首页 > 最新文献

Nano Research最新文献

英文 中文
Phase-transition-free rivets for layered oxide potassium cathodes 用于层状氧化物钾阴极的无相变铆钉
IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-13 DOI: 10.1007/s12274-024-6901-5
Jie Chen, Apparao M. Rao, Caitian Gao, Jiang Zhou, Limei Cha, Xiaoming Yuan, Bingan Lu

As a cathode material for potassium-ion batteries (PIBs), manganese-based layered oxides have attracted widespread attention due to their low cost, ease of synthesis, and high performance. However, the Jahn-Teller effect caused by Mn3+ and the irreversible phase transformation of the structure leads to poor cycle stability, limiting the development of layered oxides in PIBs. Herein, we demonstrate the use of phase-transition-free CaTiO3 as rivets in K0.5Mn0.9Ti0.1O2 by a simple solid-state method. As verified by the in situ X-ray diffraction, the CaTiO3 rivets effectively prevent the slippage of the transition metal layer during charge and discharge, inhibiting structural degradation. As a result, the obtained K0.5Mn0.9Ti0.1O2-0.02CaTiO3 shows excellent cycling stability and rate performance, with high capacities of 119.3 and 70.1 mAh·g-1 at 20 and 1000 mA·g-1, respectively. At 200 mA·g-1, the capacity retention remains 94.7% after more than 300 cycles. This work represents a new avenue for designing and optimizing layered cathode materials for PIBs and other batteries.

作为钾离子电池(PIB)的阴极材料,锰系层状氧化物因其低成本、易合成和高性能而受到广泛关注。然而,由 Mn3+ 引起的 Jahn-Teller 效应和结构的不可逆相变导致循环稳定性差,限制了层状氧化物在 PIB 中的发展。在此,我们通过一种简单的固态方法证明了在 K0.5Mn0.9Ti0.1O2 中使用无相转变的 CaTiO3 作为铆钉。经原位 X 射线衍射验证,CaTiO3 铆钉可有效防止过渡金属层在充放电过程中滑移,抑制结构退化。因此,所获得的 K0.5Mn0.9Ti0.1O2-0.02CaTiO3 具有优异的循环稳定性和速率性能,在 20 mA-g-1 和 1000 mA-g-1 条件下,容量分别高达 119.3 和 70.1 mAh-g-1。在 200 mA-g-1 条件下,经过 300 多个循环后,容量保持率仍高达 94.7%。这项研究为设计和优化 PIB 和其他电池的层状阴极材料开辟了一条新途径。
{"title":"Phase-transition-free rivets for layered oxide potassium cathodes","authors":"Jie Chen,&nbsp;Apparao M. Rao,&nbsp;Caitian Gao,&nbsp;Jiang Zhou,&nbsp;Limei Cha,&nbsp;Xiaoming Yuan,&nbsp;Bingan Lu","doi":"10.1007/s12274-024-6901-5","DOIUrl":"10.1007/s12274-024-6901-5","url":null,"abstract":"<div><p>As a cathode material for potassium-ion batteries (PIBs), manganese-based layered oxides have attracted widespread attention due to their low cost, ease of synthesis, and high performance. However, the Jahn-Teller effect caused by Mn<sup>3+</sup> and the irreversible phase transformation of the structure leads to poor cycle stability, limiting the development of layered oxides in PIBs. Herein, we demonstrate the use of phase-transition-free CaTiO<sub>3</sub> as rivets in K<sub>0.5</sub>Mn<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>2</sub> by a simple solid-state method. As verified by the <i>in situ</i> X-ray diffraction, the CaTiO<sub>3</sub> rivets effectively prevent the slippage of the transition metal layer during charge and discharge, inhibiting structural degradation. As a result, the obtained K<sub>0.5</sub>Mn<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>2</sub>-0.02CaTiO<sub>3</sub> shows excellent cycling stability and rate performance, with high capacities of 119.3 and 70.1 mAh·g<sup>-1</sup> at 20 and 1000 mA·g<sup>-1</sup>, respectively. At 200 mA·g<sup>-1</sup>, the capacity retention remains 94.7% after more than 300 cycles. This work represents a new avenue for designing and optimizing layered cathode materials for PIBs and other batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9671 - 9678"},"PeriodicalIF":9.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipocoacervate, a tunable vesicle for protein delivery 用于输送蛋白质的可调囊泡--脂溶胶囊泡
IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-10 DOI: 10.1007/s12274-024-6889-6
Chia-Wei Yeh, Nathaniel Wright, Chelsea Loh, Nabeen Chu, Yadong Wang

Controlled delivery of proteins and other biologics is a growing medium of therapy for diseases previously untreatable. Here we report a self-assembling, tunable vesicle for the controlled delivery of growth factors and cytokines. Coacervate made of heparin and a biocompatible polycation, PEAD, forms the core of the vesicle; lipids form the membrane of the vesicle. We call this vesicle lipocoacervate (LipCo), which has a high affinity for growth factors and cytokines due to heparin. LipCo is a tunable protein delivery vehicle. The vesicle size is controlled through polymer and salt concentrations. Membrane functionalization enables potential for targeting capabilities with long-term storage through lyophilization. Importantly, the controlled delivery of therapeutics also avoids high toxicity to treated cells in vitro. Here we report on these key principles of LipCo assembly and design.

蛋白质和其他生物制剂的可控递送是治疗以前无法治疗的疾病的一种日益增长的媒介。在此,我们报告了一种用于可控递送生长因子和细胞因子的自组装可调囊泡。由肝素和生物相容性聚阳离子 PEAD 组成的包囊构成了囊泡的核心;脂质构成了囊泡的膜。我们称这种囊泡为 "脂溶性囊泡"(LipCo),由于肝素的存在,它对生长因子和细胞因子具有很高的亲和力。LipCo 是一种可调的蛋白质输送载体。囊泡的大小可通过聚合物和盐的浓度来控制。膜功能化使其具有潜在的靶向能力,并可通过冻干长期保存。重要的是,治疗药物的可控递送还能避免对体外处理过的细胞产生高毒性。我们在此报告 LipCo 组装和设计的这些关键原则。
{"title":"Lipocoacervate, a tunable vesicle for protein delivery","authors":"Chia-Wei Yeh,&nbsp;Nathaniel Wright,&nbsp;Chelsea Loh,&nbsp;Nabeen Chu,&nbsp;Yadong Wang","doi":"10.1007/s12274-024-6889-6","DOIUrl":"10.1007/s12274-024-6889-6","url":null,"abstract":"<div><p>Controlled delivery of proteins and other biologics is a growing medium of therapy for diseases previously untreatable. Here we report a self-assembling, tunable vesicle for the controlled delivery of growth factors and cytokines. Coacervate made of heparin and a biocompatible polycation, PEAD, forms the core of the vesicle; lipids form the membrane of the vesicle. We call this vesicle lipocoacervate (LipCo), which has a high affinity for growth factors and cytokines due to heparin. LipCo is a tunable protein delivery vehicle. The vesicle size is controlled through polymer and salt concentrations. Membrane functionalization enables potential for targeting capabilities with long-term storage through lyophilization. Importantly, the controlled delivery of therapeutics also avoids high toxicity to treated cells in vitro. Here we report on these key principles of LipCo assembly and design.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 10","pages":"9135 - 9140"},"PeriodicalIF":9.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141920850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic organic transformation reactions in green chemistry: Exploring nanocrystals and single atom catalysts 绿色化学中的电催化有机转化反应:探索纳米晶体和单原子催化剂
IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-09 DOI: 10.1007/s12274-024-6887-8
Ziwei Deng, Yuexin Guo, Zhiyi Sun, Jie Lin, Huazhang Zhai, Wenxing Chen

Organic synthesis chemistry plays a crucial role in supporting social sustainable development and finds widespread applications across various fields. Electrocatalysis, with its benefits of high efficiency, mild reaction conditions, controllability, and environmental friendliness, stands out as one of the most effective strategies for driving the transformation of organic substrates. In recent years, nanocrystals (NCs) and single atom catalysts (SACs) have garnered significant attention in the realm of electrocatalytic organic transformation. This article presents a comprehensive overview of the applications of NCs and SACs in electrocatalytic organic transformation. It delves into advanced catalysts for electrocatalysis of representative substrates, covering both anodic oxidation and cathodic reduction aspects, and addresses their synthesis, characterization, catalytic mechanism, and performance. The ultimate goal of this review is to serve as a valuable reference and a source of inspiration for further exploration into the development of more effective catalysts for electrocatalytic organic transformation.

有机合成化学在支持社会可持续发展方面发挥着至关重要的作用,并在各个领域得到广泛应用。电催化具有效率高、反应条件温和、可控性强、环境友好等优点,是推动有机基质转化的最有效策略之一。近年来,纳米晶体(NCs)和单原子催化剂(SACs)在电催化有机转化领域备受关注。本文全面概述了 NC 和 SAC 在电催化有机转化中的应用。文章深入探讨了用于代表性基质电催化的先进催化剂,涵盖阳极氧化和阴极还原两个方面,并讨论了它们的合成、表征、催化机理和性能。本综述的最终目的是为进一步探索开发更有效的电催化有机转化催化剂提供有价值的参考和灵感来源。
{"title":"Electrocatalytic organic transformation reactions in green chemistry: Exploring nanocrystals and single atom catalysts","authors":"Ziwei Deng,&nbsp;Yuexin Guo,&nbsp;Zhiyi Sun,&nbsp;Jie Lin,&nbsp;Huazhang Zhai,&nbsp;Wenxing Chen","doi":"10.1007/s12274-024-6887-8","DOIUrl":"10.1007/s12274-024-6887-8","url":null,"abstract":"<div><p>Organic synthesis chemistry plays a crucial role in supporting social sustainable development and finds widespread applications across various fields. Electrocatalysis, with its benefits of high efficiency, mild reaction conditions, controllability, and environmental friendliness, stands out as one of the most effective strategies for driving the transformation of organic substrates. In recent years, nanocrystals (NCs) and single atom catalysts (SACs) have garnered significant attention in the realm of electrocatalytic organic transformation. This article presents a comprehensive overview of the applications of NCs and SACs in electrocatalytic organic transformation. It delves into advanced catalysts for electrocatalysis of representative substrates, covering both anodic oxidation and cathodic reduction aspects, and addresses their synthesis, characterization, catalytic mechanism, and performance. The ultimate goal of this review is to serve as a valuable reference and a source of inspiration for further exploration into the development of more effective catalysts for electrocatalytic organic transformation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9326 - 9344"},"PeriodicalIF":9.5,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient synthesis of IrPtPdNi/GO nanocatalysts for superior performance in water electrolysis 高效合成 IrPtPdNi/GO 纳米催化剂,在水电解中发挥卓越性能
IF 9.9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-08 DOI: 10.1007/s12274-024-6900-6
Sanha Jang, Young Hwa Yun, Jin Gyu Lee, Kyung Hee Oh, Shin Wook Kang, Jung-Il Yang, MinJoong Kim, Changsoo Lee, Ji Chan Park

Traditional iridium (Ir) oxide catalysts have faced significant limitations in water electrolysis, particularly under acidic conditions where instability and degradation severely restrict the efficiency of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). To overcome these challenges, this study successfully synthesized highly dispersed IrPtPdNi alloy nanoparticles on a graphene oxide support using a vertically moving reactor, demonstrating exceptional performance in water electrolysis. These nanoparticles, synthesized via a fast-moving bed pyrolysis method, combine iridium, platinum, palladium, and nickel. They exhibit lower overpotentials in OER and comparable performance in HER to commercial catalysts, while also offering enhanced stability. These results surpass the limitations of traditional catalysts, marking significant progress toward more efficient and sustainable hydrogen production technologies. This advancement is expected to contribute significantly to the development of sustainable energy systems by innovatively enhancing the performance of catalysts in the electrochemical water-splitting process.

传统的氧化铱(Ir)催化剂在水电解中面临着很大的局限性,尤其是在酸性条件下,其不稳定性和降解性严重限制了氧进化反应(OER)和氢进化反应(HER)的效率。为了克服这些挑战,本研究利用垂直移动反应器在氧化石墨烯载体上成功合成了高度分散的 IrPtPdNi 合金纳米粒子,在水电解中表现出卓越的性能。这些通过快速移动床热解方法合成的纳米粒子结合了铱、铂、钯和镍。它们在 OER 中的过电位较低,在 HER 中的性能与商用催化剂相当,同时还具有更高的稳定性。这些成果超越了传统催化剂的局限性,标志着在实现更高效、更可持续的制氢技术方面取得了重大进展。通过创新性地提高催化剂在电化学分水过程中的性能,这一进步有望极大地促进可持续能源系统的发展。
{"title":"Efficient synthesis of IrPtPdNi/GO nanocatalysts for superior performance in water electrolysis","authors":"Sanha Jang, Young Hwa Yun, Jin Gyu Lee, Kyung Hee Oh, Shin Wook Kang, Jung-Il Yang, MinJoong Kim, Changsoo Lee, Ji Chan Park","doi":"10.1007/s12274-024-6900-6","DOIUrl":"https://doi.org/10.1007/s12274-024-6900-6","url":null,"abstract":"<p>Traditional iridium (Ir) oxide catalysts have faced significant limitations in water electrolysis, particularly under acidic conditions where instability and degradation severely restrict the efficiency of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). To overcome these challenges, this study successfully synthesized highly dispersed IrPtPdNi alloy nanoparticles on a graphene oxide support using a vertically moving reactor, demonstrating exceptional performance in water electrolysis. These nanoparticles, synthesized via a fast-moving bed pyrolysis method, combine iridium, platinum, palladium, and nickel. They exhibit lower overpotentials in OER and comparable performance in HER to commercial catalysts, while also offering enhanced stability. These results surpass the limitations of traditional catalysts, marking significant progress toward more efficient and sustainable hydrogen production technologies. This advancement is expected to contribute significantly to the development of sustainable energy systems by innovatively enhancing the performance of catalysts in the electrochemical water-splitting process.\u0000</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"2011 1","pages":""},"PeriodicalIF":9.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy 通过纳米强化策略为高效二氧化碳电还原量身定制微环境
IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-07 DOI: 10.1007/s12274-024-6870-4
Lulu Chen, Minhan Li, Jia-Nan Zhang

The electrocatalytic conversion of CO2 to produce fuels and chemicals holds great promise, not only to provide an alternative to fossil feedstocks, but also to use renewable electricity to convert and recycle the greenhouse gas CO2 to mitigate climate problems. However, the selectivity and reaction rates for the conversion of CO2 into desirable carbon-based products, especially multicarbon products with high added value, are still insufficient for commercial applications, which is attributed to insufficiently favourable microenvironmental conditions in the vicinity of the catalyst. The construction of catalysts/electrodes with confined structures can effectively improve the reaction microenvironment in the vicinity of the electrodes and thus effectively direct the reaction towards the desired pathway. In this review, we firstly introduce the effects of the microenvironment at the electrode-electrolyte interface including local pH, local intermediate concentration, and local cation concentration on CO2 reduction reaction (CO2RR) as well as the mechanism of action, and then shed light on the microenvironmental modulation within the confined space, and finally and most importantly, introduce the design strategy of CO2RR catalyst/electrode based on the confinement effect.

电催化转化二氧化碳生产燃料和化学品前景广阔,不仅可以替代化石原料,还可以利用可再生电力转化和循环利用温室气体二氧化碳,缓解气候问题。然而,将二氧化碳转化为理想的碳基产品,特别是具有高附加值的多碳产品的选择性和反应速率仍不足以满足商业应用的需要,其原因在于催化剂附近的微环境条件不够有利。构建具有封闭结构的催化剂/电极可以有效改善电极附近的反应微环境,从而有效地将反应引向所需的途径。在这篇综述中,我们首先介绍了电极-电解质界面微环境(包括局部 pH 值、局部中间体浓度和局部阳离子浓度)对 CO2 还原反应(CO2RR)的影响及其作用机理,然后阐明了密闭空间内的微环境调控,最后也是最重要的一点,介绍了基于密闭效应的 CO2RR 催化剂/电极设计策略。
{"title":"Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy","authors":"Lulu Chen,&nbsp;Minhan Li,&nbsp;Jia-Nan Zhang","doi":"10.1007/s12274-024-6870-4","DOIUrl":"10.1007/s12274-024-6870-4","url":null,"abstract":"<div><p>The electrocatalytic conversion of CO<sub>2</sub> to produce fuels and chemicals holds great promise, not only to provide an alternative to fossil feedstocks, but also to use renewable electricity to convert and recycle the greenhouse gas CO<sub>2</sub> to mitigate climate problems. However, the selectivity and reaction rates for the conversion of CO<sub>2</sub> into desirable carbon-based products, especially multicarbon products with high added value, are still insufficient for commercial applications, which is attributed to insufficiently favourable microenvironmental conditions in the vicinity of the catalyst. The construction of catalysts/electrodes with confined structures can effectively improve the reaction microenvironment in the vicinity of the electrodes and thus effectively direct the reaction towards the desired pathway. In this review, we firstly introduce the effects of the microenvironment at the electrode-electrolyte interface including local pH, local intermediate concentration, and local cation concentration on CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) as well as the mechanism of action, and then shed light on the microenvironmental modulation within the confined space, and finally and most importantly, introduce the design strategy of CO<sub>2</sub>RR catalyst/electrode based on the confinement effect.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 9","pages":"7880 - 7899"},"PeriodicalIF":9.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quick evaluation and regulation of the maximum instantaneous power and matching resistance for droplet-based electricity generators 快速评估和调节液滴式发电机的最大瞬时功率和匹配电阻
IF 9.9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-06 DOI: 10.1007/s12274-024-6893-x
Zhifeng Hu, Huamei Zhong, He Shan, Ruzhu Wang

Droplet-based electricity generators (DEGs) leveraging triboelectric effects are simple and high-performance devices for harvesting energy from ubiquitous water droplets. Instantaneous power plays a vital role in wide applications of DEGs. However, the governing law of the maximum instantaneous power and matching resistance is lacking and their determination suffers from heavy repetitive experiments, hindering the development of DEGs. Herein, we propose a quick evaluation method for the internal droplet impedance, instantaneous peak power, maximum instantaneous power and matching resistance which exhibits broad universality and excellent accuracy. Moreover, effects of diverse factors pertaining to droplets and devices are fully investigated, highlighting that the maximum instantaneous power and matching resistance can be effectively regulated across multiple orders of magnitudes by controlling the salt concentration. Our findings shed insights into the understanding, evaluation, and regulation of instantaneous power for DEGs, and shall promote the renovation of the DEG technology.

利用三电效应的液滴发电装置(DEG)是一种从无处不在的水滴中收集能量的简单而高性能的设备。瞬时功率在液滴发电机的广泛应用中起着至关重要的作用。然而,由于缺乏最大瞬时功率和匹配电阻的指导规律,它们的确定需要进行大量的重复实验,这阻碍了 DEG 的发展。在此,我们提出了一种快速评估内部液滴阻抗、瞬时峰值功率、最大瞬时功率和匹配电阻的方法,该方法具有广泛的通用性和出色的准确性。此外,我们还充分研究了液滴和器件的各种因素的影响,结果表明,通过控制盐浓度,可以有效调节多个数量级的最大瞬时功率和匹配电阻。我们的发现为理解、评估和调节 DEG 的瞬时功率提供了启示,并将促进 DEG 技术的革新。
{"title":"Quick evaluation and regulation of the maximum instantaneous power and matching resistance for droplet-based electricity generators","authors":"Zhifeng Hu, Huamei Zhong, He Shan, Ruzhu Wang","doi":"10.1007/s12274-024-6893-x","DOIUrl":"https://doi.org/10.1007/s12274-024-6893-x","url":null,"abstract":"<p>Droplet-based electricity generators (DEGs) leveraging triboelectric effects are simple and high-performance devices for harvesting energy from ubiquitous water droplets. Instantaneous power plays a vital role in wide applications of DEGs. However, the governing law of the maximum instantaneous power and matching resistance is lacking and their determination suffers from heavy repetitive experiments, hindering the development of DEGs. Herein, we propose a quick evaluation method for the internal droplet impedance, instantaneous peak power, maximum instantaneous power and matching resistance which exhibits broad universality and excellent accuracy. Moreover, effects of diverse factors pertaining to droplets and devices are fully investigated, highlighting that the maximum instantaneous power and matching resistance can be effectively regulated across multiple orders of magnitudes by controlling the salt concentration. Our findings shed insights into the understanding, evaluation, and regulation of instantaneous power for DEGs, and shall promote the renovation of the DEG technology.\u0000</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"64 1","pages":""},"PeriodicalIF":9.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
rGO aerogel embedded with organic–inorganic hybrid perovskite for lightweight broadband electromagnetic wave absorption 嵌入有机-无机混合过氧化物的 rGO 气凝胶用于轻质宽带电磁波吸收
IF 9.9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-06 DOI: 10.1007/s12274-024-6880-2
Xueying Zhao, Xiaohui Sun, Wei Wu, Peng Tang, JiaWei Du, Xuyang Zhang, Haining Qian, Ruihui Peng, Xiangwei Wang, Yaohong Zhang, Guohua Wu

Organic–inorganic hybrid perovskites are quite promising candidates in the field of electromagnetic wave (EMW) absorption due to their unique physicochemical properties. However, it is still a considerable challenge to satisfy the light weight, broad bandwidth, and strong absorption properties simultaneously. Herein, the solution of methylammonium lead iodide (MAPbI3) perovskites was infiltrated into the pores of reduced graphene oxide (rGO) aerogels. After drying, a series of MAPbI3/rGO composite aerogel (MGA) materials were synthesized by anchoring the MAPbI3 perovskite nanoparticles to rGO sheets with the assistance of rGO templates. Through the adjustment of component ratios, excellent EMW absorption properties are obtained with the synergistic effects of polarization loss, conduction loss, and multiple reflection and scattering of MAPbI3 and rGO. The porous structure of the aerogel and the suitable group distribution ratio allowed the MGA-4 samples to obtain excellent impedance matching and ultra-low density of ∼ 7.69 mg·cm−3. At a low filling ratio of 15 wt.%, the MGA-4 sample simultaneously achieves highly efficient and broadband EMW absorption performance at a thin thickness. The MGA-4 sample obtained a minimum reflection loss value of −64.35 dB and the effective absorption bandwidth (EAB) value of 5.4 GHz at a thickness of 2.08 mm and a maximum EAB (EABmax) value of 6.2 GHz under 2.22 mm. The MGA-5 sample obtained a maximum EAB value of 6.4 GHz with the thinckness of 2.16 mm. Furthermore, the simulation results of the radar cross-section (RCS) verified the component-optimized composites are capable of achieving excellent EMW attenuation. This paper provides a new approach and valuable reference for the development of hybrid perovskite-based microwave absorption materials with lightweight, ultra-broadband, and strong absorption properties.

有机-无机杂化过氧化物因其独特的物理化学特性,在电磁波吸收领域大有可为。然而,要同时满足重量轻、带宽宽、吸收强等特性,仍然是一个相当大的挑战。在此,我们将甲基碘化铅铵(MAPbI3)包晶石溶液渗入还原氧化石墨烯(rGO)气凝胶的孔隙中。干燥后,在 rGO 模板的辅助下,将 MAPbI3 包晶石纳米颗粒锚定到 rGO 片材上,合成了一系列 MAPbI3/rGO 复合气凝胶(MGA)材料。通过调整组分比例,在 MAPbI3 和 rGO 的极化损耗、传导损耗以及多重反射和散射的协同作用下,获得了优异的电磁波吸收特性。气凝胶的多孔结构和合适的基团分布比使 MGA-4 样品获得了优异的阻抗匹配和 ∼ 7.69 mg-cm-3 的超低密度。在 15 wt.% 的低填充率下,MGA-4 样品在厚度较薄的情况下同时实现了高效和宽带电磁波吸收性能。MGA-4 样品在厚度为 2.08 mm 时的最小反射损耗值为 -64.35 dB,有效吸收带宽 (EAB) 值为 5.4 GHz,在厚度为 2.22 mm 时的最大 EAB (EABmax) 值为 6.2 GHz。MGA-5 样品在厚度为 2.16 毫米时的最大 EAB 值为 6.4 GHz。此外,雷达截面(RCS)的模拟结果也验证了经过组件优化的复合材料能够实现出色的电磁波衰减。本文为开发具有轻质、超宽带和强吸收特性的基于包晶石的混合微波吸收材料提供了一种新方法和有价值的参考。
{"title":"rGO aerogel embedded with organic–inorganic hybrid perovskite for lightweight broadband electromagnetic wave absorption","authors":"Xueying Zhao, Xiaohui Sun, Wei Wu, Peng Tang, JiaWei Du, Xuyang Zhang, Haining Qian, Ruihui Peng, Xiangwei Wang, Yaohong Zhang, Guohua Wu","doi":"10.1007/s12274-024-6880-2","DOIUrl":"https://doi.org/10.1007/s12274-024-6880-2","url":null,"abstract":"<p>Organic–inorganic hybrid perovskites are quite promising candidates in the field of electromagnetic wave (EMW) absorption due to their unique physicochemical properties. However, it is still a considerable challenge to satisfy the light weight, broad bandwidth, and strong absorption properties simultaneously. Herein, the solution of methylammonium lead iodide (MAPbI<sub>3</sub>) perovskites was infiltrated into the pores of reduced graphene oxide (rGO) aerogels. After drying, a series of MAPbI<sub>3</sub>/rGO composite aerogel (MGA) materials were synthesized by anchoring the MAPbI<sub>3</sub> perovskite nanoparticles to rGO sheets with the assistance of rGO templates. Through the adjustment of component ratios, excellent EMW absorption properties are obtained with the synergistic effects of polarization loss, conduction loss, and multiple reflection and scattering of MAPbI<sub>3</sub> and rGO. The porous structure of the aerogel and the suitable group distribution ratio allowed the MGA-4 samples to obtain excellent impedance matching and ultra-low density of ∼ 7.69 mg·cm<sup>−3</sup>. At a low filling ratio of 15 wt.%, the MGA-4 sample simultaneously achieves highly efficient and broadband EMW absorption performance at a thin thickness. The MGA-4 sample obtained a minimum reflection loss value of −64.35 dB and the effective absorption bandwidth (EAB) value of 5.4 GHz at a thickness of 2.08 mm and a maximum EAB (EAB<sub>max</sub>) value of 6.2 GHz under 2.22 mm. The MGA-5 sample obtained a maximum EAB value of 6.4 GHz with the thinckness of 2.16 mm. Furthermore, the simulation results of the radar cross-section (RCS) verified the component-optimized composites are capable of achieving excellent EMW attenuation. This paper provides a new approach and valuable reference for the development of hybrid perovskite-based microwave absorption materials with lightweight, ultra-broadband, and strong absorption properties.\u0000</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"94 1","pages":""},"PeriodicalIF":9.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective oxidation of emerging organic contaminants in heterogeneous Fenton-like systems 在类似芬顿的异质系统中选择性氧化新出现的有机污染物
IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-06 DOI: 10.1007/s12274-024-6874-0
Sheng Wang, Yuxin Lu, Shangkun Pei, Xiang Li, Bo Wang

Heterogeneous Fenton-like reaction shows great potential for eliminating organic substances (e.g. emerging organic contaminants (EOCs)) in water, which has been widely explored in recent decades. However, the catalytic mechanisms reported in current studies are extremely complicated because multiple mechanisms coexist and contribute to the removal efficiencies. Most importantly, heterogeneous systems show selective oxidation properties, which are crucial for improving the efficiencies in the catalytic elimination of organic substances. Thus, this critical review summarizes and compares the diverse existing mechanisms (non-radical and radical pathways) in heterogeneous catalytic processes based on recent studies. The typical oxidation mechanisms during selective advanced oxidation of EOCs were systematically discussed based on the following sections, including the selective adsorption and generation of reactive oxygen species (ROS) in photo/electron-Fenton and Fenton-like systems. Moreover, the non-radical pathways are discussed in depth by the singlet oxygen, high-valent metal-oxo, electron transfer process, etc. Moreover, the direct oxidative transfer process for the removal of EOCs was introduced in recent studies. Finally, the cost, feasibility as well as the sustainability of heterogeneous Fenton-like catalysts are summarized. This review offers useful guidance for developing suitable strategies to develop materials for decomposing the organic substrates.

异相 Fenton 类反应在消除水中有机物质(如新出现的有机污染物 (EOC))方面显示出巨大的潜力,近几十年来人们对此进行了广泛的探索。然而,目前研究中报道的催化机制极为复杂,因为多种机制并存,并对去除效率做出了贡献。最重要的是,异构体系具有选择性氧化特性,这对于提高催化消除有机物的效率至关重要。因此,本评论根据最新研究总结并比较了异相催化过程中现有的各种机制(非自由基和自由基途径)。下文将系统讨论 EOC 选择性高级氧化过程中的典型氧化机制,包括光/电子-芬顿和类芬顿系统中活性氧(ROS)的选择性吸附和生成。此外,还深入讨论了单线态氧、高价金属-氧化、电子转移过程等非自由基途径。此外,最近的研究还引入了用于去除偶氮染料的直接氧化转移过程。最后,总结了异质 Fenton 类催化剂的成本、可行性和可持续性。本综述为制定合适的策略来开发分解有机底物的材料提供了有益的指导。
{"title":"Selective oxidation of emerging organic contaminants in heterogeneous Fenton-like systems","authors":"Sheng Wang,&nbsp;Yuxin Lu,&nbsp;Shangkun Pei,&nbsp;Xiang Li,&nbsp;Bo Wang","doi":"10.1007/s12274-024-6874-0","DOIUrl":"10.1007/s12274-024-6874-0","url":null,"abstract":"<div><p>Heterogeneous Fenton-like reaction shows great potential for eliminating organic substances (e.g. emerging organic contaminants (EOCs)) in water, which has been widely explored in recent decades. However, the catalytic mechanisms reported in current studies are extremely complicated because multiple mechanisms coexist and contribute to the removal efficiencies. Most importantly, heterogeneous systems show selective oxidation properties, which are crucial for improving the efficiencies in the catalytic elimination of organic substances. Thus, this critical review summarizes and compares the diverse existing mechanisms (non-radical and radical pathways) in heterogeneous catalytic processes based on recent studies. The typical oxidation mechanisms during selective advanced oxidation of EOCs were systematically discussed based on the following sections, including the selective adsorption and generation of reactive oxygen species (ROS) in photo/electron-Fenton and Fenton-like systems. Moreover, the non-radical pathways are discussed in depth by the singlet oxygen, high-valent metal-oxo, electron transfer process, etc. Moreover, the direct oxidative transfer process for the removal of EOCs was introduced in recent studies. Finally, the cost, feasibility as well as the sustainability of heterogeneous Fenton-like catalysts are summarized. This review offers useful guidance for developing suitable strategies to develop materials for decomposing the organic substrates.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9300 - 9325"},"PeriodicalIF":9.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrolyte design for Li-conductive solid-electrolyte interphase enabling benchmark performance for all-solid-state lithium-metal batteries 锂导电固态电解质夹层的电解质设计,实现全固态锂金属电池的基准性能
IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-03 DOI: 10.1007/s12274-024-6871-3
Cailing Fan, Niaz Ahmad, Tinglu Song, Chaoyuan Zeng, Xiaoxiao Liang, Qinxi Dong, Wen Yang

Sulfide-based solid-state electrolytes (SSEs) with high Li+ conductivity ((sigma_{text{Li}^{+}})) and trifling grain boundaries have great potential for all-solid-state lithium-metal batteries (ASSLMBs). Nonetheless, the in-situ development of mixed ionic-electronic conducting solid-electrolyte interphase (SEI) at sulfide electrolyte/Li-metal anode interface induces uneven Li electrodeposition, which causes Li-dendrites and void formation, significantly severely deteriorating ASSLMBs. Herein, we propose a dual anionic, e.g., F and N, doping strategy to Li7P3S11, tuning its composition in conjunction with the chemistry of SEI. Therefore, novel Li6.58P2.76N0.03S10.12F0.05 glass-ceramic electrolyte (Li7P3S11-5LiF-3Li3N-gce) achieved superior ionic (4.33 mS·cm−1) and lowest electronic conductivity of 4.33 × 10−10 S·cm−1 and thus, offered superior critical current density of 0.90 mA·cm−2 (2.5 times > Li7P3S11) at room temperature (RT). Notably, Li//Li cell with Li6.58P2.76N0.03S10.12F0.05-gce cycled stably over 1000 and 600 h at 0.2 and 0.3 mA·cm−2 credited to robust and highly conductive SEI (in-situ) enriched with LiF and Li3N species. Li3N’s wettability renders SEI to be highly Li+ conductive, ensures an intimate interfacial contact, blocks reductive reactions, prevents Li-dendrites and facilitates fast Li+ kinetics. Consequently, LiNi0.8Co0.15Al0.05O2 (NCA)/Li6.58P2.76N0.03S10.12F0.05-gce/Li cell exhibited an outstanding first reversible capacity of 200.8/240.1 mAh·g−1 with 83.67% Coulombic efficiency, retained 85.11% of its original reversible capacity at 0.3 mA·cm−2 over 165 cycles at RT.

硫化物固态电解质(SSE)具有高Li+电导率((sigma_text{Li}^{+}})和微小的晶界,在全固态锂金属电池(ASSLMB)中具有巨大的应用潜力。然而,硫化物电解质/锂金属负极界面上离子-电子导电固态电解质混合相(SEI)的原位发展会导致锂电沉积不均匀,从而引起锂枝晶和空洞的形成,严重恶化全固态锂金属电池(ASSLMB)。在此,我们提出了一种双阴离子(如 F 和 N)掺杂 Li7P3S11 的策略,结合 SEI 的化学性质调整其成分。因此,新型 Li6.58P2.76N0.03S10.12F0.05 玻璃陶瓷电解质(Li7P3S11-5LiF-3Li3N-gce)在室温(RT)下实现了卓越的离子电导率(4.33 mS-cm-1)和最低的电子电导率(4.33 × 10-10 S-cm-1),临界电流密度达到 0.90 mA-cm-2(是 Li7P3S11 的 2.5 倍)。值得注意的是,使用 Li6.58P2.76N0.03S10.12F0.05-gce 的锂//锂电池在 0.2 和 0.3 mA-cm-2 下分别稳定循环 1000 和 600 小时,这归功于富含 LiF 和 Li3N 物种的强健高导电 SEI(原位)。Li3N 的润湿性使 SEI 具有高度的 Li+ 导电性,确保了亲密的界面接触,阻止了还原反应,防止了锂枝晶的产生,并促进了快速的 Li+ 动力学。因此,LiNi0.8Co0.15Al0.05O2(NCA)/Li6.58P2.76N0.03S10.12F0.05-gce/Li 电池的首次可逆容量为 200.8/240.1 mAh-g-1,库仑效率为 83.67%。
{"title":"Electrolyte design for Li-conductive solid-electrolyte interphase enabling benchmark performance for all-solid-state lithium-metal batteries","authors":"Cailing Fan,&nbsp;Niaz Ahmad,&nbsp;Tinglu Song,&nbsp;Chaoyuan Zeng,&nbsp;Xiaoxiao Liang,&nbsp;Qinxi Dong,&nbsp;Wen Yang","doi":"10.1007/s12274-024-6871-3","DOIUrl":"10.1007/s12274-024-6871-3","url":null,"abstract":"<div><p>Sulfide-based solid-state electrolytes (SSEs) with high Li<sup>+</sup> conductivity (<span>(sigma_{text{Li}^{+}})</span>) and trifling grain boundaries have great potential for all-solid-state lithium-metal batteries (ASSLMBs). Nonetheless, the <i>in-situ</i> development of mixed ionic-electronic conducting solid-electrolyte interphase (SEI) at sulfide electrolyte/Li-metal anode interface induces uneven Li electrodeposition, which causes Li-dendrites and void formation, significantly severely deteriorating ASSLMBs. Herein, we propose a dual anionic, e.g., F and N, doping strategy to Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>, tuning its composition in conjunction with the chemistry of SEI. Therefore, novel Li<sub>6.58</sub>P<sub>2.76</sub>N<sub>0.03</sub>S<sub>10.12</sub>F<sub>0.05</sub> glass-ceramic electrolyte (Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>-5LiF-3Li<sub>3</sub>N-gce) achieved superior ionic (4.33 mS·cm<sup>−1</sup>) and lowest electronic conductivity of 4.33 × 10<sup>−10</sup> S·cm<sup>−1</sup> and thus, offered superior critical current density of 0.90 mA·cm<sup>−2</sup> (2.5 times &gt; Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>) at room temperature (RT). Notably, Li//Li cell with Li<sub>6.58</sub>P<sub>2.76</sub>N<sub>0.03</sub>S<sub>10.12</sub>F<sub>0.05</sub>-gce cycled stably over 1000 and 600 h at 0.2 and 0.3 mA·cm<sup>−2</sup> credited to robust and highly conductive SEI (<i>in-situ</i>) enriched with LiF and Li<sub>3</sub>N species. Li<sub>3</sub>N’s wettability renders SEI to be highly Li<sup>+</sup> conductive, ensures an intimate interfacial contact, blocks reductive reactions, prevents Li-dendrites and facilitates fast Li<sup>+</sup> kinetics. Consequently, LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> (NCA)/Li<sub>6.58</sub>P<sub>2.76</sub>N<sub>0.03</sub>S<sub>10.12</sub>F<sub>0.05</sub>-gce/Li cell exhibited an outstanding first reversible capacity of 200.8/240.1 mAh·g<sup>−1</sup> with 83.67% Coulombic efficiency, retained 85.11% of its original reversible capacity at 0.3 mA·cm<sup>−2</sup> over 165 cycles at RT.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9640 - 9650"},"PeriodicalIF":9.5,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical vapor deposition synthesis of intrinsic van der Waals ferroelectric SbSI nanowires 化学气相沉积合成本征范德华铁电性 SbSI 纳米线
IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-08-03 DOI: 10.1007/s12274-024-6895-8
Longyi Fu, Yang Zhao, Dapeng Li, Weikang Dong, Ping Wang, Jijian Liu, Denan Kong, Lin Jia, Yang Yang, Meiling Wang, Shoujun Zheng, Yao Zhou, Jiadong Zhou

Intrinsic ferroelectric materials play a critical role in the development of high-density integrated device. Despite some two-dimensional (2D) ferroelectrics have been reported, the research on one-dimensional (1D) intrinsic ferroelectric materials remains relatively scare since 1D atomic structures limit their van der Waals (vdW) epitaxy growth. Here, we report the synthesis of 1D intrinsic vdW ferroelectric SbSI nanowires via a confined-space chemical vapor deposition. By precisely controlling the partial vapor pressure of I2 and reaction temperature, we can effectively manipulate kinetics and thermodynamics processes, and thus obtain high quality of SbSI nanowires, which is determined by Raman spectroscopy and high-resolution scanning transmission electron microscopy characterizations. The ferroelectricity in SbSI is confirmed by piezo-response force microscopy measurements and the ferroelectric transition temperature of 300 K is demonstrated by second harmonic generation. Moreover, the in-plane polarization switching can be maintained in the thin SbSI nanowires with a thickness of 20 nm. Our prepared 1D vdW ferroelectric SbSI nanowires not only enrich the vdW ferroelectric systems, but also open a new possibility for high-power energy storage nanodevices.

本征铁电材料在高密度集成器件的开发中发挥着至关重要的作用。尽管已有一些二维(2D)铁电材料的报道,但由于一维原子结构限制了其范德华(vdW)外延生长,因此一维(1D)本征铁电材料的研究仍然相对匮乏。在此,我们报告了通过密闭空间化学气相沉积合成一维本征 vdW 铁电 SbSI 纳米线的过程。通过精确控制 I2 分气压和反应温度,我们可以有效地操纵动力学和热力学过程,从而获得高质量的 SbSI 纳米线。压电响应力显微镜测量证实了 SbSI 的铁电性,二次谐波发生证明了 300 K 的铁电转变温度。此外,厚度为 20 纳米的薄 SbSI 纳米线可以保持面内极化切换。我们制备的一维 vdW 铁电 SbSI 纳米线不仅丰富了 vdW 铁电系统,而且为大功率储能纳米器件提供了新的可能性。
{"title":"Chemical vapor deposition synthesis of intrinsic van der Waals ferroelectric SbSI nanowires","authors":"Longyi Fu,&nbsp;Yang Zhao,&nbsp;Dapeng Li,&nbsp;Weikang Dong,&nbsp;Ping Wang,&nbsp;Jijian Liu,&nbsp;Denan Kong,&nbsp;Lin Jia,&nbsp;Yang Yang,&nbsp;Meiling Wang,&nbsp;Shoujun Zheng,&nbsp;Yao Zhou,&nbsp;Jiadong Zhou","doi":"10.1007/s12274-024-6895-8","DOIUrl":"10.1007/s12274-024-6895-8","url":null,"abstract":"<div><p>Intrinsic ferroelectric materials play a critical role in the development of high-density integrated device. Despite some two-dimensional (2D) ferroelectrics have been reported, the research on one-dimensional (1D) intrinsic ferroelectric materials remains relatively scare since 1D atomic structures limit their van der Waals (vdW) epitaxy growth. Here, we report the synthesis of 1D intrinsic vdW ferroelectric SbSI nanowires via a confined-space chemical vapor deposition. By precisely controlling the partial vapor pressure of I<sub>2</sub> and reaction temperature, we can effectively manipulate kinetics and thermodynamics processes, and thus obtain high quality of SbSI nanowires, which is determined by Raman spectroscopy and high-resolution scanning transmission electron microscopy characterizations. The ferroelectricity in SbSI is confirmed by piezo-response force microscopy measurements and the ferroelectric transition temperature of 300 K is demonstrated by second harmonic generation. Moreover, the in-plane polarization switching can be maintained in the thin SbSI nanowires with a thickness of 20 nm. Our prepared 1D vdW ferroelectric SbSI nanowires not only enrich the vdW ferroelectric systems, but also open a new possibility for high-power energy storage nanodevices.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9756 - 9763"},"PeriodicalIF":9.5,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1