首页 > 最新文献

Advances in biochemical engineering/biotechnology最新文献

英文 中文
Correction to: The Human Gut Microbiota: A Dynamic Biologic Factory. 更正:人类肠道微生物群:动态生物工厂。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-09 DOI: 10.1007/10_2024_253
Alireza Minagar, Rabih Jabbour
{"title":"Correction to: The Human Gut Microbiota: A Dynamic Biologic Factory.","authors":"Alireza Minagar, Rabih Jabbour","doi":"10.1007/10_2024_253","DOIUrl":"10.1007/10_2024_253","url":null,"abstract":"","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed Culture Cultivation in Microbial Bioprocesses. 微生物生物工艺中的混合培养。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-29 DOI: 10.1007/10_2023_248
Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar

Mixed culture cultivation is well renowned for industrial applications due to its technological and economic benefits in bioprocess, food processing, and pharmaceutical industries. A mixed consortium encompasses to achieve growth in unsterile conditions, robustness to environmental stresses, perform difficult functions, show better substrate utilization, and increase productivity. Hence, mixed cultures are being valorized currently and has also augmented our understanding of microbial activities in communities. This chapter covers a wide range of discussion on recent improvements in mixed culture cultivation for microbial bioprocessing and multifarious applications in different areas. The history of microbial culture, microbial metabolism in mixed culture, biosynthetic pathway studies, isolation and identification of strains, along with the types of microbial interactions involved during their production and propagation, are meticulously detailed in the current chapter. Besides, parameters for evaluating mixed culture performance, large-scale production, and challenges associated with it are also discussed vividly. Microbial community, characteristics of single and mixed culture fermentation, and microbe-microbe interactions in mixed cultures have been summarized comprehensively. Lastly, various challenges and opportunities in the area of microbial mixed culture that are obligatory to improve the current knowledge of microbial bioprocesses are projected.

混合培养因其在生物加工、食品加工和制药行业的技术和经济效益而在工业应用中享有盛誉。混合培养菌群可以在无菌条件下生长,对环境压力有很强的适应能力,能执行一些困难的功能,显示出更好的底物利用率,并能提高生产率。因此,混合培养物目前正受到重视,也增进了我们对群落中微生物活动的了解。本章广泛讨论了混合培养在微生物生物加工方面的最新改进以及在不同领域的多种应用。本章详细介绍了微生物培养的历史、混合培养中的微生物新陈代谢、生物合成途径研究、菌株的分离和鉴定,以及生产和繁殖过程中涉及的微生物相互作用类型。此外,还生动地讨论了评估混合培养性能的参数、大规模生产以及与之相关的挑战。本章还全面总结了微生物群落、单一培养物和混合培养物发酵的特点以及混合培养物中微生物与微生物之间的相互作用。最后,预测了微生物混合培养领域的各种挑战和机遇,这些挑战和机遇对于提高现有的微生物生物工艺知识是必不可少的。
{"title":"Mixed Culture Cultivation in Microbial Bioprocesses.","authors":"Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar","doi":"10.1007/10_2023_248","DOIUrl":"10.1007/10_2023_248","url":null,"abstract":"<p><p>Mixed culture cultivation is well renowned for industrial applications due to its technological and economic benefits in bioprocess, food processing, and pharmaceutical industries. A mixed consortium encompasses to achieve growth in unsterile conditions, robustness to environmental stresses, perform difficult functions, show better substrate utilization, and increase productivity. Hence, mixed cultures are being valorized currently and has also augmented our understanding of microbial activities in communities. This chapter covers a wide range of discussion on recent improvements in mixed culture cultivation for microbial bioprocessing and multifarious applications in different areas. The history of microbial culture, microbial metabolism in mixed culture, biosynthetic pathway studies, isolation and identification of strains, along with the types of microbial interactions involved during their production and propagation, are meticulously detailed in the current chapter. Besides, parameters for evaluating mixed culture performance, large-scale production, and challenges associated with it are also discussed vividly. Microbial community, characteristics of single and mixed culture fermentation, and microbe-microbe interactions in mixed cultures have been summarized comprehensively. Lastly, various challenges and opportunities in the area of microbial mixed culture that are obligatory to improve the current knowledge of microbial bioprocesses are projected.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139989003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Human Gut Microbiota: A Dynamic Biologic Factory. 人类肠道微生物群:动态生物工厂
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-10 DOI: 10.1007/10_2023_243
Alireza Minagar, Rabih Jabbour

The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term "gut microbiota" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term "microbiome" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.

人体是数以万亿计的微生物的生存环境,这些微生物建立了微生物群,其中最大的群体居住在胃肠道内,建立了肠道微生物群。肠道微生物群 "是指在人类宿主体内共生的多种微生物(主要是细菌)的集合。微生物组 "一词指的是这些微生物的基因组集体内容。肠道微生物群中细菌细胞的数量超过了宿主细胞的数量,它们的基因在数量上也超过了宿主的基因。对肠道微生物群的性质和功能进行的大量科学研究正在揭示其在某些人类健康活动中的作用,如代谢、生理和免疫活动,以及在病理状态和疾病中的作用。有趣的是,微生物群是一个动态的生态系统,栖息于人类口腔或肠道等特定环境中。人类微生物群可以进化,甚至适应宿主的独特特征,如饮食习惯、基因构成、潜在疾病,甚至个性化习惯。在过去十年中,生物学家和生物信息学家将研究重点集中在肠道微生物组在人类疾病(尤其是免疫介导疾病和结直肠癌)发展过程中的潜在作用上,并开始评估肠道微生物组对宿主基因组的影响。在本章中,我们将重点介绍肠道微生物群的生物学特征、其作为生物工厂的生理学特性及其对宿主健康和疾病状态的影响。
{"title":"The Human Gut Microbiota: A Dynamic Biologic Factory.","authors":"Alireza Minagar, Rabih Jabbour","doi":"10.1007/10_2023_243","DOIUrl":"10.1007/10_2023_243","url":null,"abstract":"<p><p>The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term \"gut microbiota\" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term \"microbiome\" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selenium Removal from Wastewater by Microbial Transformation and Volatilization. 通过微生物转化和挥发去除废水中的硒。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-10 DOI: 10.1007/10_2023_242
Tochukwu Ekwonna, Olusegun Akindeju, Brianna Amos, Zhi-Qing Lin

Selenium (Se) is a naturally occurring trace element that is nutritionally essential for humans and animals, but becomes toxic at high concentrations. This laboratory study explored the role of microbes in Se removal from contaminated wastewater via biological transformation and volatilization processes. Microbes could immobilize water-soluble selenate (SeO42-) and selenite (SeO32-) to water-insoluble elemental Se (Se0) and transform Se into volatile Se compounds found in the atmosphere. Results of this laboratory study showed that Bacillus cereus, a bacterial strain isolated from wheat straw and biosolid-WTR-sand substrates showed a significant biotransformation ability of reducing selenate and selenite to elemental Se and forming volatile Se organic compounds in wastewater. Overall, microbial Se chemical reduction, methylation, and volatilization are important processes in bioremediation of Se-contaminated wastewater.

硒(Se)是一种天然存在的微量元素,是人类和动物所必需的营养元素,但浓度过高时则会产生毒性。这项实验室研究探讨了微生物通过生物转化和挥发过程从受污染的废水中去除硒的作用。微生物可将水溶性硒酸盐(SeO42-)和亚硒酸盐(SeO32-)固定为不溶于水的元素硒(Se0),并将硒转化为大气中的挥发性硒化合物。这项实验室研究的结果表明,从小麦秸秆和生物固体-WTR-砂基质中分离出来的细菌菌株枯草芽孢杆菌(Bacillus cereus)具有显著的生物转化能力,能将硒酸盐和亚硒酸盐还原成元素硒,并在废水中形成挥发性硒有机化合物。总之,微生物硒化学还原、甲基化和挥发是硒污染废水生物修复的重要过程。
{"title":"Selenium Removal from Wastewater by Microbial Transformation and Volatilization.","authors":"Tochukwu Ekwonna, Olusegun Akindeju, Brianna Amos, Zhi-Qing Lin","doi":"10.1007/10_2023_242","DOIUrl":"https://doi.org/10.1007/10_2023_242","url":null,"abstract":"<p><p>Selenium (Se) is a naturally occurring trace element that is nutritionally essential for humans and animals, but becomes toxic at high concentrations. This laboratory study explored the role of microbes in Se removal from contaminated wastewater via biological transformation and volatilization processes. Microbes could immobilize water-soluble selenate (SeO<sub>4</sub><sup>2-</sup>) and selenite (SeO<sub>3</sub><sup>2-</sup>) to water-insoluble elemental Se (Se<sup>0</sup>) and transform Se into volatile Se compounds found in the atmosphere. Results of this laboratory study showed that Bacillus cereus, a bacterial strain isolated from wheat straw and biosolid-WTR-sand substrates showed a significant biotransformation ability of reducing selenate and selenite to elemental Se and forming volatile Se organic compounds in wastewater. Overall, microbial Se chemical reduction, methylation, and volatilization are important processes in bioremediation of Se-contaminated wastewater.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. 穿戴实验室:用于连续生化传感的皮肤界面系统的进展与挑战。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_238
Zach Watkins, Adam McHenry, Jason Heikenfeld

Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.

连续、按需、最重要的是,有关个人生物标记物浓度的上下文数据是个性化健康和性能监测的圣杯。连续血糖监测就很好地证明了这一点,在过去的二十年里,连续血糖监测极大地改善了糖尿病患者的治疗效果和生活质量。可穿戴生物传感技术(生物识别元件、传导机制、材料和集成方案)的最新进展已开始使通过微创皮肤界面设备监测其他临床相关分析物成为现实。然而,在这些系统实现商业化之前,还必须解决灵敏度、特异性、校准、传感器寿命和整个设备寿命等方面的一些难题。在本章中,我们将仔细考虑监测汗液和组织间液中某些分析物的可行性,以及目前可用于监测的工具的发展情况,为所需应用提出一个开发可穿戴式皮肤界面设备的逻辑框架。具体来说,我们将重点关注生物识别元件工程方面的最新进展、更强大的信号转导机制的开发以及可进行连续定量分析的新型集成方案。此外,我们还强调了可穿戴生物传感领域最引人注目和最有前景的前景,以及在将这些技术转化为有用产品用于疾病管理和优化人类表现方面仍然存在的挑战。
{"title":"Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing.","authors":"Zach Watkins, Adam McHenry, Jason Heikenfeld","doi":"10.1007/10_2023_238","DOIUrl":"10.1007/10_2023_238","url":null,"abstract":"<p><p>Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"223-282"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. 合理设计用于蛋白质传感的 DNA 支架和切换探针。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_235
Alejandro Chamorro, Marianna Rossetti, Neda Bagheri, Alessandro Porchetta

The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.

蛋白质分析物的检测以及将这类信息用于疾病诊断和生理监测需要高灵敏度和高特异性的方法,这些方法还必须易于使用、快速,最好是一步到位。在过去的 10 年中,为了实现蛋白质生物标志物的定量读出,人们开发了许多基于 DNA 的传感方法和传感器。受基于结构转换生物分子的天然化学传感器的快速性、特异性和多功能性的启发,人们做出了巨大努力,将这些机制复制到用于蛋白质检测的人工生物传感器的制造中。作为一种替代方法,在支架 DNA 生物传感器中,不同的识别元件(如肽、蛋白质、小分子和抗体)可以高精度地连接到 DNA 支架上,从而以高亲和力和特异性与目标蛋白质发生特异性相互作用。它们具有多种优势和潜力,尤其是因为它们可以显著增强转导信号。我们在此旨在概述基于结构转换和支架 DNA 传感器的最佳实例,并向读者介绍基于可编程功能 DNA 系统的蛋白质检测创新传感机制和策略的合理设计。
{"title":"Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing.","authors":"Alejandro Chamorro, Marianna Rossetti, Neda Bagheri, Alessandro Porchetta","doi":"10.1007/10_2023_235","DOIUrl":"10.1007/10_2023_235","url":null,"abstract":"<p><p>The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"71-106"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resource-Efficient Use of Residues from Medicinal and Aromatic Plants for Production of Secondary Plant Metabolites. 资源高效利用药用和芳香植物残留物生产植物次生代谢物。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2024_250
Sibylle Kümmritz, Nanina Tron, Martin Tegtmeier, Axel Schmidt, Jochen Strube

Although people's interest in green and healthy plant-based products and natural active ingredients in the cosmetic, pharmaceutical, and food industries is steadily increasing, medicinal and aromatic plants (MAPs) represent a niche crop type.It is possible to increase cultivation and sales of MAPs, by utilizing plant components that are usually discarded. This chapter provides an overview of studies concerning material flows and methods used for sustainable production of valuable metabolites from MAPs between 2018 and 2023. Additionally, it describes new developments and strategies for extraction and isolation, as well as innovative applications. In order to use these valuable resources almost completely, a systematic recycling of the plant material is recommended. This would be a profitable way to increase sustainability in the cultivation and usage of MAPs and provide new opportunities for extraction in plant science.

尽管人们对绿色健康的植物产品以及化妆品、制药和食品行业的天然活性成分的兴趣正在稳步增长,但药用和芳香植物(MAPs)仍是一种利基作物。本章概述了 2018 年至 2023 年期间有关从 MAPs 中可持续生产有价值代谢物的物质流和方法的研究。此外,本章还介绍了提取和分离的新进展和新策略,以及创新应用。为了几乎完全利用这些宝贵的资源,建议对植物材料进行系统的回收利用。这将是提高 MAPs 种植和使用的可持续性并为植物科学的提取提供新机遇的有利途径。
{"title":"Resource-Efficient Use of Residues from Medicinal and Aromatic Plants for Production of Secondary Plant Metabolites.","authors":"Sibylle Kümmritz, Nanina Tron, Martin Tegtmeier, Axel Schmidt, Jochen Strube","doi":"10.1007/10_2024_250","DOIUrl":"10.1007/10_2024_250","url":null,"abstract":"<p><p>Although people's interest in green and healthy plant-based products and natural active ingredients in the cosmetic, pharmaceutical, and food industries is steadily increasing, medicinal and aromatic plants (MAPs) represent a niche crop type.It is possible to increase cultivation and sales of MAPs, by utilizing plant components that are usually discarded. This chapter provides an overview of studies concerning material flows and methods used for sustainable production of valuable metabolites from MAPs between 2018 and 2023. Additionally, it describes new developments and strategies for extraction and isolation, as well as innovative applications. In order to use these valuable resources almost completely, a systematic recycling of the plant material is recommended. This would be a profitable way to increase sustainability in the cultivation and usage of MAPs and provide new opportunities for extraction in plant science.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"145-168"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant In Vitro Culture Factories for Pentacyclic Triterpenoid Production. 生产五环三萜类化合物的植物体外培养工厂。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_245
Ilian Badjakov, Ivayla Dincheva, Radka Vrancheva, Vasil Georgiev, Atanas Pavlov

Pentacyclic triterpenoids are a diverse subclass of naturally occurring terpenes with various biological activities and applications. These compounds are broadly distributed in natural plant resources, but their low abundance and the slow growth cycle of plants pose challenges to their extraction and production. The biosynthesis of pentacyclic triterpenoids occurs through two main pathways, the mevalonic acid (MVA) pathway and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which involve several enzymes and modifications. Plant in vitro cultures, including elicited and hairy root cultures, have emerged as an effective and sustainable system for pentacyclic triterpenoid production, circumventing the limitations associated with natural plant resources. Bioreactor systems and controlling key parameters, such as media composition, temperature, light quality, and elicitor treatments, have been optimized to enhance the production and characterization of specific pentacyclic triterpenoids. These systems offer a promising bioprocessing tool for producing pentacyclic triterpenoids characterized by a low carbon footprint and a sustainable source of these compounds for various industrial applications.

五环三萜类化合物是天然存在的萜类化合物中的一个多样化亚类,具有各种生物活性和应用。这些化合物广泛分布于天然植物资源中,但其丰度较低,且植物生长周期缓慢,给提取和生产带来了挑战。五环三萜类化合物的生物合成主要通过两条途径,即甲羟戊酸(MVA)途径和 2-C-甲基-D-赤藓糖醇-4-磷酸(MEP)途径,其中涉及多种酶和修饰。植物体外培养物(包括诱导培养物和毛根培养物)已成为生产五环三萜类化合物的一种有效且可持续的系统,避免了与天然植物资源相关的限制。生物反应器系统和关键参数控制(如培养基成分、温度、光照质量和诱导剂处理)已得到优化,以提高特定五环三萜类化合物的生产和表征。这些系统为生产五环三萜类化合物提供了一种前景广阔的生物加工工具,其特点是低碳足迹和这些化合物的可持续来源,可用于各种工业应用。
{"title":"Plant In Vitro Culture Factories for Pentacyclic Triterpenoid Production.","authors":"Ilian Badjakov, Ivayla Dincheva, Radka Vrancheva, Vasil Georgiev, Atanas Pavlov","doi":"10.1007/10_2023_245","DOIUrl":"10.1007/10_2023_245","url":null,"abstract":"<p><p>Pentacyclic triterpenoids are a diverse subclass of naturally occurring terpenes with various biological activities and applications. These compounds are broadly distributed in natural plant resources, but their low abundance and the slow growth cycle of plants pose challenges to their extraction and production. The biosynthesis of pentacyclic triterpenoids occurs through two main pathways, the mevalonic acid (MVA) pathway and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which involve several enzymes and modifications. Plant in vitro cultures, including elicited and hairy root cultures, have emerged as an effective and sustainable system for pentacyclic triterpenoid production, circumventing the limitations associated with natural plant resources. Bioreactor systems and controlling key parameters, such as media composition, temperature, light quality, and elicitor treatments, have been optimized to enhance the production and characterization of specific pentacyclic triterpenoids. These systems offer a promising bioprocessing tool for producing pentacyclic triterpenoids characterized by a low carbon footprint and a sustainable source of these compounds for various industrial applications.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"17-49"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress on the Electrochemical Sensing of Illicit Drugs. 非法药物的电化学传感研究进展。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_239
Robin Van Echelpoel, Florine Joosten, Marc Parrilla, Karolien De Wael

Illicit drugs are harmful substances, threatening both health and safety of societies in all corners of the world. Several policies have been developed over time to deal with this illicit drug problem, including supply reduction and harm reduction policies. Both policies require on-site detection tools to succeed, i.e. sensors that can identify illicit drugs in samples at the point-of-care. Electrochemical sensors are highly suited for this task, due to their short analysis times, low cost, high accuracy, portability and orthogonality with current technologies. In this chapter, we evaluate the latest trend in electrochemical sensing of illicit drugs, with a focus on detection of illicit drugs in seizures and body fluids. Furthermore, we will also provide an outlook on the potential of electrochemistry in wearable sensors for this purpose.

非法药物是有害物质,威胁着世界各地社会的健康和安全。为解决这一非法药物问题,长期以来制定了多项政策,包括减少供应和减少危害政策。这两项政策的成功都需要现场检测工具,即能够在医疗点识别样本中非法药物的传感器。电化学传感器因其分析时间短、成本低、准确度高、便携性强以及与当前技术的正交性而非常适合这项任务。在本章中,我们将评估非法药物电化学传感的最新趋势,重点是检测缉获物和体液中的非法药物。此外,我们还将展望电化学在可穿戴传感器中的应用潜力。
{"title":"Progress on the Electrochemical Sensing of Illicit Drugs.","authors":"Robin Van Echelpoel, Florine Joosten, Marc Parrilla, Karolien De Wael","doi":"10.1007/10_2023_239","DOIUrl":"10.1007/10_2023_239","url":null,"abstract":"<p><p>Illicit drugs are harmful substances, threatening both health and safety of societies in all corners of the world. Several policies have been developed over time to deal with this illicit drug problem, including supply reduction and harm reduction policies. Both policies require on-site detection tools to succeed, i.e. sensors that can identify illicit drugs in samples at the point-of-care. Electrochemical sensors are highly suited for this task, due to their short analysis times, low cost, high accuracy, portability and orthogonality with current technologies. In this chapter, we evaluate the latest trend in electrochemical sensing of illicit drugs, with a focus on detection of illicit drugs in seizures and body fluids. Furthermore, we will also provide an outlook on the potential of electrochemistry in wearable sensors for this purpose.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"413-442"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering. 植物与蓝藻共培养:农业和生物加工工程生产系统的新途径。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_247
D Strieth, J Kollmen, J Stiefelmaier, A Mehring, R Ulber

Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.

由于全球人口的增长,如果不向土壤中添加氮元素,就无法确保充足的粮食供应。现代农业产量的约 30-50% 归功于化肥的使用。然而,过度施肥威胁着生物多样性,比如喜氮、生长快的物种会过度生长其他物种。人工肥料的生产会产生氮氧化物,成为温室气体。此外,田地过度施肥还会释放氨,通过酸化和富营养化破坏地表水。重营养蓝藻通常形成天然、稳定的生物膜,可以固定大气中的氮,并将其释放到环境中。因此,它们可以替代人工肥料。此外,生物膜还能稳定土壤,从而防止土壤侵蚀和干燥。本章介绍了蓝藻作为天然肥料的使用潜力。稍后将讨论植物和胼胝体细胞等可能的合作伙伴以及人工共培养的优势。此外,还将介绍用于研究人工协同培养的不同培养系统。最后,将讨论人工共培养在琼脂工业中的潜力。
{"title":"Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering.","authors":"D Strieth, J Kollmen, J Stiefelmaier, A Mehring, R Ulber","doi":"10.1007/10_2023_247","DOIUrl":"10.1007/10_2023_247","url":null,"abstract":"<p><p>Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"83-117"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139574290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in biochemical engineering/biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1