首页 > 最新文献

Advances in biochemical engineering/biotechnology最新文献

英文 中文
Microbial Biorefinery Education for Professionals. 微生物生物精炼专业人员教育。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-01-01 DOI: 10.1007/10_2024_259
Ari Jääskeläinen, Elias Hakalehto

Microbial strains, communities, and enzymes process side-streams into valuable products in a microbiological biorefinery. Proactive engineering and manufacturing of related bioreactors and other equipment is crucial. Production processes should be engineered in a seamless collaboration, so that the equipment optimally supports the biorefinery's function. This chapter presents various ways to educate microbiological biorefinery principles and operations for professionals. This education can occur in the classroom and hands-on, in biorefinery pilots, laboratories or purification plants.

在微生物生物精炼厂中,微生物菌种和群落及其酶被用于将副产品加工成有价值的产品。相关生物反应器和其他设备的工程设计和制造至关重要。应通过无缝协作设计生产流程,使设备为生物精炼提供最佳支持。本章介绍了向专业人员传授微生物生物炼制原理和操作的各种方法。近年来,这种教育既在课堂上进行,也在生物精炼厂、实验室和提纯厂等地进行。
{"title":"Microbial Biorefinery Education for Professionals.","authors":"Ari Jääskeläinen, Elias Hakalehto","doi":"10.1007/10_2024_259","DOIUrl":"10.1007/10_2024_259","url":null,"abstract":"<p><p>Microbial strains, communities, and enzymes process side-streams into valuable products in a microbiological biorefinery. Proactive engineering and manufacturing of related bioreactors and other equipment is crucial. Production processes should be engineered in a seamless collaboration, so that the equipment optimally supports the biorefinery's function. This chapter presents various ways to educate microbiological biorefinery principles and operations for professionals. This education can occur in the classroom and hands-on, in biorefinery pilots, laboratories or purification plants.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"107-123"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorizing Bio-Waste and Residuals. 生物废物和残余物的增值。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-01-01 DOI: 10.1007/10_2025_278
Aikaterina L Stefi, Konstantinos E Vorgias

The circular bioeconomy connects waste recycling with utilizing organic biomass waste for bioenergy, bio-based materials, and biochemical production. This integration promotes efficient resource utilization, reduced greenhouse gas emissions, and sustainable economic growth. Several technologies such as composting, anaerobic digestion, biochar production, gasification, pyrolysis, pelletization, and advanced thermal conversion technologies are utilized to manage agricultural waste efficiently. Waste-to-energy systems and food waste valorization techniques are employed to convert agro-waste into renewable energy sources such as bioethanol, biodiesel, and biogas through fermentation, transesterification, and anaerobic digestion. These biofuels offer renewable alternatives to fossil fuels, reducing greenhouse gas emissions and dependence on non-renewable resources. Rice husk, a globally abundant agricultural waste, can be utilized for energy production through technologies like direct combustion and fast pyrolysis. Biobutanol, synthesized from acetone-butanol-ethanol fermentation of agricultural residues like orange peel, presents a promising fuel option. Agricultural waste can also serve as feedstock for bio-based chemicals like organic acids, solvents, and polymers, reducing reliance on petroleum-based chemicals. Agro-waste materials like grass, garlic peel, and rice bran have shown potential for dye adsorption in wastewater treatment applications. Moreover, agricultural waste can be repurposed as animal feed, contributing to waste reduction and providing sustainable nutrition for livestock. Plant seeds and green biomass offer sustainable protein sources, while residues like straw and sawdust can be used for mushroom cultivation. Agro-waste biopolymers like starch and cellulose can be transformed into biodegradable plastics and biocomposites, offering eco-friendly alternatives. Additionally, agro-waste materials like straw, rice husks, and bamboo can be processed into construction materials, reducing environmental impact in building projects. Extracts from plant residues and fruit pomace can be utilized in pharmaceuticals, nutraceuticals, and cosmetics. Valorizing agro-waste for food, feed, fibers, and fuel offers opportunities to minimize waste and maximize resource efficiency, resulting in high-value products.

循环生物经济将废物回收与利用有机生物质废物进行生物能源、生物基材料和生化生产联系起来。这种整合促进了资源的有效利用,减少了温室气体排放,促进了经济的可持续增长。堆肥、厌氧消化、生物炭生产、气化、热解、颗粒化和先进的热转化技术等几种技术被用来有效地管理农业废物。垃圾发电系统和食物垃圾增值技术通过发酵、酯交换和厌氧消化将农业垃圾转化为可再生能源,如生物乙醇、生物柴油和沼气。这些生物燃料提供了化石燃料的可再生替代品,减少了温室气体排放和对不可再生资源的依赖。稻壳是一种全球丰富的农业废弃物,可以通过直接燃烧和快速热解等技术用于能源生产。生物丁醇是一种由丙酮-丁醇-乙醇发酵合成的燃料,是一种很有前途的燃料选择。农业废弃物还可以作为有机酸、溶剂和聚合物等生物基化学品的原料,减少对石油基化学品的依赖。农业废弃物如草、蒜皮和米糠在废水处理中显示出染料吸附的潜力。此外,农业废物可以重新用作动物饲料,有助于减少废物并为牲畜提供可持续的营养。植物种子和绿色生物质提供可持续的蛋白质来源,而秸秆和锯末等残留物可用于蘑菇培养。像淀粉和纤维素这样的农业废弃物生物聚合物可以转化为可生物降解的塑料和生物复合材料,提供了环保的替代品。此外,秸秆、稻壳和竹子等农业废弃物可以加工成建筑材料,减少建筑项目对环境的影响。从植物残留物和果渣中提取的提取物可用于药品、保健品和化妆品。将农业废弃物转化为食品、饲料、纤维和燃料,可以最大限度地减少浪费,最大限度地提高资源效率,从而生产高价值产品。
{"title":"Valorizing Bio-Waste and Residuals.","authors":"Aikaterina L Stefi, Konstantinos E Vorgias","doi":"10.1007/10_2025_278","DOIUrl":"10.1007/10_2025_278","url":null,"abstract":"<p><p>The circular bioeconomy connects waste recycling with utilizing organic biomass waste for bioenergy, bio-based materials, and biochemical production. This integration promotes efficient resource utilization, reduced greenhouse gas emissions, and sustainable economic growth. Several technologies such as composting, anaerobic digestion, biochar production, gasification, pyrolysis, pelletization, and advanced thermal conversion technologies are utilized to manage agricultural waste efficiently. Waste-to-energy systems and food waste valorization techniques are employed to convert agro-waste into renewable energy sources such as bioethanol, biodiesel, and biogas through fermentation, transesterification, and anaerobic digestion. These biofuels offer renewable alternatives to fossil fuels, reducing greenhouse gas emissions and dependence on non-renewable resources. Rice husk, a globally abundant agricultural waste, can be utilized for energy production through technologies like direct combustion and fast pyrolysis. Biobutanol, synthesized from acetone-butanol-ethanol fermentation of agricultural residues like orange peel, presents a promising fuel option. Agricultural waste can also serve as feedstock for bio-based chemicals like organic acids, solvents, and polymers, reducing reliance on petroleum-based chemicals. Agro-waste materials like grass, garlic peel, and rice bran have shown potential for dye adsorption in wastewater treatment applications. Moreover, agricultural waste can be repurposed as animal feed, contributing to waste reduction and providing sustainable nutrition for livestock. Plant seeds and green biomass offer sustainable protein sources, while residues like straw and sawdust can be used for mushroom cultivation. Agro-waste biopolymers like starch and cellulose can be transformed into biodegradable plastics and biocomposites, offering eco-friendly alternatives. Additionally, agro-waste materials like straw, rice husks, and bamboo can be processed into construction materials, reducing environmental impact in building projects. Extracts from plant residues and fruit pomace can be utilized in pharmaceuticals, nutraceuticals, and cosmetics. Valorizing agro-waste for food, feed, fibers, and fuel offers opportunities to minimize waste and maximize resource efficiency, resulting in high-value products.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"63-98"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable Bioproduction with Euglena gracilis: A Function of Light Flux or Carbon Source, Supplements, and Time. 细叶黄的可变生物生产:光通量或碳源、补充物和时间的函数。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-01-01 DOI: 10.1007/10_2025_287
Dominik Cholewa, Tulsi Wormuth

Euglena gracilis is neither a plant nor an animal. It generates its energy from light and CO2 purely photoautotrophically or it assimilates a carbon source chemoheterotrophically and transforms its chloroplasts into proplastids resulting in an animal cell structure. E. gracilis is a unicellular protist with a length of about 50 μm and developed by secondary endosymbiosis. For this reason, the chloroplasts have three membranes instead of a double membrane with a positive effect on the lipid content. It has no cell wall and is therefore easily bioavailable to humans. Euglena produces large amounts of vitamin E α-tocopherol and the β-1,3-glucan paramylon in granule form and has a good amount of lipids. Thanks to its contractile vacuole, Euglena is able to grow in a wide pH range from around pH 1-11. Cultivation in the acidic range thus simplifies cultivation on a technical scale under axenic conditions and enhances the solubility of solids and trace elements.

凤尾草既不是植物也不是动物。它纯粹光自养地从光和二氧化碳中产生能量,或者它化学异养地吸收碳源并将叶绿体转化为前质体,从而形成动物细胞结构。细叶菊是一种单细胞原生生物,体长约50 μm,由次生内共生发育而来。因此,叶绿体有三层膜而不是双膜,这对脂质含量有积极的影响。它没有细胞壁,因此很容易被人类利用。绿草籽以颗粒形式产生大量的维生素E α-生育酚和β-1,3-葡聚糖,并具有大量的脂质。由于其可收缩的液泡,绿枝草能够在pH 1-11的宽pH范围内生长。因此,在酸性范围内的栽培简化了在无菌条件下的技术规模栽培,并提高了固体和微量元素的溶解度。
{"title":"Variable Bioproduction with Euglena gracilis: A Function of Light Flux or Carbon Source, Supplements, and Time.","authors":"Dominik Cholewa, Tulsi Wormuth","doi":"10.1007/10_2025_287","DOIUrl":"10.1007/10_2025_287","url":null,"abstract":"<p><p>Euglena gracilis is neither a plant nor an animal. It generates its energy from light and CO<sub>2</sub> purely photoautotrophically or it assimilates a carbon source chemoheterotrophically and transforms its chloroplasts into proplastids resulting in an animal cell structure. E. gracilis is a unicellular protist with a length of about 50 μm and developed by secondary endosymbiosis. For this reason, the chloroplasts have three membranes instead of a double membrane with a positive effect on the lipid content. It has no cell wall and is therefore easily bioavailable to humans. Euglena produces large amounts of vitamin E α-tocopherol and the β-1,3-glucan paramylon in granule form and has a good amount of lipids. Thanks to its contractile vacuole, Euglena is able to grow in a wide pH range from around pH 1-11. Cultivation in the acidic range thus simplifies cultivation on a technical scale under axenic conditions and enhances the solubility of solids and trace elements.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"229-249"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145129715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biotechnological Applications of Cyanobacteria: Synechocystis and Synechococcus Strains. 蓝藻的生物技术应用:聚囊菌和聚球菌菌株。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-01-01 DOI: 10.1007/10_2025_282
Paul Bolay, Jörg Toepel, Bruno Bühler

Cyanobacteria as phototrophic microorganisms bear great potential for biotechnological application and a truly sustainable bioeconomy. Besides production of biomass and natural compounds, CO2-based production of diverse value-added compounds with engineered strains enjoys ever-growing interest. Representatives of the genera Synechocystis and Synechococcus are the most used cyanobacterial model organisms for this purpose, with studies ranging from basic research to their utilization as cell factories. For both genera, genetic tools become more and more established, being, however, still far less advanced compared to those available for heterotrophic workhorse strains. Production of CO2-based compounds, typically established on a proof-of-concept basis, ranges from highly complex products such as pigments, proteins, and hormones to more simple bulk products such as biofuels and commodity chemicals. For some small molecules, e.g., isobutyraldehyde, 2,3-butanediol, L-lactic acid, sucrose, and ethanol, the gram per liter scale has been achieved. The general benefits of cyanobacterial photobiotechnology are the use of light as energy source and the capacity to use CO2 via photosynthetic carbon fixation. Additionally, the photosynthetic apparatus offers the opportunity to directly utilize electrons derived from photosynthetic water oxidation for redox biotransformations. In this respect, several enzymes have successfully been implemented in cyanobacterial strains, and high specific rates comparable to those achieved with heterotrophs have been reached. Moreover, oxygenic photosynthesis provides an ideal framework to implement oxyfunctionalization reactions also benefitting from the intracellular in situ supply of O2. This chapter summarizes the recent advances in cyanobacterial biotechnology with a focus on Synechocystis and Synechococcus strains, encompassing both biotransformation reactions and CO2-based product formation. Additionally, we discuss advantages and limitations of cyanobacterial chassis strains and give perspectives for future research and required measures to establish this unique group of bacteria in industrial biotechnology.

蓝藻作为光养微生物具有巨大的生物技术应用潜力和真正可持续的生物经济。除了生物质和天然化合物的生产外,利用工程菌株以二氧化碳为基础生产各种增值化合物的兴趣也越来越大。聚囊菌属和聚囊球菌属的代表是用于此目的的最常用的蓝藻模式生物,其研究范围从基础研究到作为细胞工厂的利用。对于这两个属,遗传工具变得越来越成熟,然而,与那些可用于异养主力菌株的遗传工具相比,仍然远远不够先进。二氧化碳基化合物的生产通常建立在概念验证的基础上,范围从颜料、蛋白质和激素等高度复杂的产品到生物燃料和商品化学品等更简单的大宗产品。对于一些小分子,如异丁醛、2,3-丁二醇、l -乳酸、蔗糖和乙醇,已经达到了克/升的比例。蓝藻光生物技术的一般好处是利用光作为能源和利用二氧化碳通过光合作用固定碳的能力。此外,光合装置提供了直接利用光合水氧化产生的电子进行氧化还原生物转化的机会。在这方面,几种酶已经成功地在蓝藻菌株中实施,并且达到了与异养菌相当的高特异性率。此外,含氧光合作用为实现氧化官能化反应提供了一个理想的框架,也受益于细胞内的原位氧气供应。本章总结了蓝藻生物技术的最新进展,重点是聚囊菌和聚囊球菌菌株,包括生物转化反应和基于二氧化碳的产物形成。此外,我们还讨论了蓝藻底盘菌株的优势和局限性,并对未来的研究和在工业生物技术中建立这一独特细菌群所需采取的措施提出了展望。
{"title":"Biotechnological Applications of Cyanobacteria: Synechocystis and Synechococcus Strains.","authors":"Paul Bolay, Jörg Toepel, Bruno Bühler","doi":"10.1007/10_2025_282","DOIUrl":"10.1007/10_2025_282","url":null,"abstract":"<p><p>Cyanobacteria as phototrophic microorganisms bear great potential for biotechnological application and a truly sustainable bioeconomy. Besides production of biomass and natural compounds, CO<sub>2</sub>-based production of diverse value-added compounds with engineered strains enjoys ever-growing interest. Representatives of the genera Synechocystis and Synechococcus are the most used cyanobacterial model organisms for this purpose, with studies ranging from basic research to their utilization as cell factories. For both genera, genetic tools become more and more established, being, however, still far less advanced compared to those available for heterotrophic workhorse strains. Production of CO<sub>2</sub>-based compounds, typically established on a proof-of-concept basis, ranges from highly complex products such as pigments, proteins, and hormones to more simple bulk products such as biofuels and commodity chemicals. For some small molecules, e.g., isobutyraldehyde, 2,3-butanediol, L-lactic acid, sucrose, and ethanol, the gram per liter scale has been achieved. The general benefits of cyanobacterial photobiotechnology are the use of light as energy source and the capacity to use CO<sub>2</sub> via photosynthetic carbon fixation. Additionally, the photosynthetic apparatus offers the opportunity to directly utilize electrons derived from photosynthetic water oxidation for redox biotransformations. In this respect, several enzymes have successfully been implemented in cyanobacterial strains, and high specific rates comparable to those achieved with heterotrophs have been reached. Moreover, oxygenic photosynthesis provides an ideal framework to implement oxyfunctionalization reactions also benefitting from the intracellular in situ supply of O<sub>2</sub>. This chapter summarizes the recent advances in cyanobacterial biotechnology with a focus on Synechocystis and Synechococcus strains, encompassing both biotransformation reactions and CO<sub>2</sub>-based product formation. Additionally, we discuss advantages and limitations of cyanobacterial chassis strains and give perspectives for future research and required measures to establish this unique group of bacteria in industrial biotechnology.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"155-191"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion. 农业废弃物转化为增值产品:废弃物转化的经济和环境视角。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-01-01 DOI: 10.1007/10_2024_274
Stephen Oyedeji, Nikita Patel, Ramar Krishnamurthy, Paul Ojo Fatoba

The conversion of agricultural wastes to value-added products has emerged as a pivotal strategy in fostering economic transformation. This chapter explores the transformative potential of converting agricultural residues into valued commodities that contribute to sustainability and economic growth. Agricultural wastes, often considered environmental liabilities, possess untapped benefits with great economic value. By employing innovative technologies, these wastes can be converted into a range of value-added products, such as substrates for agricultural production, biofuels, organic fertilizers, natural dyes, pharmaceuticals, and packaging materials. This approach not only mitigates the environmental impact of waste disposal but also provides new revenue streams for farmers, entrepreneurs and governments. In the economic landscape, the creation of value-added products from agricultural wastes serves as a catalyst for job creation, income generation, and rural development. Additionally, the development of a value chain around agricultural waste-derived products strengthens the resilience of the agricultural sector while diversifying the sources of income for farmers and reducing their dependence on major crops as income source. It also fosters innovation by encouraging the development of new technologies and industrial processes for efficient waste utilization and creation of novel products with diverse applications. From the environmental perspective, the conversion of agricultural waste to valuable products reduces environmental pollution, mitigates climate change, and improves the quality of life. The production of biofuels from agricultural residues has the potential to address energy security concerns, provide alternative and renewable energy sources, and allow for energy sufficiency. This chapter exposes the hidden economic potentials in agricultural wastes for farmers, entrepreneurs, policymakers, and government to explore. The transformation of agricultural wastes into value-added products if fully harnessed will play a critical role in the economic transformation of many nations across the globe while addressing the environmental challenges that come with waste management and industrialization.

农业废弃物转化为增值产品已成为促进经济转型的关键战略。本章探讨了将农业残留物转化为有助于可持续发展和经济增长的有价值商品的变革潜力。农业废弃物通常被认为是环境负担,但却具有巨大的经济价值。通过采用创新技术,这些废物可以转化为一系列增值产品,如农业生产的基质、生物燃料、有机肥料、天然染料、药品和包装材料。这种方法不仅减轻了废物处理对环境的影响,而且还为农民、企业家和政府提供了新的收入来源。在经济领域,利用农业废弃物创造增值产品是创造就业、创收和农村发展的催化剂。此外,围绕农业废物衍生产品发展价值链可增强农业部门的抵御力,同时使农民的收入来源多样化,减少他们对主要作物作为收入来源的依赖。它还鼓励开发新的技术和工业过程,以便有效利用废物和创造具有多种用途的新产品,从而促进创新。从环境的角度来看,农业废弃物转化为有价值的产品减少了环境污染,减缓了气候变化,提高了生活质量。从农业残留物中生产生物燃料有可能解决能源安全问题,提供替代能源和可再生能源,并实现能源充足。本章揭示了农业废弃物中隐藏的经济潜力,供农民、企业家、政策制定者和政府探索。农业废物转化为增值产品如果得到充分利用,将在全球许多国家的经济转型中发挥关键作用,同时解决废物管理和工业化带来的环境挑战。
{"title":"Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion.","authors":"Stephen Oyedeji, Nikita Patel, Ramar Krishnamurthy, Paul Ojo Fatoba","doi":"10.1007/10_2024_274","DOIUrl":"10.1007/10_2024_274","url":null,"abstract":"<p><p>The conversion of agricultural wastes to value-added products has emerged as a pivotal strategy in fostering economic transformation. This chapter explores the transformative potential of converting agricultural residues into valued commodities that contribute to sustainability and economic growth. Agricultural wastes, often considered environmental liabilities, possess untapped benefits with great economic value. By employing innovative technologies, these wastes can be converted into a range of value-added products, such as substrates for agricultural production, biofuels, organic fertilizers, natural dyes, pharmaceuticals, and packaging materials. This approach not only mitigates the environmental impact of waste disposal but also provides new revenue streams for farmers, entrepreneurs and governments. In the economic landscape, the creation of value-added products from agricultural wastes serves as a catalyst for job creation, income generation, and rural development. Additionally, the development of a value chain around agricultural waste-derived products strengthens the resilience of the agricultural sector while diversifying the sources of income for farmers and reducing their dependence on major crops as income source. It also fosters innovation by encouraging the development of new technologies and industrial processes for efficient waste utilization and creation of novel products with diverse applications. From the environmental perspective, the conversion of agricultural waste to valuable products reduces environmental pollution, mitigates climate change, and improves the quality of life. The production of biofuels from agricultural residues has the potential to address energy security concerns, provide alternative and renewable energy sources, and allow for energy sufficiency. This chapter exposes the hidden economic potentials in agricultural wastes for farmers, entrepreneurs, policymakers, and government to explore. The transformation of agricultural wastes into value-added products if fully harnessed will play a critical role in the economic transformation of many nations across the globe while addressing the environmental challenges that come with waste management and industrialization.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"215-248"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of Agricultural Residues to Valuable Products: A Circular Bioeconomy Approach. 农业残留物转化为有价值产品:循环生物经济方法。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-01-01 DOI: 10.1007/10_2025_276
Stefan Shilev, Ivelina Neykova, Slaveya Petrova

Intensive agricultural production generates a lot of residues yearly, exhausting and depleting the soils and accumulating pesticides and mineral fertilizers. Although introducing the no-till technologies is related to the reduction of tillage, leaving most of the plant residues on the field and decreasing fertigation, the global crop residues are estimated to be 2800 million tons per year. They could be successfully utilized via several approaches integrated into the circular bioeconomy concept. Thus, stopping the existing vicious circle of digging most of the primary materials such as fossil fuels, the vast application of chemical fertilizers, gaining increased or restored biodiversity, capturing CO2 into the soils and enhancing the organic content, having cleaner underground waters, soils and crop production, and finally improved quality of life. The transformation of these residues into value-added products faces various technological and commercialization difficulties that limit their fuller utilization. In the present chapter, we aim to describe the production of agricultural residues in the EU and present their properties and technologies for biological valorization. In addition, the potential risks associated with the micro- and nano-plastics content of agricultural residues are discussed.

集约化农业生产每年产生大量的废弃物,使土壤耗竭,积累农药和矿质肥料。虽然免耕技术的引入涉及到减少耕作,将大部分植物残茬留在田间和减少施肥,但全球作物残茬估计每年为28亿吨。它们可以通过与循环生物经济概念相结合的几种方法成功地加以利用。因此,停止现有的恶性循环:挖掘化石燃料等大部分原始材料,大量使用化肥,增加或恢复生物多样性,将二氧化碳捕获到土壤中,提高有机含量,拥有更清洁的地下水、土壤和作物生产,最终提高生活质量。将这些残留物转化为增值产品面临各种技术和商业化困难,限制了它们的更充分利用。在本章中,我们的目标是描述欧盟农业残留物的生产,并介绍它们的特性和生物增值技术。此外,还讨论了与农业残留物中微塑料和纳米塑料含量相关的潜在风险。
{"title":"Valorization of Agricultural Residues to Valuable Products: A Circular Bioeconomy Approach.","authors":"Stefan Shilev, Ivelina Neykova, Slaveya Petrova","doi":"10.1007/10_2025_276","DOIUrl":"10.1007/10_2025_276","url":null,"abstract":"<p><p>Intensive agricultural production generates a lot of residues yearly, exhausting and depleting the soils and accumulating pesticides and mineral fertilizers. Although introducing the no-till technologies is related to the reduction of tillage, leaving most of the plant residues on the field and decreasing fertigation, the global crop residues are estimated to be 2800 million tons per year. They could be successfully utilized via several approaches integrated into the circular bioeconomy concept. Thus, stopping the existing vicious circle of digging most of the primary materials such as fossil fuels, the vast application of chemical fertilizers, gaining increased or restored biodiversity, capturing CO<sub>2</sub> into the soils and enhancing the organic content, having cleaner underground waters, soils and crop production, and finally improved quality of life. The transformation of these residues into value-added products faces various technological and commercialization difficulties that limit their fuller utilization. In the present chapter, we aim to describe the production of agricultural residues in the EU and present their properties and technologies for biological valorization. In addition, the potential risks associated with the micro- and nano-plastics content of agricultural residues are discussed.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"185-214"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanothermobacter thermautotrophicus and Alternative Methanogens: Archaea-Based Production. 热自养甲烷杆菌和其他甲烷菌:基于古细菌的生产。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-01-01 DOI: 10.1007/10_2024_270
Lucas Mühling, Tina Baur, Bastian Molitor

Methanogenic archaea convert bacterial fermentation intermediates from the decomposition of organic material into methane. This process has relevance in the global carbon cycle and finds application in anthropogenic processes, such as wastewater treatment and anaerobic digestion. Furthermore, methanogenic archaea that utilize hydrogen and carbon dioxide as substrates are being employed as biocatalysts for the biomethanation step of power-to-gas technology. This technology converts hydrogen from water electrolysis and carbon dioxide into renewable natural gas (i.e., methane). The application of methanogenic archaea in bioproduction beyond methane has been demonstrated in only a few instances and is limited to mesophilic species for which genetic engineering tools are available. In this chapter, we discuss recent developments for those existing genetically tractable systems and the inclusion of novel genetic tools for thermophilic methanogenic species. We then give an overview of recombinant bioproduction with mesophilic methanogenic archaea and thermophilic non-methanogenic microbes. This is the basis for discussing putative products with thermophilic methanogenic archaea, specifically the species Methanothermobacter thermautotrophicus. We give estimates of potential conversion efficiencies for those putative products based on a genome-scale metabolic model for M. thermautotrophicus.

产甲烷古细菌将有机物分解产生的细菌发酵中间产物转化为甲烷。这一过程与全球碳循环息息相关,并在废水处理和厌氧消化等人为过程中得到应用。此外,利用氢气和二氧化碳作为底物的产甲烷古细菌被用作生物催化剂,用于电力制气技术的生物甲烷化步骤。这项技术将电解水产生的氢和二氧化碳转化为可再生天然气(即甲烷)。产甲烷古细菌在甲烷以外生物生产中的应用仅在少数情况下得到证实,而且仅限于已有基因工程工具的中嗜酸性物种。在本章中,我们将讨论这些现有可遗传系统的最新发展,以及为嗜热甲烷菌种纳入新型遗传工具的情况。然后,我们概述了嗜中温生甲烷古细菌和嗜热非甲烷微生物的重组生物生产。在此基础上,我们讨论了嗜热甲烷古细菌,特别是热自养型甲烷杆菌(Methanothermobacter thermautotrophicus)的可能产品。我们根据热自养甲烷菌的基因组尺度代谢模型,对这些假定产物的潜在转化效率进行了估算。
{"title":"Methanothermobacter thermautotrophicus and Alternative Methanogens: Archaea-Based Production.","authors":"Lucas Mühling, Tina Baur, Bastian Molitor","doi":"10.1007/10_2024_270","DOIUrl":"10.1007/10_2024_270","url":null,"abstract":"<p><p>Methanogenic archaea convert bacterial fermentation intermediates from the decomposition of organic material into methane. This process has relevance in the global carbon cycle and finds application in anthropogenic processes, such as wastewater treatment and anaerobic digestion. Furthermore, methanogenic archaea that utilize hydrogen and carbon dioxide as substrates are being employed as biocatalysts for the biomethanation step of power-to-gas technology. This technology converts hydrogen from water electrolysis and carbon dioxide into renewable natural gas (i.e., methane). The application of methanogenic archaea in bioproduction beyond methane has been demonstrated in only a few instances and is limited to mesophilic species for which genetic engineering tools are available. In this chapter, we discuss recent developments for those existing genetically tractable systems and the inclusion of novel genetic tools for thermophilic methanogenic species. We then give an overview of recombinant bioproduction with mesophilic methanogenic archaea and thermophilic non-methanogenic microbes. This is the basis for discussing putative products with thermophilic methanogenic archaea, specifically the species Methanothermobacter thermautotrophicus. We give estimates of potential conversion efficiencies for those putative products based on a genome-scale metabolic model for M. thermautotrophicus.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"27-58"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Amoeba Dictyostelium discoideum as Novel Production Host for Complex Substances. 作为复杂物质新生产宿主的盘状变形虫。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-01-01 DOI: 10.1007/10_2025_283
Johann E Kufs, Christin Reimer, Lars Regestein

In this chapter, we discuss the necessity of novel chassis organisms for the production of natural products to steer away from petrochemical approaches and the usage of common model organisms. We present the social amoeba Dictyostelium discoideum as a novel host for the production of complex organic substances and exploration of cryptic biosynthetic routes of secondary metabolites. We shed light on the genetic repertoire of the amoeba in terms of natural product biosyntheses and give an overview of growth characteristics, genetic engineering tools, and cultivation methodologies from shake flasks to stirred-tank bioreactors. Finally, an outlook is made on the perspective of D. discoideum as the chassis for biotechnological production and discovery of novel active substances.

在本章中,我们讨论了新型底盘生物对天然产物生产的必要性,以避开石化方法和普通模式生物的使用。我们提出了社会性变形虫盘齿骨变形虫作为生产复杂有机物和探索次生代谢物的隐生物合成途径的新宿主。我们在自然产物生物合成方面阐明了变形虫的遗传曲目,并概述了从摇瓶到搅拌槽生物反应器的生长特征、基因工程工具和培养方法。最后,展望了盘菜作为生物技术生产和新活性物质发现的基础的前景。
{"title":"The Amoeba Dictyostelium discoideum as Novel Production Host for Complex Substances.","authors":"Johann E Kufs, Christin Reimer, Lars Regestein","doi":"10.1007/10_2025_283","DOIUrl":"10.1007/10_2025_283","url":null,"abstract":"<p><p>In this chapter, we discuss the necessity of novel chassis organisms for the production of natural products to steer away from petrochemical approaches and the usage of common model organisms. We present the social amoeba Dictyostelium discoideum as a novel host for the production of complex organic substances and exploration of cryptic biosynthetic routes of secondary metabolites. We shed light on the genetic repertoire of the amoeba in terms of natural product biosyntheses and give an overview of growth characteristics, genetic engineering tools, and cultivation methodologies from shake flasks to stirred-tank bioreactors. Finally, an outlook is made on the perspective of D. discoideum as the chassis for biotechnological production and discovery of novel active substances.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"215-228"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. 穿戴实验室:用于连续生化传感的皮肤界面系统的进展与挑战。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_238
Zach Watkins, Adam McHenry, Jason Heikenfeld

Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.

连续、按需、最重要的是,有关个人生物标记物浓度的上下文数据是个性化健康和性能监测的圣杯。连续血糖监测就很好地证明了这一点,在过去的二十年里,连续血糖监测极大地改善了糖尿病患者的治疗效果和生活质量。可穿戴生物传感技术(生物识别元件、传导机制、材料和集成方案)的最新进展已开始使通过微创皮肤界面设备监测其他临床相关分析物成为现实。然而,在这些系统实现商业化之前,还必须解决灵敏度、特异性、校准、传感器寿命和整个设备寿命等方面的一些难题。在本章中,我们将仔细考虑监测汗液和组织间液中某些分析物的可行性,以及目前可用于监测的工具的发展情况,为所需应用提出一个开发可穿戴式皮肤界面设备的逻辑框架。具体来说,我们将重点关注生物识别元件工程方面的最新进展、更强大的信号转导机制的开发以及可进行连续定量分析的新型集成方案。此外,我们还强调了可穿戴生物传感领域最引人注目和最有前景的前景,以及在将这些技术转化为有用产品用于疾病管理和优化人类表现方面仍然存在的挑战。
{"title":"Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing.","authors":"Zach Watkins, Adam McHenry, Jason Heikenfeld","doi":"10.1007/10_2023_238","DOIUrl":"10.1007/10_2023_238","url":null,"abstract":"<p><p>Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"223-282"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. 合理设计用于蛋白质传感的 DNA 支架和切换探针。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_235
Alejandro Chamorro, Marianna Rossetti, Neda Bagheri, Alessandro Porchetta

The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.

蛋白质分析物的检测以及将这类信息用于疾病诊断和生理监测需要高灵敏度和高特异性的方法,这些方法还必须易于使用、快速,最好是一步到位。在过去的 10 年中,为了实现蛋白质生物标志物的定量读出,人们开发了许多基于 DNA 的传感方法和传感器。受基于结构转换生物分子的天然化学传感器的快速性、特异性和多功能性的启发,人们做出了巨大努力,将这些机制复制到用于蛋白质检测的人工生物传感器的制造中。作为一种替代方法,在支架 DNA 生物传感器中,不同的识别元件(如肽、蛋白质、小分子和抗体)可以高精度地连接到 DNA 支架上,从而以高亲和力和特异性与目标蛋白质发生特异性相互作用。它们具有多种优势和潜力,尤其是因为它们可以显著增强转导信号。我们在此旨在概述基于结构转换和支架 DNA 传感器的最佳实例,并向读者介绍基于可编程功能 DNA 系统的蛋白质检测创新传感机制和策略的合理设计。
{"title":"Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing.","authors":"Alejandro Chamorro, Marianna Rossetti, Neda Bagheri, Alessandro Porchetta","doi":"10.1007/10_2023_235","DOIUrl":"10.1007/10_2023_235","url":null,"abstract":"<p><p>The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"71-106"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in biochemical engineering/biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1