aryl hydrocarbon receptor (AhR) in regulating oxidative stress and immune responses has been increasingly recognized. However, its involvement in depression and the underlying mechanisms remain poorly understood. This study aimed to investigate the effect of 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous AhR ligand, on a lipopolysaccharide (LPS)-induced depression model and the underlying mechanism. After being treated with FICZ (50 mg/kg), male C57BL/6J mice received intraperitoneal injection of LPS and underwent behavioral tests 24 h later. The levels of inflammatory cytokines, including IL-1β, IL-6, and TNF-α, were measured in the hippocampus and serum using enzyme-linked immunosorbent assay (ELISA). The expression levels of CYP1A1, AhR and NLRP3 were analyzed using qPCR and Western blot. The results showed that, compared with control group, LPS alone significantly down-regulated the expression levels of CYP1A1 mRNA and AhR protein in the hippocampus of mice, reduced glucose preference, prolonged immobility time in forced swimming test, increased IL-6 and IL-1β levels in the hippocampus, increased serum IL-1β level, and up-regulated NLRP3 mRNA and protein expression levels in mouse hippocampus, while FICZ significantly reversed the aforementioned effects of LPS. These findings suggest that AhR activation attenuates the inflammatory response associated with depression and modulates the expression of NLRP3. The present study provides novel insights into the role of AhR in the development of depression, and presents AhR as a potential therapeutic target for the treatment of depression.
{"title":"Activation of aryl hydrocarbon receptor (AhR) alleviates depressive-like behaviors in LPS-induced mice.","authors":"Min-Yuan Wang, Jia-Mei Li, Yi-Lin Wu, Yi Zhang, Ting Hu, Wen-Jun Su, Ji-Feng Feng, Chun-Lei Jiang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The role of the aryl hydrocarbon receptor (AhR) in regulating oxidative stress and immune responses has been increasingly recognized. However, its involvement in depression and the underlying mechanisms remain poorly understood. This study aimed to investigate the effect of 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous AhR ligand, on a lipopolysaccharide (LPS)-induced depression model and the underlying mechanism. After being treated with FICZ (50 mg/kg), male C57BL/6J mice received intraperitoneal injection of LPS and underwent behavioral tests 24 h later. The levels of inflammatory cytokines, including IL-1β, IL-6, and TNF-α, were measured in the hippocampus and serum using enzyme-linked immunosorbent assay (ELISA). The expression levels of CYP1A1, AhR and NLRP3 were analyzed using qPCR and Western blot. The results showed that, compared with control group, LPS alone significantly down-regulated the expression levels of CYP1A1 mRNA and AhR protein in the hippocampus of mice, reduced glucose preference, prolonged immobility time in forced swimming test, increased IL-6 and IL-1β levels in the hippocampus, increased serum IL-1β level, and up-regulated NLRP3 mRNA and protein expression levels in mouse hippocampus, while FICZ significantly reversed the aforementioned effects of LPS. These findings suggest that AhR activation attenuates the inflammatory response associated with depression and modulates the expression of NLRP3. The present study provides novel insights into the role of AhR in the development of depression, and presents AhR as a potential therapeutic target for the treatment of depression.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 3","pages":"353-364"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a multifunctional adipokine, chemerin plays a crucial role in various pathophysiological processes through endocrine and paracrine manner. It can bind to three known receptors (ChemR23, GPR1 and CCRL2) and participate in energy metabolism, glucose and lipid metabolism, and inflammation, especially in metabolic diseases. Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases, which seriously affects the normal life of women of childbearing age. Patients with PCOS have significantly increased serum levels of chemerin and high expression of chemerin in their ovaries. More and more studies have shown that chemerin is involved in the occurrence and development of PCOS by affecting obesity, insulin resistance, hyperandrogenism, oxidative stress and inflammatory response. This article mainly reviews the production, subtypes, function and receptors of chemerin protein, summarizes and discusses the research status of chemerin protein in PCOS from the perspectives of metabolism, reproduction and inflammation, and provides theoretical basis and reference for the clinical diagnosis and treatment of PCOS.
{"title":"[Research progress of chemerin in polycystic ovary syndrome].","authors":"Xiao-Juan Zhu, Hang Qiu, Sheng-Lan Liu, Wei Dai, Hai-Bo Hu, Hao Huang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>As a multifunctional adipokine, chemerin plays a crucial role in various pathophysiological processes through endocrine and paracrine manner. It can bind to three known receptors (ChemR23, GPR1 and CCRL2) and participate in energy metabolism, glucose and lipid metabolism, and inflammation, especially in metabolic diseases. Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases, which seriously affects the normal life of women of childbearing age. Patients with PCOS have significantly increased serum levels of chemerin and high expression of chemerin in their ovaries. More and more studies have shown that chemerin is involved in the occurrence and development of PCOS by affecting obesity, insulin resistance, hyperandrogenism, oxidative stress and inflammatory response. This article mainly reviews the production, subtypes, function and receptors of chemerin protein, summarizes and discusses the research status of chemerin protein in PCOS from the perspectives of metabolism, reproduction and inflammation, and provides theoretical basis and reference for the clinical diagnosis and treatment of PCOS.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 3","pages":"429-437"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dong-Min Wei, Rui Fang, Zhi-Zhong Deng, Xin-Yue Bai, Jing-Hui Zhu, Tian-Yu Zhai, Can Zhang, Jian-Zhong Gao, Dan Su, Yan-Ling Yang, Lin Zhao
Spinal cord injury (SCI) is a serious central nervous system disease with high disability and mortality rates and complex pathophysiologic mechanisms. MicroRNA (miRNA), as a kind of non-coding RNA, plays an important role in SCI. miRNA is involved in the regulation of inflammatory response, oxidative stress, axonal regeneration, and apoptosis after SCI, and interacts with long non-coding RNA (lncRNA) and circular RNA (circRNA) to regulate the pathophysiological process of SCI. This paper summarizes the changes in miRNA expression after SCI, and reviews the targeting mechanism of miRNA in SCI and the current research status of miRNA-targeted drugs to provide new targets and new horizons for basic and clinical research on SCI.
{"title":"Research progress of microRNA in spinal cord injury.","authors":"Dong-Min Wei, Rui Fang, Zhi-Zhong Deng, Xin-Yue Bai, Jing-Hui Zhu, Tian-Yu Zhai, Can Zhang, Jian-Zhong Gao, Dan Su, Yan-Ling Yang, Lin Zhao","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a serious central nervous system disease with high disability and mortality rates and complex pathophysiologic mechanisms. MicroRNA (miRNA), as a kind of non-coding RNA, plays an important role in SCI. miRNA is involved in the regulation of inflammatory response, oxidative stress, axonal regeneration, and apoptosis after SCI, and interacts with long non-coding RNA (lncRNA) and circular RNA (circRNA) to regulate the pathophysiological process of SCI. This paper summarizes the changes in miRNA expression after SCI, and reviews the targeting mechanism of miRNA in SCI and the current research status of miRNA-targeted drugs to provide new targets and new horizons for basic and clinical research on SCI.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 3","pages":"394-406"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An-Na Xie, Guo-Yi Liu, Sun-Zhengyuan Zhang, Wei-Wei Dai
Aging refers to a progressive decline in biological functions, leading to age-related diseases and mortality. The transition metals, including iron, copper, and manganese, play important roles in human physiological and pathological processes. Substantial research has demonstrated that senescent cells accumulate higher levels of transition metals, which in turn accelerates the process of cellular senescence and related diseases through mechanisms such as production of excessive reactive oxygen species (ROS), induction of oxidative stress, DNA damage, and mitochondrial dysfunction. This review article provides a comprehensive overview of the causes of transition metal accumulation in senescent cells, as well as the mechanisms by which it further promotes cellular senescence and related diseases. The aim is to provide insights into anti-aging and treatment of aging-related diseases caused by transition metal accumulation.
{"title":"[Transition metal accumulation and cellular senescence].","authors":"An-Na Xie, Guo-Yi Liu, Sun-Zhengyuan Zhang, Wei-Wei Dai","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Aging refers to a progressive decline in biological functions, leading to age-related diseases and mortality. The transition metals, including iron, copper, and manganese, play important roles in human physiological and pathological processes. Substantial research has demonstrated that senescent cells accumulate higher levels of transition metals, which in turn accelerates the process of cellular senescence and related diseases through mechanisms such as production of excessive reactive oxygen species (ROS), induction of oxidative stress, DNA damage, and mitochondrial dysfunction. This review article provides a comprehensive overview of the causes of transition metal accumulation in senescent cells, as well as the mechanisms by which it further promotes cellular senescence and related diseases. The aim is to provide insights into anti-aging and treatment of aging-related diseases caused by transition metal accumulation.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 3","pages":"418-428"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdominal aortic aneurysm (AAA) is a life-threatening disease that remains undetected until it acutely ruptures. Due to lack of effective pharmaceutic therapies, it is urgent to explore new prevention and treatment strategies. Metabolic reprogramming is a cellular process through which cells change their metabolic patterns to meet material and energy requirements, including glucose metabolism, lipid metabolism and amino acid metabolism. Recently, the regulatory role of metabolic reprogramming in cardiovascular diseases, especially AAA, has attracted significant attention. This review article focuses on the research progress regarding the effects of metabolic reprogramming of vascular smooth muscle cells (VSMCs) and macrophages on the occurrence and development of AAA, especially their roles in major pathological processes such as VSMCs apoptosis and phenotype transformation, extracellular matrix remodeling, oxidative stress, and inflammatory response. The aim is to provide new clues for the mechanism research and clinical treatment of AAA from the perspective of metabolism.
{"title":"[Effect of metabolic reprogramming on abdominal aortic aneurysm].","authors":"Ge Wang, Mei-Li Wang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Abdominal aortic aneurysm (AAA) is a life-threatening disease that remains undetected until it acutely ruptures. Due to lack of effective pharmaceutic therapies, it is urgent to explore new prevention and treatment strategies. Metabolic reprogramming is a cellular process through which cells change their metabolic patterns to meet material and energy requirements, including glucose metabolism, lipid metabolism and amino acid metabolism. Recently, the regulatory role of metabolic reprogramming in cardiovascular diseases, especially AAA, has attracted significant attention. This review article focuses on the research progress regarding the effects of metabolic reprogramming of vascular smooth muscle cells (VSMCs) and macrophages on the occurrence and development of AAA, especially their roles in major pathological processes such as VSMCs apoptosis and phenotype transformation, extracellular matrix remodeling, oxidative stress, and inflammatory response. The aim is to provide new clues for the mechanism research and clinical treatment of AAA from the perspective of metabolism.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 3","pages":"457-474"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The secretory leukocyte protease inhibitor (SLPI) is mainly produced by immune cells and various epithelial cells, and is regulated by a variety of cytokines, such as transforming growth factor β1, interleukin 1β and tumor necrosis factor α. In addition to commonly known anti-protease activity, it has been found in recent years that SLPI plays essential roles in anti-apoptosis, regulating cell cycle, cell differentiation and proliferation, and inhibiting inflammatory response. SLPI can also assist the immune system to clear pathogens/damaged cells by enhancing the phagocytic function of phagocytes, so as to ameliorate tissue damage and promote repair. Moreover, recent studies have shown that the change of SLPI level in the serum of patients post cardiovascular surgery has a high diagnostic value in predicting the occurrence of acute kidney injury, suggesting that SLPI is involved in ischemia-reperfusion (IR) induced acute kidney injury. In this review, we summarized the expression, regulation, signaling pathways and associated biological events of SLPI in different organ injury models, and also discussed and evaluated the potential role of SLPI in renoprotection against IR induced acute kidney injury and its potential as a new biomarker.
{"title":"[The role and mechanism of multifunctional molecule SLPI in regulating ischemia-reperfusion induced acute kidney injury and repair].","authors":"Fei Chen, Yuan-Yuan Wu, Bin Yang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The secretory leukocyte protease inhibitor (SLPI) is mainly produced by immune cells and various epithelial cells, and is regulated by a variety of cytokines, such as transforming growth factor β1, interleukin 1β and tumor necrosis factor α. In addition to commonly known anti-protease activity, it has been found in recent years that SLPI plays essential roles in anti-apoptosis, regulating cell cycle, cell differentiation and proliferation, and inhibiting inflammatory response. SLPI can also assist the immune system to clear pathogens/damaged cells by enhancing the phagocytic function of phagocytes, so as to ameliorate tissue damage and promote repair. Moreover, recent studies have shown that the change of SLPI level in the serum of patients post cardiovascular surgery has a high diagnostic value in predicting the occurrence of acute kidney injury, suggesting that SLPI is involved in ischemia-reperfusion (IR) induced acute kidney injury. In this review, we summarized the expression, regulation, signaling pathways and associated biological events of SLPI in different organ injury models, and also discussed and evaluated the potential role of SLPI in renoprotection against IR induced acute kidney injury and its potential as a new biomarker.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 3","pages":"475-486"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan-Hong Su, Yi Cheng, Ting-Ting Li, Yi-Chen Zhang, Ze-Yu DU, Juan Chen, Fu-Qing Wang, Zhong-Hao Liu, Wen-Han Gong
The present study aimed to explore the effects of different exercise modes on neuromuscular junction (NMJ) and metabolism of skeletal muscle-related proteins in aging rats. Ten from 38 male Sprague-Dawley (SD) rats (3-month-old) were randomly selected into young (Y) group, while the rest were raised to 21 months old and randomly divided into elderly control (O), endurance exercise (EN) and resistance exercise (R) groups. After 8 weeks of corresponding exercises training, the gastrocnemius muscles of rats were collected, and the expression of S100B in Schwann cells was detected by immunofluorescence staining. Western blot was used to detect the protein expression levels of agglutinate protein (Agrin), low-density lipoprotein receptor-related protein 4 (Lrp4), muscle- specific kinase protein (MuSK), downstream tyrosine kinase 7 (Dok7), phosphorylated protein kinase B (p-Akt), phosphorylated mammalian target rapamycin (p-mTOR), and phosphorylated forkhead box O1 (p-FoxO1) in rat gastrocnemius muscles. The results showed that, endurance and resistance exercises increased the wet weight ratio of gastrocnemius muscle in the aging rats. The protein expression of S100B in the R group was significantly higher than those in the O and EN groups. Proteins related to NMJ function, including Agrin, Lrp4, MuSK, and Dok7 were significantly decreased in the O group compared with those in the Y group. Resistance exercise up-regulated these four proteins in the aging rats, whereas endurance exercise could not reverse the protein expression levels of Lrp4, MuSK and Dok7. Regarding skeletal muscle-related proteins, the O group showed down-regulated p-Akt, and p-mTOR protein expression levels and up-regulated p-FoxO1 protein expression level, compared to the Y group. Resistance and endurance exercises reversed the changes in p-mTOR and p-FoxO1 protein expression in the aging rats. These findings demonstrate that both exercise modes can enhance NMJ function, increase protein synthesis and reduce the catabolism of skeletal muscle-related proteins in aging rats, with resistance exercise showing a more pronounced effect.
{"title":"[Effects of different exercise modes on neuromuscular junction and metabolism of skeletal muscle-related proteins in aging rats].","authors":"Yan-Hong Su, Yi Cheng, Ting-Ting Li, Yi-Chen Zhang, Ze-Yu DU, Juan Chen, Fu-Qing Wang, Zhong-Hao Liu, Wen-Han Gong","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The present study aimed to explore the effects of different exercise modes on neuromuscular junction (NMJ) and metabolism of skeletal muscle-related proteins in aging rats. Ten from 38 male Sprague-Dawley (SD) rats (3-month-old) were randomly selected into young (Y) group, while the rest were raised to 21 months old and randomly divided into elderly control (O), endurance exercise (EN) and resistance exercise (R) groups. After 8 weeks of corresponding exercises training, the gastrocnemius muscles of rats were collected, and the expression of S100B in Schwann cells was detected by immunofluorescence staining. Western blot was used to detect the protein expression levels of agglutinate protein (Agrin), low-density lipoprotein receptor-related protein 4 (Lrp4), muscle- specific kinase protein (MuSK), downstream tyrosine kinase 7 (Dok7), phosphorylated protein kinase B (p-Akt), phosphorylated mammalian target rapamycin (p-mTOR), and phosphorylated forkhead box O1 (p-FoxO1) in rat gastrocnemius muscles. The results showed that, endurance and resistance exercises increased the wet weight ratio of gastrocnemius muscle in the aging rats. The protein expression of S100B in the R group was significantly higher than those in the O and EN groups. Proteins related to NMJ function, including Agrin, Lrp4, MuSK, and Dok7 were significantly decreased in the O group compared with those in the Y group. Resistance exercise up-regulated these four proteins in the aging rats, whereas endurance exercise could not reverse the protein expression levels of Lrp4, MuSK and Dok7. Regarding skeletal muscle-related proteins, the O group showed down-regulated p-Akt, and p-mTOR protein expression levels and up-regulated p-FoxO1 protein expression level, compared to the Y group. Resistance and endurance exercises reversed the changes in p-mTOR and p-FoxO1 protein expression in the aging rats. These findings demonstrate that both exercise modes can enhance NMJ function, increase protein synthesis and reduce the catabolism of skeletal muscle-related proteins in aging rats, with resistance exercise showing a more pronounced effect.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 3","pages":"376-384"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xian-Feng Guo, Lu Han, Xu-Chao Zhang, Hai-Hang Zhang, Jing Liu
Hemoglobinopathies are one of the most common single-gene genetic disorders globally, with approximately 1% to 5% of the global population carrying the mutated gene for thalassemia. Thalassemia are classified into transfusion-dependent thalassemia and non-transfusion-dependent thalassemia based on the need for blood transfusion. Traditional treatment modalities include blood transfusion, splenectomy, hydroxyurea therapy, and iron chelation therapy, which are now widely used for clinical treatment and constitute the main methods recommended in the β-thalassemia treatment guidelines. However, there are multiple barriers and limitations to the application of these approaches, and there is an urgent need to explore new therapeutic approaches. With the in-depth study of the pathophysiological process of β-thalassemia, a deeper understanding of the pathogenesis of the disease has been gained. It has been demonstrated that the pathogenesis of thalassemia is closely related to ineffective erythropoiesis (IE), imbalance in the ratio of α/β-globin protein chains and iron overload. New therapeutic approaches are emerging for different pathogenic mechanisms. Among them, new drugs for the treatment of IE mainly include activin receptor II trap ligands, Janus kinase 2 inhibitors, pyruvate kinase activators, and glycine transporter protein 1 inhibitors. Correcting the imbalance in the hemoglobin chain is mainly due to emerging technologies such as bone marrow transplantation and gene editing. Measures in reducing iron overload are associated with inhibiting the activity of transferrin and hepcidin. These new approaches provide new ideas and options for the treatment and management of β-thalassemia.
{"title":"[Overview of new approaches to β-thalassemia treatment].","authors":"Xian-Feng Guo, Lu Han, Xu-Chao Zhang, Hai-Hang Zhang, Jing Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Hemoglobinopathies are one of the most common single-gene genetic disorders globally, with approximately 1% to 5% of the global population carrying the mutated gene for thalassemia. Thalassemia are classified into transfusion-dependent thalassemia and non-transfusion-dependent thalassemia based on the need for blood transfusion. Traditional treatment modalities include blood transfusion, splenectomy, hydroxyurea therapy, and iron chelation therapy, which are now widely used for clinical treatment and constitute the main methods recommended in the β-thalassemia treatment guidelines. However, there are multiple barriers and limitations to the application of these approaches, and there is an urgent need to explore new therapeutic approaches. With the in-depth study of the pathophysiological process of β-thalassemia, a deeper understanding of the pathogenesis of the disease has been gained. It has been demonstrated that the pathogenesis of thalassemia is closely related to ineffective erythropoiesis (IE), imbalance in the ratio of α/β-globin protein chains and iron overload. New therapeutic approaches are emerging for different pathogenic mechanisms. Among them, new drugs for the treatment of IE mainly include activin receptor II trap ligands, Janus kinase 2 inhibitors, pyruvate kinase activators, and glycine transporter protein 1 inhibitors. Correcting the imbalance in the hemoglobin chain is mainly due to emerging technologies such as bone marrow transplantation and gene editing. Measures in reducing iron overload are associated with inhibiting the activity of transferrin and hepcidin. These new approaches provide new ideas and options for the treatment and management of β-thalassemia.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 3","pages":"496-506"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}