Xiaorong Zhang, Aysu Yarman, Mahdien Bagheri, Ibrahim M El-Sherbiny, Rabeay Y A Hassan, Sevinc Kurbanoglu, Armel Franklin Tadjoung Waffo, Ingo Zebger, Tutku Ceren Karabulut, Frank F Bier, Peter Lieberzeit, Frieder W Scheller
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
{"title":"Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs).","authors":"Xiaorong Zhang, Aysu Yarman, Mahdien Bagheri, Ibrahim M El-Sherbiny, Rabeay Y A Hassan, Sevinc Kurbanoglu, Armel Franklin Tadjoung Waffo, Ingo Zebger, Tutku Ceren Karabulut, Frank F Bier, Peter Lieberzeit, Frieder W Scheller","doi":"10.1007/10_2023_234","DOIUrl":"10.1007/10_2023_234","url":null,"abstract":"<p><p>Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"107-148"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54227354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nunzio Giorgio G Carducci, Sunanda Dey, David P Hickey
This chapter provides a comprehensive overview of microbial electrochemical biosensors, which are a unique class of biosensors that utilize the metabolic activity of microorganisms to convert chemical signals into electrical signals. The principles and mechanisms of these biosensors are discussed, including the different types of microorganisms that can be used. The various applications of microbial electrochemical biosensors in fields such as environmental monitoring, medical diagnostics, and food safety are also explored. The chapter concludes with a discussion of future research directions and potential advancements in the field of microbial electrochemical biosensors.
{"title":"Recent Developments and Applications of Microbial Electrochemical Biosensors.","authors":"Nunzio Giorgio G Carducci, Sunanda Dey, David P Hickey","doi":"10.1007/10_2023_236","DOIUrl":"10.1007/10_2023_236","url":null,"abstract":"<p><p>This chapter provides a comprehensive overview of microbial electrochemical biosensors, which are a unique class of biosensors that utilize the metabolic activity of microorganisms to convert chemical signals into electrical signals. The principles and mechanisms of these biosensors are discussed, including the different types of microorganisms that can be used. The various applications of microbial electrochemical biosensors in fields such as environmental monitoring, medical diagnostics, and food safety are also explored. The chapter concludes with a discussion of future research directions and potential advancements in the field of microbial electrochemical biosensors.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"149-183"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rapid diagnosis and treatment of infectious illnesses are crucial for clinical outcomes and public health. Biosensing developments enhance diagnostics at the point of care. This is superior to traditional procedures, which need centralized lab facilities, specialized personnel, and large equipment. The emerging coronavirus epidemic threatens global health and economic security. Increasing viral surveillance and regulatory actions against disease transmission necessitate rapid, sensitive testing tools for viruses. Due to their sensitivity and specificity, biosensors offer a possible reliable and quantifiable viral detection method. Current advances in genetic engineering, such as genetic alteration and material engineering, have provided several opportunities to enhance biosensors' sensitivity, selectivity, and recognition efficiency. This chapter explains biosensing techniques, biosensor varieties, and signal amplification technologies. Challenges and potential developments for viral microorganisms based on biosensors and signal amplification were also investigated.
{"title":"Signal-Amplified Nanobiosensors for Virus Detection Using Advanced Nanomaterials.","authors":"Akhilesh Babu Ganganboina, Enoch Y Park","doi":"10.1007/10_2023_244","DOIUrl":"10.1007/10_2023_244","url":null,"abstract":"<p><p>Rapid diagnosis and treatment of infectious illnesses are crucial for clinical outcomes and public health. Biosensing developments enhance diagnostics at the point of care. This is superior to traditional procedures, which need centralized lab facilities, specialized personnel, and large equipment. The emerging coronavirus epidemic threatens global health and economic security. Increasing viral surveillance and regulatory actions against disease transmission necessitate rapid, sensitive testing tools for viruses. Due to their sensitivity and specificity, biosensors offer a possible reliable and quantifiable viral detection method. Current advances in genetic engineering, such as genetic alteration and material engineering, have provided several opportunities to enhance biosensors' sensitivity, selectivity, and recognition efficiency. This chapter explains biosensing techniques, biosensor varieties, and signal amplification technologies. Challenges and potential developments for viral microorganisms based on biosensors and signal amplification were also investigated.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"381-412"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rüdiger W Maschke, Stefan Seidel, Lia Rossi, Dieter Eibl, Regine Eibl
The bioreactor is the centerpiece of the upstream processing in any biotechnological production process. Its design, the cultivation parameters, the production cell line, and the culture medium all have a major influence on the efficiency of the process and the result of the cultivation. Disposable bioreactors have been used for the past 20 years, playing a major role in process development and commercial production of high-value substances at medium scales.Our review deals with scalable, disposable bioreactors that have proven to be useful for the cultivation of plant cell and tissue cultures. Based on the definitions of terms and a categorization approach, the most commonly used, commercially available, disposable bioreactor types are presented below. The focus is on wave-mixed, stirred, and orbitally shaken bioreactors. In addition to their instrumentation and bioengineering characteristics, cultivation results are discussed, and emerging trends for the development of disposable bioreactors for plant cell and tissue cultures are also addressed.
{"title":"Disposable Bioreactors Used in Process Development and Production Processes with Plant Cell and Tissue Cultures.","authors":"Rüdiger W Maschke, Stefan Seidel, Lia Rossi, Dieter Eibl, Regine Eibl","doi":"10.1007/10_2024_249","DOIUrl":"10.1007/10_2024_249","url":null,"abstract":"<p><p>The bioreactor is the centerpiece of the upstream processing in any biotechnological production process. Its design, the cultivation parameters, the production cell line, and the culture medium all have a major influence on the efficiency of the process and the result of the cultivation. Disposable bioreactors have been used for the past 20 years, playing a major role in process development and commercial production of high-value substances at medium scales.Our review deals with scalable, disposable bioreactors that have proven to be useful for the cultivation of plant cell and tissue cultures. Based on the definitions of terms and a categorization approach, the most commonly used, commercially available, disposable bioreactor types are presented below. The focus is on wave-mixed, stirred, and orbitally shaken bioreactors. In addition to their instrumentation and bioengineering characteristics, cultivation results are discussed, and emerging trends for the development of disposable bioreactors for plant cell and tissue cultures are also addressed.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"119-144"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of plant proteins or peptides in biotechnology is based on their identification as possessing bioactive potential in plants. This is usually the case for antimicrobial, fungicidal, or insecticidal components of the plant's defense system. They function in addition to a large number of specialized metabolites. Such proteins can be classified according to their sequence, length, and structure, and this has been tried to describe for a few examples here. Even though such proteins or peptides can be induced during plant-pathogen interaction, they are still present in rather small amounts that make the system not suitable for the production in large-scale systems. Therefore, a suitable type of host needs to be identified, such as cell cultures or adult plants. Bioinformatic predictions can also be used to add to the number of bioactive sequences. Some problems that can occur in production by the plant system itself will be discussed, such as choice of promoter for gene expression, posttranslational protein modifications, protein stability, secretion of proteins, or induction by elicitors. Finally, the plant needs to be set up by biotechnological or molecular methods for production, and the product needs to be enriched or purified. In some cases of small peptides, a direct chemical synthesis might be feasible. Altogether, the process needs to be considered marketable.
{"title":"Production of Plant Proteins and Peptides with Pharmacological Potential.","authors":"Jutta Ludwig-Müller","doi":"10.1007/10_2023_246","DOIUrl":"10.1007/10_2023_246","url":null,"abstract":"<p><p>The use of plant proteins or peptides in biotechnology is based on their identification as possessing bioactive potential in plants. This is usually the case for antimicrobial, fungicidal, or insecticidal components of the plant's defense system. They function in addition to a large number of specialized metabolites. Such proteins can be classified according to their sequence, length, and structure, and this has been tried to describe for a few examples here. Even though such proteins or peptides can be induced during plant-pathogen interaction, they are still present in rather small amounts that make the system not suitable for the production in large-scale systems. Therefore, a suitable type of host needs to be identified, such as cell cultures or adult plants. Bioinformatic predictions can also be used to add to the number of bioactive sequences. Some problems that can occur in production by the plant system itself will be discussed, such as choice of promoter for gene expression, posttranslational protein modifications, protein stability, secretion of proteins, or induction by elicitors. Finally, the plant needs to be set up by biotechnological or molecular methods for production, and the product needs to be enriched or purified. In some cases of small peptides, a direct chemical synthesis might be feasible. Altogether, the process needs to be considered marketable.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"51-81"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139574301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The unique properties of plasmonic nanoparticles and nanostructures have enabled a broad range of applications in a diverse set of fields, ranging from biological sensing, cancer therapy, to catalysis. They have been some of the most studied nanomaterials due in part to their chemical stability and biocompatibility as well as supporting theoretical efforts. The synthesis and fabrication of plasmonic nanoparticles and nanostructures have now reached high precision and sophistication. We review here their fundamental optical properties, discuss their tailoring for biological environments, and then detail examples on how they have been used to innovate in the biological and biomedical fields.
{"title":"Applications of Gold Nanoparticles in Plasmonic and Nanophotonic Biosensing.","authors":"Kimberly Hamad-Schifferli","doi":"10.1007/10_2023_237","DOIUrl":"10.1007/10_2023_237","url":null,"abstract":"<p><p>The unique properties of plasmonic nanoparticles and nanostructures have enabled a broad range of applications in a diverse set of fields, ranging from biological sensing, cancer therapy, to catalysis. They have been some of the most studied nanomaterials due in part to their chemical stability and biocompatibility as well as supporting theoretical efforts. The synthesis and fabrication of plasmonic nanoparticles and nanostructures have now reached high precision and sophistication. We review here their fundamental optical properties, discuss their tailoring for biological environments, and then detail examples on how they have been used to innovate in the biological and biomedical fields.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"185-221"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This chapter provides a comprehensive overview of the principles, applications, and advancements in graphene field-effect transistor (gFET) biosensors for biological sensing. The unique properties of graphene that make it ideal for biosensing, including its high conductivity, chemical stability, and ability to facilitate label-free detection, will be discussed. The chapter also explores various applications of gFET biosensors, from detecting pH and salinity changes to complex protein-protein interactions and DNA/RNA sensing. It also addresses the challenges and future directions in gFET biosensor technology, emphasizing the need for scalable manufacturing, sophisticated surface chemistry, and the integration of multiomics approaches to enhance biosensing capabilities.
{"title":"Applications of Graphene Field Effect Biosensors for Biological Sensing.","authors":"Kiana Aran, Brett Goldsmith, Maryam Moarefian","doi":"10.1007/10_2024_252","DOIUrl":"10.1007/10_2024_252","url":null,"abstract":"<p><p>This chapter provides a comprehensive overview of the principles, applications, and advancements in graphene field-effect transistor (gFET) biosensors for biological sensing. The unique properties of graphene that make it ideal for biosensing, including its high conductivity, chemical stability, and ability to facilitate label-free detection, will be discussed. The chapter also explores various applications of gFET biosensors, from detecting pH and salinity changes to complex protein-protein interactions and DNA/RNA sensing. It also addresses the challenges and future directions in gFET biosensor technology, emphasizing the need for scalable manufacturing, sophisticated surface chemistry, and the integration of multiomics approaches to enhance biosensing capabilities.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"37-70"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139989002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javier Sánchez-España, Carmen Falagán, Jutta Meier
Aluminum biorecovery is still at an early stage. However, a significant number of studies showing promising results already exist, although they have revealed problems that need to be solved so aluminum biorecovery can have a wider application and industrial upscaling. In this chapter, we revise the existing knowledge on the biorecovery of aluminum from different sources. We discuss the design, overall performance, advantages, technical problems, limitations, and possible future directions of the different biotechnological methods that have been reported so far. Aluminum biorecovery from different sources has been studied (i.e., solid wastes and primary sources of variable origin, wastewater with low concentrations of dissolved aluminum at pH-neutral or weakly acidic conditions, and acidic mine waters with high concentrations of dissolved aluminum and other metal(loid)s) and has shown that the process efficiency strongly depends on factors such as (1) the physicochemical properties of the source materials, (2) the physiological features of the used (micro)organisms, or (3) the biochemical process used. Bioleaching of aluminum from low-grade bauxite or red mud can much be achieved by a diverse range of organisms (e.g., fungi, bacteria) with different metabolic rates. Biorecovery of aluminum from wastewaters, e.g., domestic wastewater, acidic mine water, has also been accomplished by the use of microalgae, cyanobacteria (for domestic wastewater) or by sulfate-reducing bacteria (acidic mine water). In most of the cases, the drawback of the process is the requirement of controlled conditions which involves a continuous supply of oxygen or maintenance of anoxic conditions which make aluminum biorecovery challenging in terms of process design and economical value. Further studies should focus on studying these processes in comparison or in combination to existing economical processes to assess their feasibility.
{"title":"Aluminum Biorecovery from Wastewaters.","authors":"Javier Sánchez-España, Carmen Falagán, Jutta Meier","doi":"10.1007/10_2024_256","DOIUrl":"10.1007/10_2024_256","url":null,"abstract":"<p><p>Aluminum biorecovery is still at an early stage. However, a significant number of studies showing promising results already exist, although they have revealed problems that need to be solved so aluminum biorecovery can have a wider application and industrial upscaling. In this chapter, we revise the existing knowledge on the biorecovery of aluminum from different sources. We discuss the design, overall performance, advantages, technical problems, limitations, and possible future directions of the different biotechnological methods that have been reported so far. Aluminum biorecovery from different sources has been studied (i.e., solid wastes and primary sources of variable origin, wastewater with low concentrations of dissolved aluminum at pH-neutral or weakly acidic conditions, and acidic mine waters with high concentrations of dissolved aluminum and other metal(loid)s) and has shown that the process efficiency strongly depends on factors such as (1) the physicochemical properties of the source materials, (2) the physiological features of the used (micro)organisms, or (3) the biochemical process used. Bioleaching of aluminum from low-grade bauxite or red mud can much be achieved by a diverse range of organisms (e.g., fungi, bacteria) with different metabolic rates. Biorecovery of aluminum from wastewaters, e.g., domestic wastewater, acidic mine water, has also been accomplished by the use of microalgae, cyanobacteria (for domestic wastewater) or by sulfate-reducing bacteria (acidic mine water). In most of the cases, the drawback of the process is the requirement of controlled conditions which involves a continuous supply of oxygen or maintenance of anoxic conditions which make aluminum biorecovery challenging in terms of process design and economical value. Further studies should focus on studying these processes in comparison or in combination to existing economical processes to assess their feasibility.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"89-117"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The recovery of metals from waste material has been on the increase in the past few years due to a number of reasons such as supporting the diversification of metal supply resources. In addition, the alternative use of the waste material for metal recovery can add to the main production line, boosting production throughput and profitability thus, allowing companies to sustain their activities during times of low commodity prices. While there has been a lot of research and interest in the recovery of precious metals such as platinum group metals (PGMs), Au, and Ag from solid waste material, there has been limited focus on the recovery of these value metals from wastewater. This is mostly related to challenges associated with finding cost-effective technologies that can recover these metals from solutions of low metal concentrations. In recent years, bio-based technologies have, however, become established as potential alternatives to traditional techniques in the treatment of wastewater due to their ability to recover metals from solutions of low concentrations. While wastewater might be characterized by some significant value metal content, it also contains other components that have potential economic value if recovered or converted to by-products. Such an approach may not only provide an opportunity for extraction of metal resources from wastewater but also contributes toward the circular economy. This chapter presents insights into precious metal recovery from wastewater using bio-based technologies, compares such an approach to the traditional techniques, explores the recovery of other value-added products and finally considers some of the challenges associated with the large-scale application of the bio-based technologies.
{"title":"Precious Metal Recovery from Wastewater Using Bio-Based Techniques.","authors":"Sehliselo Ndlovu, Anil Kumar","doi":"10.1007/10_2024_257","DOIUrl":"10.1007/10_2024_257","url":null,"abstract":"<p><p>The recovery of metals from waste material has been on the increase in the past few years due to a number of reasons such as supporting the diversification of metal supply resources. In addition, the alternative use of the waste material for metal recovery can add to the main production line, boosting production throughput and profitability thus, allowing companies to sustain their activities during times of low commodity prices. While there has been a lot of research and interest in the recovery of precious metals such as platinum group metals (PGMs), Au, and Ag from solid waste material, there has been limited focus on the recovery of these value metals from wastewater. This is mostly related to challenges associated with finding cost-effective technologies that can recover these metals from solutions of low metal concentrations. In recent years, bio-based technologies have, however, become established as potential alternatives to traditional techniques in the treatment of wastewater due to their ability to recover metals from solutions of low concentrations. While wastewater might be characterized by some significant value metal content, it also contains other components that have potential economic value if recovered or converted to by-products. Such an approach may not only provide an opportunity for extraction of metal resources from wastewater but also contributes toward the circular economy. This chapter presents insights into precious metal recovery from wastewater using bio-based technologies, compares such an approach to the traditional techniques, explores the recovery of other value-added products and finally considers some of the challenges associated with the large-scale application of the bio-based technologies.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"119-146"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The contamination of food by bacterial pathogens represents a substantial hazard for human and animal health. Therefore, considerable effort is focused on the development of effective methods for monitoring food safety. A current trend in this field is the development of biosensors that can be used in remote food laboratories and even in farms to check food contamination prior to its delivery to consumers or its further processing in the food industry. Among receptors that can recognize proteins or lipopolysaccharides (LPS) on bacterial surfaces, aptamers play an important role. An aptamer consists of a single strand of DNA or RNA that folds into a 3D structure when placed in a solution, forming a binding site for the target. This chapter presents an overview of recent achievements in bacterial pathogen detection through the development of electrochemical, optical, and acoustic biosensors based on DNA aptamers. Thus far, these biosensors exhibit good sensitivity and selectivity, comparable with conventional methods currently used in food laboratories. However, these biosensors offer several advantages over conventional methods: they are of low cost, easier to handle, and respond more quickly. Biosensor technology is therefore an important tool for monitoring food safety.
细菌病原体对食品的污染对人类和动物的健康造成了极大的危害。因此,人们将大量精力集中在开发有效的食品安全监控方法上。该领域目前的一个趋势是开发生物传感器,可用于远程食品实验室甚至农场,在食品送到消费者手中或在食品工业进一步加工之前检查食品污染情况。在能够识别细菌表面蛋白质或脂多糖(LPS)的受体中,适配体发挥着重要作用。适配体由 DNA 或 RNA 单链组成,当其置于溶液中时,会折叠成三维结构,形成目标物的结合位点。本章概述了最近通过开发基于 DNA 合体的电化学、光学和声学生物传感器在细菌病原体检测方面取得的成就。迄今为止,这些生物传感器表现出良好的灵敏度和选择性,可与食品实验室目前使用的传统方法相媲美。不过,与传统方法相比,这些生物传感器具有一些优势:成本低、更易于处理、响应速度更快。因此,生物传感器技术是监测食品安全的重要工具。
{"title":"Trends in Development of Aptamer-Based Biosensor Technology for Detection of Bacteria.","authors":"Tibor Hianik, Sandro Spagnolo, Michael Thompson","doi":"10.1007/10_2024_251","DOIUrl":"10.1007/10_2024_251","url":null,"abstract":"<p><p>The contamination of food by bacterial pathogens represents a substantial hazard for human and animal health. Therefore, considerable effort is focused on the development of effective methods for monitoring food safety. A current trend in this field is the development of biosensors that can be used in remote food laboratories and even in farms to check food contamination prior to its delivery to consumers or its further processing in the food industry. Among receptors that can recognize proteins or lipopolysaccharides (LPS) on bacterial surfaces, aptamers play an important role. An aptamer consists of a single strand of DNA or RNA that folds into a 3D structure when placed in a solution, forming a binding site for the target. This chapter presents an overview of recent achievements in bacterial pathogen detection through the development of electrochemical, optical, and acoustic biosensors based on DNA aptamers. Thus far, these biosensors exhibit good sensitivity and selectivity, comparable with conventional methods currently used in food laboratories. However, these biosensors offer several advantages over conventional methods: they are of low cost, easier to handle, and respond more quickly. Biosensor technology is therefore an important tool for monitoring food safety.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"339-380"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}