Myocardial infarction (MI) leads to a massive loss of cardiomyocytes, resulting in pathological cardiac remodeling and heart failure. Promoting cardiomyocyte regeneration is crucial for repairing the damaged heart. It is acknowledged that regenerative cardiomyocyte derives from the existing cardiomyocytes. In recent years, advancements in this field have updated our understanding of cardiomyocyte regeneration in many aspects, including intrinsic cell source and microenvironmental characteristics, extrinsic factors, molecular biology mechanisms, and intervention strategies. Here, we report a consensus by an expert committee on the definition, characteristics, evaluation, research methods, regulatory mechanisms, and intervention measures related to mammalian cardiomyocyte regeneration. The aim is to clarify important unresolved issues in this field and to promote myocardial regeneration research and its clinical translation.
{"title":"[Experts' consensus on mammalian cardiomyocyte regeneration].","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Myocardial infarction (MI) leads to a massive loss of cardiomyocytes, resulting in pathological cardiac remodeling and heart failure. Promoting cardiomyocyte regeneration is crucial for repairing the damaged heart. It is acknowledged that regenerative cardiomyocyte derives from the existing cardiomyocytes. In recent years, advancements in this field have updated our understanding of cardiomyocyte regeneration in many aspects, including intrinsic cell source and microenvironmental characteristics, extrinsic factors, molecular biology mechanisms, and intervention strategies. Here, we report a consensus by an expert committee on the definition, characteristics, evaluation, research methods, regulatory mechanisms, and intervention measures related to mammalian cardiomyocyte regeneration. The aim is to clarify important unresolved issues in this field and to promote myocardial regeneration research and its clinical translation.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 2","pages":"175-214"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A-Guo Li, Ai-Hua Cai, Hao-Ji Li, Qi-Ying Huang, Yong-Sheng Tu
Programmed death-ligand 1 (PD-L1) is important in maintaining central and peripheral immune tolerance in normal tissues, mediating tumor immune escape and keeping the balance between anti- and pro-inflammatory responses. Inflammation plays an important role in inflammatory lung diseases. This article reviews the research progress and potential clinical value of PD-L1 in inflammatory lung diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma and idiopathic pulmonary fibrosis.
{"title":"[Research progress of PD-L1 in inflammatory lung diseases].","authors":"A-Guo Li, Ai-Hua Cai, Hao-Ji Li, Qi-Ying Huang, Yong-Sheng Tu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Programmed death-ligand 1 (PD-L1) is important in maintaining central and peripheral immune tolerance in normal tissues, mediating tumor immune escape and keeping the balance between anti- and pro-inflammatory responses. Inflammation plays an important role in inflammatory lung diseases. This article reviews the research progress and potential clinical value of PD-L1 in inflammatory lung diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma and idiopathic pulmonary fibrosis.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 2","pages":"346-352"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Delayed-onset muscle soreness (DOMS) is a common phenomenon that occurs following a sudden increase in exercise intensity or unfamiliar exercise, significantly affecting athletic performance and efficacy in athletes and fitness individuals. DOMS is characterized by allodynia and hyperalgesia, and their mechanisms remain unclear. Recent studies have reported that neurotrophic factors, such as nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF), are involved in the development and maintenance of DOMS. This article provides a review of the research progress on the signaling pathways related to the involvement of NGF and GDNF in DOMS, hoping to provide novel insights into the mechanisms underlying allodynia and hyperalgesia in DOMS, as well as potential targeted treatment.
{"title":"[Neurotrophin-associated mechanisms of delayed-onset muscle soreness: research progress and perspective].","authors":"Yun-Xiao Liu, Jing Lei, Hao-Jun You","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Delayed-onset muscle soreness (DOMS) is a common phenomenon that occurs following a sudden increase in exercise intensity or unfamiliar exercise, significantly affecting athletic performance and efficacy in athletes and fitness individuals. DOMS is characterized by allodynia and hyperalgesia, and their mechanisms remain unclear. Recent studies have reported that neurotrophic factors, such as nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF), are involved in the development and maintenance of DOMS. This article provides a review of the research progress on the signaling pathways related to the involvement of NGF and GDNF in DOMS, hoping to provide novel insights into the mechanisms underlying allodynia and hyperalgesia in DOMS, as well as potential targeted treatment.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 2","pages":"301-308"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheng-Yun Wu, Ke-Ru Cheng, Yan-Yun Zhou, Yin-Fang Wang
This study aimed to investigate the effects of microtubule associated tumor suppressor 1 (MTUS1) on hemeoxygenase 1 (HMOX1) expression and hemin-induced apoptosis of vascular endothelial cells and its regulatory mechanism. RNA sequencing, RT-qPCR and Western blot were used to assess altered genes of hemin binding proteins, the expression of cAMP response element-binding protein (CREB) and nuclear respiratory factor 2 (NRF2), hemin-induced HMOX1 expression in MTUS1 knockdown human umbilical vein endothelial cells (HUVEC), and the effect of overexpression of CREB and NRF2 on HMOX1 expression in MTUS1 knockdown 293T cells. The effect of MTUS1 or HMOX1 knockdown on hemin-induced apoptosis in HUVEC, and the overexpression of NRF2 on hemin-induced apoptosis in MTUS1 knockdown 293T cells were assayed with CCK8 and Western blot. The results showed that MTUS1 was knocked down significantly in HUVEC by siRNA (P < 0.01), accompanied by decreased HMOX1 expression (P < 0.01). The increased HMOX1 expression induced by hemin was also inhibited by MTUS1 knockdown (P < 0.01). And the apoptosis of HUVEC induced by hemin was amplified by MTUS1 or HMOX1 knockdown (P < 0.01). Moreover the expression of CREB and NRF2 were both inhibited by MTUS1 knockdown in HUVEC (P < 0.01). The decreased HMOX1 regulated by MTUS1 knockdown could be rescued partly by overexpression of NRF2 (P < 0.01), however, not by overexpression of CREB. And the MTUS1 knockdown mediated decreased 293T cells viability induced by hemin could be partly rescued by NRF2 overexpression (P < 0.01). These results suggest that MTUS1 can inhibit hemin-induced apoptosis of HUVEC, and the mechanism maybe related to MTUS1/NRF2/HMOX1 pathway.
{"title":"[Microtubule-associated tumor suppressor 1 inhibits hemin-induced apoptosis of vascular endothelial cells via hemeoxygenase 1].","authors":"Sheng-Yun Wu, Ke-Ru Cheng, Yan-Yun Zhou, Yin-Fang Wang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This study aimed to investigate the effects of microtubule associated tumor suppressor 1 (MTUS1) on hemeoxygenase 1 (HMOX1) expression and hemin-induced apoptosis of vascular endothelial cells and its regulatory mechanism. RNA sequencing, RT-qPCR and Western blot were used to assess altered genes of hemin binding proteins, the expression of cAMP response element-binding protein (CREB) and nuclear respiratory factor 2 (NRF2), hemin-induced HMOX1 expression in MTUS1 knockdown human umbilical vein endothelial cells (HUVEC), and the effect of overexpression of CREB and NRF2 on HMOX1 expression in MTUS1 knockdown 293T cells. The effect of MTUS1 or HMOX1 knockdown on hemin-induced apoptosis in HUVEC, and the overexpression of NRF2 on hemin-induced apoptosis in MTUS1 knockdown 293T cells were assayed with CCK8 and Western blot. The results showed that MTUS1 was knocked down significantly in HUVEC by siRNA (P < 0.01), accompanied by decreased HMOX1 expression (P < 0.01). The increased HMOX1 expression induced by hemin was also inhibited by MTUS1 knockdown (P < 0.01). And the apoptosis of HUVEC induced by hemin was amplified by MTUS1 or HMOX1 knockdown (P < 0.01). Moreover the expression of CREB and NRF2 were both inhibited by MTUS1 knockdown in HUVEC (P < 0.01). The decreased HMOX1 regulated by MTUS1 knockdown could be rescued partly by overexpression of NRF2 (P < 0.01), however, not by overexpression of CREB. And the MTUS1 knockdown mediated decreased 293T cells viability induced by hemin could be partly rescued by NRF2 overexpression (P < 0.01). These results suggest that MTUS1 can inhibit hemin-induced apoptosis of HUVEC, and the mechanism maybe related to MTUS1/NRF2/HMOX1 pathway.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 2","pages":"215-223"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhi-Qiang Lin, Yao Yao, Yu-Fei Zhang, Xiao-Yan Zhang, You-Fei Guan
Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E2 (PGE2), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE2 are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE2 and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE2 and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE2-EP receptors system in treating CLD with various etiologies.
{"title":"Role of prostaglandin E<sub>2</sub> and its receptors in chronic liver disease.","authors":"Zhi-Qiang Lin, Yao Yao, Yu-Fei Zhang, Xiao-Yan Zhang, You-Fei Guan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E<sub>2</sub> (PGE<sub>2</sub>), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE<sub>2</sub> are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE<sub>2</sub> and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE<sub>2</sub> and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE<sub>2</sub>-EP receptors system in treating CLD with various etiologies.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 2","pages":"329-340"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to investigate the effect of exosomes derived from bone marrow mesenchymal stem cells (BMSCs-EXO) on lung ischemia-reperfusion injury (IRI) in rats and to explore the role of miR-335. The model of rat lung IRI was established by clipping the hilum of left lung for 60 min and opening for 180 min. Forty Sprague-Dawley rats were randomly divided into sham group, IRI group, IRI+PBS group, IRI+EXO group, and IRI+miR-335 inhibitor EXO (IRI+inhibitor-EXO) group (n = 8). Rats in the sham group underwent thoracotomies without IRI. Rats in the IRI group were used to establish IRI model without any additional treatment. In the IRI+PBS, IRI+EXO, and IRI+inhibitor-EXO groups, the rats were used to establish IRI model and given PBS, EXO from BMSCs without any treatment, and EXO from BMSCs with miR-335 inhibitor treatment before reperfusion, respectively. Blood gases were analyzed during the experiment. Lung tissue wet/dry ratio (W/D), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), myeloperoxidase (MPO), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured at the end of reperfusion. Mitochondria were observed by electron microscopy and the Flameng scores were counted. Lung histopathology and apoptosis (TUNEL staining) were observed by light microscopy, and the lung injury scores (LIS) and apoptosis index (AI) were detected. The miR-335 expression was detected by RT-qPCR, and the expression of caspase-3, cleaved-caspase-3, caspase-9, cleaved-caspase-9, and NF-κB proteins were detected by Western blot at the end of reperfusion. The results showed that compared with the sham group, the oxygenation index, pH, and base excess (BE) were significantly lower in the IRI group and IRI+PBS group after reperfusion, whereas those indices were significantly higher in the IRI+EXO group than those in the IRI+PBS group (P < 0.05). Compared with the sham group, there were significant increases in W/D, IL-1β, TNF-α, MPO, MDA, LIS, AI, Flameng score, caspase-3, cleaved-caspase-3, caspase-9, and cleaved-caspase-9, however significant decreases in the SOD, miR-335 and NF-κB in the IRI group (P < 0.05). These indices in the IRI and IRI+PBS groups showed no significant differences. Compared with the IRI+PBS group, there were significant decreases in W/D, IL-1β, TNF-α, MPO, MDA, LIS, AI, Flameng score, caspase-3, cleaved-caspase-3, caspase-9, and cleaved-caspase-9, however significant increases in the SOD, miR-335 and NF-κB in the IRI+EXO group (P < 0.05). While, the changes of the above mentioned indices were reversed in the IRI+inhibitor-EXO group compared with IRI+EXO group, which were still better than those in the IRI+PBS group (P < 0.05). The results suggest that BMSCs-EXO could attenuate lung IRI in rats, activate NF-κB pathway, and maintain mitochondrial stability by up-regulating miR-335.
{"title":"[Exosomes derived from bone marrow mesenchymal stem cells regulate NF-κB pathway and reduce lung ischemia-reperfusion injury in rats by miR-335].","authors":"Bing Zhang, Chao Meng, Ji-Yu Kang, Hua-Cheng Zhou","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This study aimed to investigate the effect of exosomes derived from bone marrow mesenchymal stem cells (BMSCs-EXO) on lung ischemia-reperfusion injury (IRI) in rats and to explore the role of miR-335. The model of rat lung IRI was established by clipping the hilum of left lung for 60 min and opening for 180 min. Forty Sprague-Dawley rats were randomly divided into sham group, IRI group, IRI+PBS group, IRI+EXO group, and IRI+miR-335 inhibitor EXO (IRI+inhibitor-EXO) group (n = 8). Rats in the sham group underwent thoracotomies without IRI. Rats in the IRI group were used to establish IRI model without any additional treatment. In the IRI+PBS, IRI+EXO, and IRI+inhibitor-EXO groups, the rats were used to establish IRI model and given PBS, EXO from BMSCs without any treatment, and EXO from BMSCs with miR-335 inhibitor treatment before reperfusion, respectively. Blood gases were analyzed during the experiment. Lung tissue wet/dry ratio (W/D), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), myeloperoxidase (MPO), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured at the end of reperfusion. Mitochondria were observed by electron microscopy and the Flameng scores were counted. Lung histopathology and apoptosis (TUNEL staining) were observed by light microscopy, and the lung injury scores (LIS) and apoptosis index (AI) were detected. The miR-335 expression was detected by RT-qPCR, and the expression of caspase-3, cleaved-caspase-3, caspase-9, cleaved-caspase-9, and NF-κB proteins were detected by Western blot at the end of reperfusion. The results showed that compared with the sham group, the oxygenation index, pH, and base excess (BE) were significantly lower in the IRI group and IRI+PBS group after reperfusion, whereas those indices were significantly higher in the IRI+EXO group than those in the IRI+PBS group (P < 0.05). Compared with the sham group, there were significant increases in W/D, IL-1β, TNF-α, MPO, MDA, LIS, AI, Flameng score, caspase-3, cleaved-caspase-3, caspase-9, and cleaved-caspase-9, however significant decreases in the SOD, miR-335 and NF-κB in the IRI group (P < 0.05). These indices in the IRI and IRI+PBS groups showed no significant differences. Compared with the IRI+PBS group, there were significant decreases in W/D, IL-1β, TNF-α, MPO, MDA, LIS, AI, Flameng score, caspase-3, cleaved-caspase-3, caspase-9, and cleaved-caspase-9, however significant increases in the SOD, miR-335 and NF-κB in the IRI+EXO group (P < 0.05). While, the changes of the above mentioned indices were reversed in the IRI+inhibitor-EXO group compared with IRI+EXO group, which were still better than those in the IRI+PBS group (P < 0.05). The results suggest that BMSCs-EXO could attenuate lung IRI in rats, activate NF-κB pathway, and maintain mitochondrial stability by up-regulating miR-335.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 2","pages":"247-256"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study aims to investigate the production of ketone body in the liver of mice after 6 weeks of high-intensity interval training (HIIT) intervention and explore the possible mechanisms. Male C57BL/6J mice (7-week-old) were randomly divided into control and HIIT groups. The control group did not engage in exercise, while the HIIT group underwent a 6-week HIIT (10° slope treadmill exercise). Changes in weight and body composition were recorded, and blood ketone body levels were measured before, immediately after, and 1 h after each HIIT exercise. After 6-week HIIT, the levels of free fatty acids in the liver and serum were detected using reagent kits, and expression levels of regulatory factors and key enzymes of ketone body production in the mouse liver were detected by Western blot and qPCR. The results showed that, the blood ketone body levels in the HIIT group significantly increased immediately after a single HIIT and 1 h after HIIT, compared with that before HIIT. The body weight of the control group gradually increased within 6 weeks, while the HIIT group mice did not show significant weight gain. After 6-week HIIT, compared with the control group, the HIIT group showed decreased body fat ratio, increased lean body weight ratio, and increased free fatty acid levels in liver and serum. Liver carnitine palmitoyl transferase-I (CPT-I), peroxisome proliferator activated receptor α (PPARα), and fibroblast growth factor 21 (FGF21) protein expression levels were up-regulated, whereas mammalian target of rapamycin complex 1 (mTORC1) protein expression level was significantly down-regulated in the HIIT group, compared with those in the control group. These results suggest that HIIT induces hepatic ketone body production through altering mTORC1, PPARα and FGF21 expression in mice.
{"title":"[High-intensity interval training (HIIT) induces hepatic ketone body production possibly through altering expression of mTORC1, PPARα and FGF21 in mice].","authors":"Jun Liu, Shu-Jie Lou","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The present study aims to investigate the production of ketone body in the liver of mice after 6 weeks of high-intensity interval training (HIIT) intervention and explore the possible mechanisms. Male C57BL/6J mice (7-week-old) were randomly divided into control and HIIT groups. The control group did not engage in exercise, while the HIIT group underwent a 6-week HIIT (10° slope treadmill exercise). Changes in weight and body composition were recorded, and blood ketone body levels were measured before, immediately after, and 1 h after each HIIT exercise. After 6-week HIIT, the levels of free fatty acids in the liver and serum were detected using reagent kits, and expression levels of regulatory factors and key enzymes of ketone body production in the mouse liver were detected by Western blot and qPCR. The results showed that, the blood ketone body levels in the HIIT group significantly increased immediately after a single HIIT and 1 h after HIIT, compared with that before HIIT. The body weight of the control group gradually increased within 6 weeks, while the HIIT group mice did not show significant weight gain. After 6-week HIIT, compared with the control group, the HIIT group showed decreased body fat ratio, increased lean body weight ratio, and increased free fatty acid levels in liver and serum. Liver carnitine palmitoyl transferase-I (CPT-I), peroxisome proliferator activated receptor α (PPARα), and fibroblast growth factor 21 (FGF21) protein expression levels were up-regulated, whereas mammalian target of rapamycin complex 1 (mTORC1) protein expression level was significantly down-regulated in the HIIT group, compared with those in the control group. These results suggest that HIIT induces hepatic ketone body production through altering mTORC1, PPARα and FGF21 expression in mice.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 2","pages":"224-232"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140848257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tian Lan, Zong-Cheng Guo, Hao-Ran Gu, Lu Qin, En-Peng He
Irisin, a peptide produced during exercise, is believed to play a role in regulating energy levels within the body. Moreover, Irisin has the ability to traverse the blood-brain barrier and engage in various pathophysiological processes within the central nervous system. An increasing body of research identifies Irisin as a significant therapeutic target for neurodegenerative diseases, indicating a strong link between Irisin and the development of cognitive impairments. In this paper, we present a concise review of effects of different types of exercise on Irisin production, and the mechanisms underlying the Irisin's intervention in various diseases including metabolic diseases, kidney injury and depression. Following this, we delve into an in-depth exploration of its role in modulating cognitive dysfunction among patients with Alzheimer's disease (AD), focusing on recent advancements in three critical areas: neuroinflammation, mitochondrial dysfunction, and protein misfolding. Finally, we put forth 3 hypotheses: (1) exercise-induced fibronectin type III domain containing protein 5 (FNDC5) stimulation and subsequent Irisin cleavage may be associated with the stress response in energy metabolism; (2) Irisin, as a myokine, likely plays a role in mitochondrial repair mechanisms to ameliorate cognitive impairment in AD patients; (3) Irisin is a homeostatic factor that maintains energy homeostasis and is closely related to the dynamic stability of the body's internal environment.
{"title":"Research progress on the regulatory mechanisms of Irisin on cognitive dysfunction in patients with Alzheimer's disease and the interventional role of Irisin in associated diseases.","authors":"Tian Lan, Zong-Cheng Guo, Hao-Ran Gu, Lu Qin, En-Peng He","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Irisin, a peptide produced during exercise, is believed to play a role in regulating energy levels within the body. Moreover, Irisin has the ability to traverse the blood-brain barrier and engage in various pathophysiological processes within the central nervous system. An increasing body of research identifies Irisin as a significant therapeutic target for neurodegenerative diseases, indicating a strong link between Irisin and the development of cognitive impairments. In this paper, we present a concise review of effects of different types of exercise on Irisin production, and the mechanisms underlying the Irisin's intervention in various diseases including metabolic diseases, kidney injury and depression. Following this, we delve into an in-depth exploration of its role in modulating cognitive dysfunction among patients with Alzheimer's disease (AD), focusing on recent advancements in three critical areas: neuroinflammation, mitochondrial dysfunction, and protein misfolding. Finally, we put forth 3 hypotheses: (1) exercise-induced fibronectin type III domain containing protein 5 (FNDC5) stimulation and subsequent Irisin cleavage may be associated with the stress response in energy metabolism; (2) Irisin, as a myokine, likely plays a role in mitochondrial repair mechanisms to ameliorate cognitive impairment in AD patients; (3) Irisin is a homeostatic factor that maintains energy homeostasis and is closely related to the dynamic stability of the body's internal environment.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 2","pages":"266-288"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liver cancer is a common tumor of digestive system. Hepatocellular carcinoma (HCC) is a common type of liver cancer, which has a high degree of malignancy and ranks among the top causes of cancer-related death in the world. Metabolic reprogramming is considered to be an important marker of carcinogenesis. Glucose metabolism is one of the main ways for cells to produce energy. Glycolysis, as the basic reaction of glucose metabolism, plays an important role in cell metabolism. Therefore, the regulation of glycolysis is of great significance to the proliferation and evolution of tumors. More and more non-coding RNAs (ncRNA) have been proved to play an important role in the regulation of tumor glycolysis. This article reviews the role of ncRNA in the regulation of HCC glycolysis and its related mechanisms. At the same time, the prospect of targeted therapy for HCC based on the related mechanisms of glycolysis regulation is put forward.
{"title":"[Research progress of non-coding RNA involved in glycolysis regulation of hepatocellular carcinoma].","authors":"Xiao-Feng Hu, Qing Zhang, Mei-Lv Liang, Qing-Niao Zhou, Rui-Qiang Zhao, Zu-Kang Gong, Wen-Zhen Lin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Liver cancer is a common tumor of digestive system. Hepatocellular carcinoma (HCC) is a common type of liver cancer, which has a high degree of malignancy and ranks among the top causes of cancer-related death in the world. Metabolic reprogramming is considered to be an important marker of carcinogenesis. Glucose metabolism is one of the main ways for cells to produce energy. Glycolysis, as the basic reaction of glucose metabolism, plays an important role in cell metabolism. Therefore, the regulation of glycolysis is of great significance to the proliferation and evolution of tumors. More and more non-coding RNAs (ncRNA) have been proved to play an important role in the regulation of tumor glycolysis. This article reviews the role of ncRNA in the regulation of HCC glycolysis and its related mechanisms. At the same time, the prospect of targeted therapy for HCC based on the related mechanisms of glycolysis regulation is put forward.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 2","pages":"319-328"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Pang, Li-Xia Zhang, An-Na Bai, Wen Yang, Li-Xia Hao
There are three main classes of actin nucleation factors: Arp2/3 complexes, Spire and Formin. Spire assembles microfilaments by nucleating stable longitudinal tetramers and binding actin to the growing end of the microfilament. As early as 1999, Wellington et al. identified Spire as an actin nucleating agent, however, over the years, most studies have focused on Arp2/3 and Formin proteins; there has been relatively less research on Spire as a member of the actin nucleating factors. Recent studies have shown that Spire is involved in the vesicular transport through the synthesis of actin and plays an important role in neural development. In this paper, we reviewed the structure, expression and function of Spire, and its association with disease in order to identify meaningful potential directions for studies on Spire.
{"title":"[Advances in the study of the actin nucleation factor Spire].","authors":"Tao Pang, Li-Xia Zhang, An-Na Bai, Wen Yang, Li-Xia Hao","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>There are three main classes of actin nucleation factors: Arp2/3 complexes, Spire and Formin. Spire assembles microfilaments by nucleating stable longitudinal tetramers and binding actin to the growing end of the microfilament. As early as 1999, Wellington et al. identified Spire as an actin nucleating agent, however, over the years, most studies have focused on Arp2/3 and Formin proteins; there has been relatively less research on Spire as a member of the actin nucleating factors. Recent studies have shown that Spire is involved in the vesicular transport through the synthesis of actin and plays an important role in neural development. In this paper, we reviewed the structure, expression and function of Spire, and its association with disease in order to identify meaningful potential directions for studies on Spire.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 2","pages":"341-345"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140846856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}