Pub Date : 2025-10-25DOI: 10.13294/j.aps.2025.0076
Zi-Jiang Yang, Dan Hu, Xiu-Juan Zhang
Transcription factor PU.1, as a core member of the ETS family, plays a pivotal role in the multi-lineage differentiation of hematopoietic stem cells, particularly in the regulation of erythroid differentiation. PU.1 orchestrates the process of hematopoietic stem cell differentiation towards erythroid cells by modulating the transcription of lineage-determining factors and interacting with other key transcription factors in a fine-tuned manner. PU.1 plays an irreplaceable role in the development and function of red blood cells, with its abnormal expression closely related to the occurrence and progression of various blood diseases, including leukemia, myelodysplastic syndromes, and various types of anemia. This article comprehensively analyzes the functional roles and molecular mechanisms of PU.1 in various stages of erythroid differentiation, as well as its potential roles in related blood diseases. This review not only deepens our understanding of the mechanism by which PU.1 regulates erythroid differentiation, but also provides theoretical grounds for blood disease therapies based on PU.1.
{"title":"[Molecular mechanism of transcription factor PU.1 regulating erythroid differentiation and its role in hematological diseases].","authors":"Zi-Jiang Yang, Dan Hu, Xiu-Juan Zhang","doi":"10.13294/j.aps.2025.0076","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0076","url":null,"abstract":"<p><p>Transcription factor PU.1, as a core member of the ETS family, plays a pivotal role in the multi-lineage differentiation of hematopoietic stem cells, particularly in the regulation of erythroid differentiation. PU.1 orchestrates the process of hematopoietic stem cell differentiation towards erythroid cells by modulating the transcription of lineage-determining factors and interacting with other key transcription factors in a fine-tuned manner. PU.1 plays an irreplaceable role in the development and function of red blood cells, with its abnormal expression closely related to the occurrence and progression of various blood diseases, including leukemia, myelodysplastic syndromes, and various types of anemia. This article comprehensively analyzes the functional roles and molecular mechanisms of PU.1 in various stages of erythroid differentiation, as well as its potential roles in related blood diseases. This review not only deepens our understanding of the mechanism by which PU.1 regulates erythroid differentiation, but also provides theoretical grounds for blood disease therapies based on PU.1.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 5","pages":"855-866"},"PeriodicalIF":0.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-25DOI: 10.13294/j.aps.2025.0042
Ning Wang, Jing-Qiu Feng, Ying Xie, Meng-Can Sun, Qi Wang, Zhe Wang, Lu Gao
Preeclampsia (PE) is a severe gestational disorder characterized by hypertension and proteinuria, with a subset of cases exhibiting an immune-driven phenotype marked by placental overexpression of proinflammatory cytokines and chronic inflammatory damage, profoundly impacting fetal development. To elucidate the pathophysiology of this PE subtype, we established an inflammation-driven PE mouse model via lipopolysaccharide (LPS) intraperitoneal injection, systematically evaluating histopathological changes in maternal heart, liver, lung, kidney, and placenta, and integrating transcriptomic profiling to uncover molecular mechanisms. LPS administration robustly induced maternal hypertension and proteinuria, hallmarks of PE, without significantly altering organ or fetal weights. Histological analyses revealed pronounced inflammatory damage in the maternal lung, kidney, and placenta, with the lung exhibiting the most severe pathology, characterized by inflammatory cell infiltration, alveolar wall thickening, and interstitial edema-challenging the conventional focus on placental and renal primacy in PE. Placental labyrinth and junctional zones displayed extensive structural disruption and necrosis, indicating functional impairment. Transcriptomic analysis identified 27 inflammation-related genes consistently upregulated across tissues, with protein-protein interaction networks pinpointing Il1β, Il6, Ccl5, Ccl2, Cxcl10, Tlr2, and Icam1 as hub genes. Quantitative PCR validation confirmed Tlr2 as a central regulator, evidenced by significant upregulation of Tlr2 in lung, kidney, and placenta of LPS-induced PE mice, while Cxcl10 exhibited placenta-specific upregulation, suggesting a synergistic inflammatory axis in placental pathology. These findings highlight the lung as a critical, yet underappreciated, target in inflammation-driven PE, reframe the multi-organ inflammatory landscape of the disease, and nominate Tlr2 and Cxcl10 as potential diagnostic biomarkers and therapeutic targets, offering new avenues for precision intervention in PE.
{"title":"[Multi-organ inflammatory phenotypes and transcriptomic characterization in an inflammation-driven mouse model of preeclampsia induced by LPS].","authors":"Ning Wang, Jing-Qiu Feng, Ying Xie, Meng-Can Sun, Qi Wang, Zhe Wang, Lu Gao","doi":"10.13294/j.aps.2025.0042","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0042","url":null,"abstract":"<p><p>Preeclampsia (PE) is a severe gestational disorder characterized by hypertension and proteinuria, with a subset of cases exhibiting an immune-driven phenotype marked by placental overexpression of proinflammatory cytokines and chronic inflammatory damage, profoundly impacting fetal development. To elucidate the pathophysiology of this PE subtype, we established an inflammation-driven PE mouse model via lipopolysaccharide (LPS) intraperitoneal injection, systematically evaluating histopathological changes in maternal heart, liver, lung, kidney, and placenta, and integrating transcriptomic profiling to uncover molecular mechanisms. LPS administration robustly induced maternal hypertension and proteinuria, hallmarks of PE, without significantly altering organ or fetal weights. Histological analyses revealed pronounced inflammatory damage in the maternal lung, kidney, and placenta, with the lung exhibiting the most severe pathology, characterized by inflammatory cell infiltration, alveolar wall thickening, and interstitial edema-challenging the conventional focus on placental and renal primacy in PE. Placental labyrinth and junctional zones displayed extensive structural disruption and necrosis, indicating functional impairment. Transcriptomic analysis identified 27 inflammation-related genes consistently upregulated across tissues, with protein-protein interaction networks pinpointing <i>Il1β</i>, <i>Il6</i>, <i>Ccl5</i>, <i>Ccl2</i>, <i>Cxcl10</i>, <i>Tlr2</i>, and <i>Icam1</i> as hub genes. Quantitative PCR validation confirmed <i>Tlr2</i> as a central regulator, evidenced by significant upregulation of <i>Tlr2</i> in lung, kidney, and placenta of LPS-induced PE mice, while <i>Cxcl10</i> exhibited placenta-specific upregulation, suggesting a synergistic inflammatory axis in placental pathology. These findings highlight the lung as a critical, yet underappreciated, target in inflammation-driven PE, reframe the multi-organ inflammatory landscape of the disease, and nominate <i>Tlr2</i> and <i>Cxcl10</i> as potential diagnostic biomarkers and therapeutic targets, offering new avenues for precision intervention in PE.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 5","pages":"775-791"},"PeriodicalIF":0.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A primary hallmark of pathological cardiac hypertrophy is excess protein synthesis due to enhanced translational activity. However, regulatory mechanisms at the translational level under cardiac stress remain poorly understood. Here we examined the translational regulations in a mouse cardiac hypertrophy model induced by transaortic constriction (TAC) and explored the conservative networks versus the translatome pattern in human dilated cardiomyopathy (DCM). The results showed that the heart weight to body weight ratio was significantly elevated, and the ejection fraction and fractional shortening significantly decreased 8 weeks after TAC. Puromycin incorporation assay showed that TAC significantly increased protein synthesis rate in the left ventricle. RNA-seq revealed 1,632 differentially expressed genes showing functional enrichment in pathways including extracellular matrix remodeling, metabolic processes, and signaling cascades associated with pathological cardiomyocyte growth. When combined with ribosome profiling analysis, we revealed that translation efficiency (TE) of 1,495 genes was enhanced, while the TE of 933 genes was inhibited following TAC. In DCM patients, 1,354 genes were upregulated versus 1,213 genes were downregulated at the translation level. Although the majority of the genes were not shared between mouse and human, we identified 93 genes, including Nos3, Kcnj8, Adcy4, Itpr1, Fasn, Scd1, etc., with highly conserved translational regulations. These genes were remarkably associated with myocardial function, signal transduction, and energy metabolism, particularly related to cGMP-PKG signaling and fatty acid metabolism. Motif analysis revealed enriched regulatory elements in the 5' untranslated regions (5'UTRs) of transcripts with differential TE, which exhibited strong cross-species sequence conservation. Our study revealed novel regulatory mechanisms at the translational level in cardiac hypertrophy and identified conserved translation-sensitive targets with potential applications to treat cardiac hypertrophy and heart failure in the clinic.
{"title":"Conserved translational control in cardiac hypertrophy revealed by ribosome profiling.","authors":"Bao-Sen Wang, Jian Lyu, Hong-Chao Zhan, Yu Fang, Qiu-Xiao Guo, Jun-Mei Wang, Jia-Jie Li, An-Qi Xu, Xiao Ma, Ning-Ning Guo, Hong Li, Zhi-Hua Wang","doi":"10.13294/j.aps.2025.0077","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0077","url":null,"abstract":"<p><p>A primary hallmark of pathological cardiac hypertrophy is excess protein synthesis due to enhanced translational activity. However, regulatory mechanisms at the translational level under cardiac stress remain poorly understood. Here we examined the translational regulations in a mouse cardiac hypertrophy model induced by transaortic constriction (TAC) and explored the conservative networks <i>versus</i> the translatome pattern in human dilated cardiomyopathy (DCM). The results showed that the heart weight to body weight ratio was significantly elevated, and the ejection fraction and fractional shortening significantly decreased 8 weeks after TAC. Puromycin incorporation assay showed that TAC significantly increased protein synthesis rate in the left ventricle. RNA-seq revealed 1,632 differentially expressed genes showing functional enrichment in pathways including extracellular matrix remodeling, metabolic processes, and signaling cascades associated with pathological cardiomyocyte growth. When combined with ribosome profiling analysis, we revealed that translation efficiency (TE) of 1,495 genes was enhanced, while the TE of 933 genes was inhibited following TAC. In DCM patients, 1,354 genes were upregulated <i>versus</i> 1,213 genes were downregulated at the translation level. Although the majority of the genes were not shared between mouse and human, we identified 93 genes, including <i>Nos3</i>, <i>Kcnj8</i>, <i>Adcy4</i>, <i>Itpr1</i>, <i>Fasn</i>, <i>Scd1</i>, etc., with highly conserved translational regulations. These genes were remarkably associated with myocardial function, signal transduction, and energy metabolism, particularly related to cGMP-PKG signaling and fatty acid metabolism. Motif analysis revealed enriched regulatory elements in the 5' untranslated regions (5'UTRs) of transcripts with differential TE, which exhibited strong cross-species sequence conservation. Our study revealed novel regulatory mechanisms at the translational level in cardiac hypertrophy and identified conserved translation-sensitive targets with potential applications to treat cardiac hypertrophy and heart failure in the clinic.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 5","pages":"757-774"},"PeriodicalIF":0.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-25DOI: 10.13294/j.aps.2025.0079
Hao-Dong Tian, Yu-Kun Lu, Li Huang, Hao-Wei Liu, Hang-Lin Yu, Jin-Long Wu, Han-Sen Li, Li Peng
The increasing prevalence of aging has led to a rising incidence of comorbidity of sarcopenia and obesity, posing significant burdens on socioeconomic and public health. Current research has systematically explored the pathogenesis of each condition; however, the mechanisms underlying their comorbidity remain unclear. This study reviews the current literature on sarcopenia and obesity in the aging population, focusing on their shared biological mechanisms, which include loss of autophagy, abnormal macrophage function, mitochondrial dysfunction, and reduced sex hormone secretion. It also identifies metabolic mechanisms such as insulin resistance, vitamin D metabolism abnormalities, dysregulation of iron metabolism, decreased levels of nicotinamide adenine dinucleotide, and gut microbiota imbalances. Additionally, this study also explores the important role of genetic factors, such as alleles and microRNAs, in the co-occurrence of sarcopenia and obesity. A better understanding of these mechanisms is vital for developing clinical interventions and preventive strategies.
{"title":"[Research progress on the comorbidity mechanism of sarcopenia and obesity in the aging population].","authors":"Hao-Dong Tian, Yu-Kun Lu, Li Huang, Hao-Wei Liu, Hang-Lin Yu, Jin-Long Wu, Han-Sen Li, Li Peng","doi":"10.13294/j.aps.2025.0079","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0079","url":null,"abstract":"<p><p>The increasing prevalence of aging has led to a rising incidence of comorbidity of sarcopenia and obesity, posing significant burdens on socioeconomic and public health. Current research has systematically explored the pathogenesis of each condition; however, the mechanisms underlying their comorbidity remain unclear. This study reviews the current literature on sarcopenia and obesity in the aging population, focusing on their shared biological mechanisms, which include loss of autophagy, abnormal macrophage function, mitochondrial dysfunction, and reduced sex hormone secretion. It also identifies metabolic mechanisms such as insulin resistance, vitamin D metabolism abnormalities, dysregulation of iron metabolism, decreased levels of nicotinamide adenine dinucleotide, and gut microbiota imbalances. Additionally, this study also explores the important role of genetic factors, such as alleles and microRNAs, in the co-occurrence of sarcopenia and obesity. A better understanding of these mechanisms is vital for developing clinical interventions and preventive strategies.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 5","pages":"905-924"},"PeriodicalIF":0.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selenoproteins, as the active form of selenium, play an important role in various physiological and pathological processes, such as anti-oxidation, anti-tumor, immune response, metabolic regulation, reproduction and aging. Although the expression level of selenoproteins in adipose tissue is significantly influenced by dietary selenium intake, it is closely related to the homeostasis of adipose tissue. In this review, we summarized the role of selenoproteins in the physiological function of adipose tissue and the pathogenesis of obesity in recent years, in order to provide a rationale for developing potential therapeutic agents for the treatment of obesity and related metabolic diseases.
{"title":"[The role of selenoproteins in adipose tissue and obesity].","authors":"Yun-Fei Zhao, Yu-Hang Sun, Tai-Hua Jin, Yue Liu, Yang-Di Chen, Wan Xu, Qian Gao","doi":"10.13294/j.aps.2025.0082","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0082","url":null,"abstract":"<p><p>Selenoproteins, as the active form of selenium, play an important role in various physiological and pathological processes, such as anti-oxidation, anti-tumor, immune response, metabolic regulation, reproduction and aging. Although the expression level of selenoproteins in adipose tissue is significantly influenced by dietary selenium intake, it is closely related to the homeostasis of adipose tissue. In this review, we summarized the role of selenoproteins in the physiological function of adipose tissue and the pathogenesis of obesity in recent years, in order to provide a rationale for developing potential therapeutic agents for the treatment of obesity and related metabolic diseases.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 5","pages":"939-955"},"PeriodicalIF":0.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-25DOI: 10.13294/j.aps.2025.0038
Shu-Yuan Wang, Jun-Peng Xu, Yuan Cheng, Man Huang, Si-An Chen, Zhuo-Lun Li, Qi-Hao Zhang, Yong-Yue Dai, Li-Yi You, Wan-Tie Wang
The aim of this study was to investigate the contribution of lung zinc ions to pathogenesis of lung ischemia/reperfusion (I/R) injury in rats. Male Sprague Dawley (SD) rats were randomly divided into control group, lung I/R group (I/R group), lung I/R + low-dose zinc chloride group (LZnCl2+I/R group), lung I/R + high-dose ZnCl2 group (HZnCl2+I/R group), lung I/R + medium-dose ZnCl2 group (MZnCl2+I/R group) and TPEN+MZnCl2+I/R group (n = 8 in each group). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of zinc ions in lung tissue. The degree of lung tissue injury was analyzed by observing HE staining, alveolar damage index, lung wet/dry weight ratio and lung tissue gross changes. TUNEL staining was used to detect cellular apoptosis in lung tissue. Western blot and RT-qPCR were used to determine the protein expression levels of caspase-3 and ZIP8, as well as the mRNA expression levels of zinc transporters (ZIP, ZNT) in lung tissue. The mitochondrial membrane potential (MMP) of lung tissue was detected by JC-1 MMP detection kit. The results showed that, compared with the control group, the lung tissue damage, lung wet/dry weight ratio and alveolar damage index were significantly increased in the I/R group. And in the lung tissue, the concentration of Zn2+ was markedly decreased, while the cleaved caspase-3/caspase-3 ratio and apoptotic levels were significantly increased. The expression levels of ZIP8 mRNA and protein were down-regulated significantly, while the mRNA expression of other zinc transporters remained unchanged. There was also a significant decrease in MMP. Compared with the I/R group, both MZnCl2+I/R group and HZnCl2+I/R group exhibited significantly reduced lung tissue injury, lung wet/dry weight ratio and alveolar damage index, increased Zn2+ concentration, decreased ratio of cleaved caspase-3/caspase-3 and apoptosis, and up-regulated expression levels of ZIP8 mRNA and protein. In addition, the MMP was significantly increased in the lung tissue. Zn2+ chelating agent TPEN reversed the above-mentioned protective effects of medium-dose ZnCl2 on the lung tissue in the I/R group. The aforementioned results suggest that exogenous administration of ZnCl2 can improve lung I/R injury in rats.
{"title":"[Exogenous administration of zinc chloride improves lung ischemia/reperfusion injury in rats].","authors":"Shu-Yuan Wang, Jun-Peng Xu, Yuan Cheng, Man Huang, Si-An Chen, Zhuo-Lun Li, Qi-Hao Zhang, Yong-Yue Dai, Li-Yi You, Wan-Tie Wang","doi":"10.13294/j.aps.2025.0038","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0038","url":null,"abstract":"<p><p>The aim of this study was to investigate the contribution of lung zinc ions to pathogenesis of lung ischemia/reperfusion (I/R) injury in rats. Male Sprague Dawley (SD) rats were randomly divided into control group, lung I/R group (I/R group), lung I/R + low-dose zinc chloride group (LZnCl<sub>2</sub>+I/R group), lung I/R + high-dose ZnCl<sub>2</sub> group (HZnCl<sub>2</sub>+I/R group), lung I/R + medium-dose ZnCl<sub>2</sub> group (MZnCl<sub>2</sub>+I/R group) and TPEN+MZnCl<sub>2</sub>+I/R group (<i>n</i> = 8 in each group). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of zinc ions in lung tissue. The degree of lung tissue injury was analyzed by observing HE staining, alveolar damage index, lung wet/dry weight ratio and lung tissue gross changes. TUNEL staining was used to detect cellular apoptosis in lung tissue. Western blot and RT-qPCR were used to determine the protein expression levels of caspase-3 and ZIP8, as well as the mRNA expression levels of zinc transporters (ZIP, ZNT) in lung tissue. The mitochondrial membrane potential (MMP) of lung tissue was detected by JC-1 MMP detection kit. The results showed that, compared with the control group, the lung tissue damage, lung wet/dry weight ratio and alveolar damage index were significantly increased in the I/R group. And in the lung tissue, the concentration of Zn<sup>2+</sup> was markedly decreased, while the cleaved caspase-3/caspase-3 ratio and apoptotic levels were significantly increased. The expression levels of ZIP8 mRNA and protein were down-regulated significantly, while the mRNA expression of other zinc transporters remained unchanged. There was also a significant decrease in MMP. Compared with the I/R group, both MZnCl<sub>2</sub>+I/R group and HZnCl<sub>2</sub>+I/R group exhibited significantly reduced lung tissue injury, lung wet/dry weight ratio and alveolar damage index, increased Zn<sup>2+</sup> concentration, decreased ratio of cleaved caspase-3/caspase-3 and apoptosis, and up-regulated expression levels of ZIP8 mRNA and protein. In addition, the MMP was significantly increased in the lung tissue. Zn<sup>2+</sup> chelating agent TPEN reversed the above-mentioned protective effects of medium-dose ZnCl<sub>2</sub> on the lung tissue in the I/R group. The aforementioned results suggest that exogenous administration of ZnCl<sub>2</sub> can improve lung I/R injury in rats.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 5","pages":"811-819"},"PeriodicalIF":0.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In a healthy human, the airway mucus forms a thin, protective liquid layer covering the surface of the respiratory tract. It comprises a complex blend of mucin, multiple antibacterial proteins, metabolic substances, water, and electrolytes. This mucus plays a pivotal role in the lungs' innate immune system by maintaining airway hydration and capturing airborne particles and pathogens. However, heightened mucus secretion in the airway can compromise ciliary clearance, obstruct the respiratory tract, and increase the risk of pathogen colonization and recurrent infections. Consequently, a thorough exploration of the mechanisms driving excessive airway mucus secretion is crucial for establishing a theoretical foundation for the eventual development of targeted drugs designed to reduce mucus production. Across a range of lung diseases, excessive airway mucus secretion manifests with unique characteristics and regulatory mechanisms, all intricately linked to mucin. This article provides a comprehensive overview of the characteristics and regulatory mechanisms associated with excessive airway mucus secretion in several prevalent lung diseases.
{"title":"[Common characteristics and regulatory mechanisms of airway mucus hypersecretion in lung disease].","authors":"Ze-Qiang Lin, Shi-Man Pang, Si-Yuan Zhu, Li-Xia He, Wei-Guo Kong, Wen-Ju Lu, Zi-Li Zhang","doi":"10.13294/j.aps.2025.0056","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0056","url":null,"abstract":"<p><p>In a healthy human, the airway mucus forms a thin, protective liquid layer covering the surface of the respiratory tract. It comprises a complex blend of mucin, multiple antibacterial proteins, metabolic substances, water, and electrolytes. This mucus plays a pivotal role in the lungs' innate immune system by maintaining airway hydration and capturing airborne particles and pathogens. However, heightened mucus secretion in the airway can compromise ciliary clearance, obstruct the respiratory tract, and increase the risk of pathogen colonization and recurrent infections. Consequently, a thorough exploration of the mechanisms driving excessive airway mucus secretion is crucial for establishing a theoretical foundation for the eventual development of targeted drugs designed to reduce mucus production. Across a range of lung diseases, excessive airway mucus secretion manifests with unique characteristics and regulatory mechanisms, all intricately linked to mucin. This article provides a comprehensive overview of the characteristics and regulatory mechanisms associated with excessive airway mucus secretion in several prevalent lung diseases.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 5","pages":"989-1000"},"PeriodicalIF":0.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-25DOI: 10.13294/j.aps.2025.0078
Xiao-Juan Li, Bo Zheng, Ping Lan, Wen-Xin Zhang, Yi-Peng Li, Zhi He
Alzheimer's disease (AD) is the commonest neurodegenerative disease that causes memory decline, cognitive dysfunction and behavior disorders in the aged people. Primary pathological hallmarks of AD include amyloid-β (Aβ), neurofibrillary tangles (NFTs), gliosis, and neuronal loss. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have important physiological functions, especially in aspects of controlling the resting membrane potential, pacemaker activity, memory formation, sleep and arousal. This article reviews the structure, distribution, regulation of HCN channels and the role of HCN channels in the pathological mechanisms of AD, aiming to provide drug therapeutic targets for the prevention and treatment of AD.
{"title":"[Research progress in the role of HCN channels in Alzheimer's disease].","authors":"Xiao-Juan Li, Bo Zheng, Ping Lan, Wen-Xin Zhang, Yi-Peng Li, Zhi He","doi":"10.13294/j.aps.2025.0078","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0078","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the commonest neurodegenerative disease that causes memory decline, cognitive dysfunction and behavior disorders in the aged people. Primary pathological hallmarks of AD include amyloid-β (Aβ), neurofibrillary tangles (NFTs), gliosis, and neuronal loss. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have important physiological functions, especially in aspects of controlling the resting membrane potential, pacemaker activity, memory formation, sleep and arousal. This article reviews the structure, distribution, regulation of HCN channels and the role of HCN channels in the pathological mechanisms of AD, aiming to provide drug therapeutic targets for the prevention and treatment of AD.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 5","pages":"867-875"},"PeriodicalIF":0.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-25DOI: 10.13294/j.aps.2025.0026
Miao-Xin Jiao, Bing-Yi Shen, Hai-Bin Liu, Li-Hong Chen, Guang-Rui Yang
The purpose of the present study was to investigate the effects of resistance combined with aerobic chrono-exercise on the common carotid artery elasticity and hemodynamics. 24 healthy young men (21.96±0.43 years old) underwent a single acute resistance combined with aerobic exercise intervention at eight time periods (6, 8, 10, 12, 14, 16, 18, and 20 o'clock). The axial flow velocity and diameter waveforms of the common carotid artery were measured, and the hemodynamics were calculated using the classical hemodynamic theory before exercise, immediately after exercise, 10 min and 20 min after exercise. The results showed that during exercise recovery, systolic and mean pressures decreased more markedly after exercise at 8 o'clock (P < 0.05); At 20 min post-exercise, arterial stiffness index and pressure-strain elastic modulus after exercise at 6 o'clock were reduced compared with the resting state, but were significantly elevated after exercise at 20 o'clock (P < 0.05). Immediately after exercise, the pressure rise was higher after exercise at 6 o'clock and the mean wall shear stress was higher after exercise at 20 o'clock (P < 0.05). These results suggest that resistance combined with aerobic chrono-exercise produces different effects on common carotid artery hemodynamics in young men. A single acute session of resistance combined with aerobic exercise at 8 o'clock is more effective in lowering blood pressure. Exercise at 6 o'clock is beneficial to improve arterial elasticity but is not recommended for young male individuals with cardiovascular disease risks because of the excessive increase in blood pressure immediately after exercise. Exercise at 20 o'clock is more effective in improving wall shear stress but is accompanied by elevated arterial stiffness indices and pressure-strain elastic modulus. These results provide a scientific basis for healthy young men in choosing the time of exercise by exploring the common carotid artery elasticity and hemodynamic-related indices.
{"title":"[Effects of resistance combined with aerobic chrono-exercise on common carotid artery elasticity and hemodynamics in young men].","authors":"Miao-Xin Jiao, Bing-Yi Shen, Hai-Bin Liu, Li-Hong Chen, Guang-Rui Yang","doi":"10.13294/j.aps.2025.0026","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0026","url":null,"abstract":"<p><p>The purpose of the present study was to investigate the effects of resistance combined with aerobic chrono-exercise on the common carotid artery elasticity and hemodynamics. 24 healthy young men (21.96±0.43 years old) underwent a single acute resistance combined with aerobic exercise intervention at eight time periods (6, 8, 10, 12, 14, 16, 18, and 20 o'clock). The axial flow velocity and diameter waveforms of the common carotid artery were measured, and the hemodynamics were calculated using the classical hemodynamic theory before exercise, immediately after exercise, 10 min and 20 min after exercise. The results showed that during exercise recovery, systolic and mean pressures decreased more markedly after exercise at 8 o'clock (<i>P</i> < 0.05); At 20 min post-exercise, arterial stiffness index and pressure-strain elastic modulus after exercise at 6 o'clock were reduced compared with the resting state, but were significantly elevated after exercise at 20 o'clock (<i>P</i> < 0.05). Immediately after exercise, the pressure rise was higher after exercise at 6 o'clock and the mean wall shear stress was higher after exercise at 20 o'clock (<i>P</i> < 0.05). These results suggest that resistance combined with aerobic chrono-exercise produces different effects on common carotid artery hemodynamics in young men. A single acute session of resistance combined with aerobic exercise at 8 o'clock is more effective in lowering blood pressure. Exercise at 6 o'clock is beneficial to improve arterial elasticity but is not recommended for young male individuals with cardiovascular disease risks because of the excessive increase in blood pressure immediately after exercise. Exercise at 20 o'clock is more effective in improving wall shear stress but is accompanied by elevated arterial stiffness indices and pressure-strain elastic modulus. These results provide a scientific basis for healthy young men in choosing the time of exercise by exploring the common carotid artery elasticity and hemodynamic-related indices.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 4","pages":"741-751"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144938437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-25DOI: 10.13294/j.aps.2025.0059
Qing-Qing Wang, Chang Liu
The circadian rhythm regulates the 24-hour physiological and behavioral cycles through endogenous molecular clocks governed by core clock genes via the transcription-translation feedback loop (TTFL). In mammals, the suprachiasmatic nucleus (SCN) serves as the central pacemaker, coordinating the timing of physiological processes throughout the body by regulating clock genes such as CLOCK, BMAL1, PER, and CRY. The molecular clocks of peripheral tissues and cells are synchronized by the SCN through TTFLs to regulate metabolism, immunity, and energy homeostasis. Numerous studies indicate that circadian rhythm disruption is closely related to obesity, type 2 diabetes, metabolic syndrome and other diseases, and the mechanism involves the dysregulation of glucose and lipid metabolism, abnormal insulin signaling and low-grade inflammation. In recent years, small-molecule compounds targeting the core clock components such as CRY, REV-ERB, and ROR have been identified and shown potential to modulate metabolic diseases by stabilizing or inhibiting the activity of key clock proteins. This review summarizes the mechanisms and advances in these compounds, and explores the challenges and future directions for their clinical translation, providing insights for chronotherapy-based metabolic disease interventions.
{"title":"[Research progress on biological clock-targeting small-molecule compounds for intervention in metabolic diseases].","authors":"Qing-Qing Wang, Chang Liu","doi":"10.13294/j.aps.2025.0059","DOIUrl":"https://doi.org/10.13294/j.aps.2025.0059","url":null,"abstract":"<p><p>The circadian rhythm regulates the 24-hour physiological and behavioral cycles through endogenous molecular clocks governed by core clock genes via the transcription-translation feedback loop (TTFL). In mammals, the suprachiasmatic nucleus (SCN) serves as the central pacemaker, coordinating the timing of physiological processes throughout the body by regulating clock genes such as CLOCK, BMAL1, PER, and CRY. The molecular clocks of peripheral tissues and cells are synchronized by the SCN through TTFLs to regulate metabolism, immunity, and energy homeostasis. Numerous studies indicate that circadian rhythm disruption is closely related to obesity, type 2 diabetes, metabolic syndrome and other diseases, and the mechanism involves the dysregulation of glucose and lipid metabolism, abnormal insulin signaling and low-grade inflammation. In recent years, small-molecule compounds targeting the core clock components such as CRY, REV-ERB, and ROR have been identified and shown potential to modulate metabolic diseases by stabilizing or inhibiting the activity of key clock proteins. This review summarizes the mechanisms and advances in these compounds, and explores the challenges and future directions for their clinical translation, providing insights for chronotherapy-based metabolic disease interventions.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 4","pages":"641-652"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144938392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}