首页 > 最新文献

Advances in biochemical engineering/biotechnology最新文献

英文 中文
Phytoextraction Options. 植物萃取选项。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2024_263
Alla Samarska, Oliver Wiche

Wastewaters often contain an array of economically valuable elements, including elements considered critical raw materials and elements for fertilizer production. Plant-based treatment approaches in constructed wetlands, open ponds, or hydroponic systems represent an eco-friendly and economical way to remove potentially toxic metal(loid)s from wastewater (phytoextraction). Concomitantly, the element-enriched biomass represents an important secondary raw material for bioenergy generation and the recovery of raw materials from the harvested plant biomass (phytomining). At present, phytoextraction in constructed wetlands is still considered a nascent technology that still requires more fundamental and applied research before it can be commercially applied. This chapter discusses the different roles of plants in constructed wetlands during the phytoextraction of economically valuable elements. It sheds light on the utilization of plant biomass in the recovery of raw materials from wastewater streams. Here, we consider phytoextraction of the commonly studied water pollutants (N, P, Zn, Cd, Pb, Cr) and expand this concept to a group of rather exotic metal(loid)s (Ge, REE, PGM) highlighting the role of phytoextraction in the face of climate change and finite resources of high-tech metals.

废水中通常含有一系列具有经济价值的元素,包括被视为关键原材料的元素和用于肥料生产的元素。在人工湿地、露天池塘或水培系统中采用植物处理方法,是去除废水中潜在有毒金属(loid)的一种生态友好型经济方法(植物萃取)。同时,富含元素的生物质是生物能源生产和从收获的植物生物质中回收原材料(植物采矿)的重要二次原材料。目前,在建造的湿地中进行植物萃取仍被认为是一项新兴技术,在商业应用之前仍需要更多的基础研究和应用研究。本章讨论了植物萃取有经济价值元素过程中植物在构建湿地中的不同作用。它揭示了如何利用植物生物质从废水中回收原材料。在此,我们考虑了植物萃取通常研究的水污染物(氮、磷、锌、镉、铅、铬),并将这一概念扩展到一组相当奇特的金属(loid)(Ge、REE、PGM),强调了植物萃取在气候变化和高科技金属资源有限的情况下的作用。
{"title":"Phytoextraction Options.","authors":"Alla Samarska, Oliver Wiche","doi":"10.1007/10_2024_263","DOIUrl":"10.1007/10_2024_263","url":null,"abstract":"<p><p>Wastewaters often contain an array of economically valuable elements, including elements considered critical raw materials and elements for fertilizer production. Plant-based treatment approaches in constructed wetlands, open ponds, or hydroponic systems represent an eco-friendly and economical way to remove potentially toxic metal(loid)s from wastewater (phytoextraction). Concomitantly, the element-enriched biomass represents an important secondary raw material for bioenergy generation and the recovery of raw materials from the harvested plant biomass (phytomining). At present, phytoextraction in constructed wetlands is still considered a nascent technology that still requires more fundamental and applied research before it can be commercially applied. This chapter discusses the different roles of plants in constructed wetlands during the phytoextraction of economically valuable elements. It sheds light on the utilization of plant biomass in the recovery of raw materials from wastewater streams. Here, we consider phytoextraction of the commonly studied water pollutants (N, P, Zn, Cd, Pb, Cr) and expand this concept to a group of rather exotic metal(loid)s (Ge, REE, PGM) highlighting the role of phytoextraction in the face of climate change and finite resources of high-tech metals.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"181-232"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resource-Efficient Use of Residues from Medicinal and Aromatic Plants for Production of Secondary Plant Metabolites. 资源高效利用药用和芳香植物残留物生产植物次生代谢物。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2024_250
Sibylle Kümmritz, Nanina Tron, Martin Tegtmeier, Axel Schmidt, Jochen Strube

Although people's interest in green and healthy plant-based products and natural active ingredients in the cosmetic, pharmaceutical, and food industries is steadily increasing, medicinal and aromatic plants (MAPs) represent a niche crop type.It is possible to increase cultivation and sales of MAPs, by utilizing plant components that are usually discarded. This chapter provides an overview of studies concerning material flows and methods used for sustainable production of valuable metabolites from MAPs between 2018 and 2023. Additionally, it describes new developments and strategies for extraction and isolation, as well as innovative applications. In order to use these valuable resources almost completely, a systematic recycling of the plant material is recommended. This would be a profitable way to increase sustainability in the cultivation and usage of MAPs and provide new opportunities for extraction in plant science.

尽管人们对绿色健康的植物产品以及化妆品、制药和食品行业的天然活性成分的兴趣正在稳步增长,但药用和芳香植物(MAPs)仍是一种利基作物。本章概述了 2018 年至 2023 年期间有关从 MAPs 中可持续生产有价值代谢物的物质流和方法的研究。此外,本章还介绍了提取和分离的新进展和新策略,以及创新应用。为了几乎完全利用这些宝贵的资源,建议对植物材料进行系统的回收利用。这将是提高 MAPs 种植和使用的可持续性并为植物科学的提取提供新机遇的有利途径。
{"title":"Resource-Efficient Use of Residues from Medicinal and Aromatic Plants for Production of Secondary Plant Metabolites.","authors":"Sibylle Kümmritz, Nanina Tron, Martin Tegtmeier, Axel Schmidt, Jochen Strube","doi":"10.1007/10_2024_250","DOIUrl":"10.1007/10_2024_250","url":null,"abstract":"<p><p>Although people's interest in green and healthy plant-based products and natural active ingredients in the cosmetic, pharmaceutical, and food industries is steadily increasing, medicinal and aromatic plants (MAPs) represent a niche crop type.It is possible to increase cultivation and sales of MAPs, by utilizing plant components that are usually discarded. This chapter provides an overview of studies concerning material flows and methods used for sustainable production of valuable metabolites from MAPs between 2018 and 2023. Additionally, it describes new developments and strategies for extraction and isolation, as well as innovative applications. In order to use these valuable resources almost completely, a systematic recycling of the plant material is recommended. This would be a profitable way to increase sustainability in the cultivation and usage of MAPs and provide new opportunities for extraction in plant science.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"145-168"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant In Vitro Culture Factories for Pentacyclic Triterpenoid Production. 生产五环三萜类化合物的植物体外培养工厂。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_245
Ilian Badjakov, Ivayla Dincheva, Radka Vrancheva, Vasil Georgiev, Atanas Pavlov

Pentacyclic triterpenoids are a diverse subclass of naturally occurring terpenes with various biological activities and applications. These compounds are broadly distributed in natural plant resources, but their low abundance and the slow growth cycle of plants pose challenges to their extraction and production. The biosynthesis of pentacyclic triterpenoids occurs through two main pathways, the mevalonic acid (MVA) pathway and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which involve several enzymes and modifications. Plant in vitro cultures, including elicited and hairy root cultures, have emerged as an effective and sustainable system for pentacyclic triterpenoid production, circumventing the limitations associated with natural plant resources. Bioreactor systems and controlling key parameters, such as media composition, temperature, light quality, and elicitor treatments, have been optimized to enhance the production and characterization of specific pentacyclic triterpenoids. These systems offer a promising bioprocessing tool for producing pentacyclic triterpenoids characterized by a low carbon footprint and a sustainable source of these compounds for various industrial applications.

五环三萜类化合物是天然存在的萜类化合物中的一个多样化亚类,具有各种生物活性和应用。这些化合物广泛分布于天然植物资源中,但其丰度较低,且植物生长周期缓慢,给提取和生产带来了挑战。五环三萜类化合物的生物合成主要通过两条途径,即甲羟戊酸(MVA)途径和 2-C-甲基-D-赤藓糖醇-4-磷酸(MEP)途径,其中涉及多种酶和修饰。植物体外培养物(包括诱导培养物和毛根培养物)已成为生产五环三萜类化合物的一种有效且可持续的系统,避免了与天然植物资源相关的限制。生物反应器系统和关键参数控制(如培养基成分、温度、光照质量和诱导剂处理)已得到优化,以提高特定五环三萜类化合物的生产和表征。这些系统为生产五环三萜类化合物提供了一种前景广阔的生物加工工具,其特点是低碳足迹和这些化合物的可持续来源,可用于各种工业应用。
{"title":"Plant In Vitro Culture Factories for Pentacyclic Triterpenoid Production.","authors":"Ilian Badjakov, Ivayla Dincheva, Radka Vrancheva, Vasil Georgiev, Atanas Pavlov","doi":"10.1007/10_2023_245","DOIUrl":"10.1007/10_2023_245","url":null,"abstract":"<p><p>Pentacyclic triterpenoids are a diverse subclass of naturally occurring terpenes with various biological activities and applications. These compounds are broadly distributed in natural plant resources, but their low abundance and the slow growth cycle of plants pose challenges to their extraction and production. The biosynthesis of pentacyclic triterpenoids occurs through two main pathways, the mevalonic acid (MVA) pathway and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which involve several enzymes and modifications. Plant in vitro cultures, including elicited and hairy root cultures, have emerged as an effective and sustainable system for pentacyclic triterpenoid production, circumventing the limitations associated with natural plant resources. Bioreactor systems and controlling key parameters, such as media composition, temperature, light quality, and elicitor treatments, have been optimized to enhance the production and characterization of specific pentacyclic triterpenoids. These systems offer a promising bioprocessing tool for producing pentacyclic triterpenoids characterized by a low carbon footprint and a sustainable source of these compounds for various industrial applications.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"17-49"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress on the Electrochemical Sensing of Illicit Drugs. 非法药物的电化学传感研究进展。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_239
Robin Van Echelpoel, Florine Joosten, Marc Parrilla, Karolien De Wael

Illicit drugs are harmful substances, threatening both health and safety of societies in all corners of the world. Several policies have been developed over time to deal with this illicit drug problem, including supply reduction and harm reduction policies. Both policies require on-site detection tools to succeed, i.e. sensors that can identify illicit drugs in samples at the point-of-care. Electrochemical sensors are highly suited for this task, due to their short analysis times, low cost, high accuracy, portability and orthogonality with current technologies. In this chapter, we evaluate the latest trend in electrochemical sensing of illicit drugs, with a focus on detection of illicit drugs in seizures and body fluids. Furthermore, we will also provide an outlook on the potential of electrochemistry in wearable sensors for this purpose.

非法药物是有害物质,威胁着世界各地社会的健康和安全。为解决这一非法药物问题,长期以来制定了多项政策,包括减少供应和减少危害政策。这两项政策的成功都需要现场检测工具,即能够在医疗点识别样本中非法药物的传感器。电化学传感器因其分析时间短、成本低、准确度高、便携性强以及与当前技术的正交性而非常适合这项任务。在本章中,我们将评估非法药物电化学传感的最新趋势,重点是检测缉获物和体液中的非法药物。此外,我们还将展望电化学在可穿戴传感器中的应用潜力。
{"title":"Progress on the Electrochemical Sensing of Illicit Drugs.","authors":"Robin Van Echelpoel, Florine Joosten, Marc Parrilla, Karolien De Wael","doi":"10.1007/10_2023_239","DOIUrl":"10.1007/10_2023_239","url":null,"abstract":"<p><p>Illicit drugs are harmful substances, threatening both health and safety of societies in all corners of the world. Several policies have been developed over time to deal with this illicit drug problem, including supply reduction and harm reduction policies. Both policies require on-site detection tools to succeed, i.e. sensors that can identify illicit drugs in samples at the point-of-care. Electrochemical sensors are highly suited for this task, due to their short analysis times, low cost, high accuracy, portability and orthogonality with current technologies. In this chapter, we evaluate the latest trend in electrochemical sensing of illicit drugs, with a focus on detection of illicit drugs in seizures and body fluids. Furthermore, we will also provide an outlook on the potential of electrochemistry in wearable sensors for this purpose.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"413-442"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering. 植物与蓝藻共培养:农业和生物加工工程生产系统的新途径。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_247
D Strieth, J Kollmen, J Stiefelmaier, A Mehring, R Ulber

Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.

由于全球人口的增长,如果不向土壤中添加氮元素,就无法确保充足的粮食供应。现代农业产量的约 30-50% 归功于化肥的使用。然而,过度施肥威胁着生物多样性,比如喜氮、生长快的物种会过度生长其他物种。人工肥料的生产会产生氮氧化物,成为温室气体。此外,田地过度施肥还会释放氨,通过酸化和富营养化破坏地表水。重营养蓝藻通常形成天然、稳定的生物膜,可以固定大气中的氮,并将其释放到环境中。因此,它们可以替代人工肥料。此外,生物膜还能稳定土壤,从而防止土壤侵蚀和干燥。本章介绍了蓝藻作为天然肥料的使用潜力。稍后将讨论植物和胼胝体细胞等可能的合作伙伴以及人工共培养的优势。此外,还将介绍用于研究人工协同培养的不同培养系统。最后,将讨论人工共培养在琼脂工业中的潜力。
{"title":"Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering.","authors":"D Strieth, J Kollmen, J Stiefelmaier, A Mehring, R Ulber","doi":"10.1007/10_2023_247","DOIUrl":"10.1007/10_2023_247","url":null,"abstract":"<p><p>Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"83-117"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139574290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological Iron Removal and Recovery from Water and Wastewater. 从水和废水中生物除铁和回收。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2024_255
Anna Henriikka Kaksonen, Eberhard Janneck

Iron is a common contaminant in source water and wastewater. The mining and metallurgical industries in particular can produce and discharge large quantities of wastewater with high iron concentrations. Due to the harmful effects of iron on organisms and infrastructure, efficient technologies for iron removal from water and wastewater are needed. On the other hand, iron is a valuable commodity for a wide range of applications. Microorganisms can facilitate iron removal and recovery through aerobic and anaerobic processes. The most commonly utilized microbes include iron oxidizers that facilitate iron precipitation as jarosites, schwertmannite, ferrihydrite, goethite, and scorodite, and sulfate reducers which produce hydrogen sulfide that precipitates iron as sulfides. Biological iron removal has been explored in various suspended cell and biofilm-based bioreactors that can be configured in parallel or series and integrated with precipitation and settling units for an effective flow sheet. This chapter reviews principles for biological iron removal and recovery, the microorganisms involved, reactor types, patents and examples of laboratory- and pilot-scale studies, and full-scale implementations of the technology.

铁是原水和废水中常见的污染物。特别是采矿业和冶金业,会产生和排放大量含铁量高的废水。由于铁对生物和基础设施的有害影响,因此需要从水和废水中去除铁的高效技术。另一方面,铁也是一种应用广泛的宝贵商品。微生物可通过好氧和厌氧过程促进铁的去除和回收。最常用的微生物包括铁氧化剂和硫酸盐还原剂,前者可促进铁沉淀为jarosite、schwertmannite、ferrihydrite、goethite和scorodite,后者可产生硫化氢,使铁沉淀为硫化物。生物除铁已在各种悬浮细胞和生物膜生物反应器中进行了探索,这些生物反应器可并联或串联配置,并与沉淀和沉降装置集成,以形成有效的流程表。本章将介绍生物除铁和回收的原理、相关微生物、反应器类型、专利、实验室和中试规模研究实例以及该技术的全面实施。
{"title":"Biological Iron Removal and Recovery from Water and Wastewater.","authors":"Anna Henriikka Kaksonen, Eberhard Janneck","doi":"10.1007/10_2024_255","DOIUrl":"10.1007/10_2024_255","url":null,"abstract":"<p><p>Iron is a common contaminant in source water and wastewater. The mining and metallurgical industries in particular can produce and discharge large quantities of wastewater with high iron concentrations. Due to the harmful effects of iron on organisms and infrastructure, efficient technologies for iron removal from water and wastewater are needed. On the other hand, iron is a valuable commodity for a wide range of applications. Microorganisms can facilitate iron removal and recovery through aerobic and anaerobic processes. The most commonly utilized microbes include iron oxidizers that facilitate iron precipitation as jarosites, schwertmannite, ferrihydrite, goethite, and scorodite, and sulfate reducers which produce hydrogen sulfide that precipitates iron as sulfides. Biological iron removal has been explored in various suspended cell and biofilm-based bioreactors that can be configured in parallel or series and integrated with precipitation and settling units for an effective flow sheet. This chapter reviews principles for biological iron removal and recovery, the microorganisms involved, reactor types, patents and examples of laboratory- and pilot-scale studies, and full-scale implementations of the technology.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"31-88"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-State Nanopores for Biomolecular Analysis and Detection. 用于生物分子分析和检测的固态纳米孔。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_240
Annina Stuber, Tilman Schlotter, Julian Hengsteler, Nako Nakatsuka

Advances in nanopore technology and data processing have rendered DNA sequencing highly accessible, unlocking a new realm of biotechnological opportunities. Commercially available nanopores for DNA sequencing are of biological origin and have certain disadvantages such as having specific environmental requirements to retain functionality. Solid-state nanopores have received increased attention as modular systems with controllable characteristics that enable deployment in non-physiological milieu. Thus, we focus our review on summarizing recent innovations in the field of solid-state nanopores to envision the future of this technology for biomolecular analysis and detection. We begin by introducing the physical aspects of nanopore measurements ranging from interfacial interactions at pore and electrode surfaces to mass transport of analytes and data analysis of recorded signals. Then, developments in nanopore fabrication and post-processing techniques with the pros and cons of different methodologies are examined. Subsequently, progress to facilitate DNA sequencing using solid-state nanopores is described to assess how this platform is evolving to tackle the more complex challenge of protein sequencing. Beyond sequencing, we highlight the recent developments in biosensing of nucleic acids, proteins, and sugars and conclude with an outlook on the frontiers of nanopore technologies.

纳米孔技术和数据处理技术的进步使 DNA 测序变得非常容易获得,从而开启了生物技术的新领域。用于 DNA 测序的市售纳米孔源自生物,具有某些缺点,例如需要特定的环境要求才能保持功能。固态纳米孔作为具有可控特性的模块化系统,能够在非生理环境中使用,因此受到越来越多的关注。因此,我们的综述将重点放在总结固态纳米孔领域的最新创新上,以展望这项技术在生物分子分析和检测方面的未来。我们首先介绍了纳米孔测量的物理方面,包括孔和电极表面的界面相互作用、分析物的质量传输和记录信号的数据分析。然后,探讨了纳米孔制造和后处理技术的发展以及不同方法的利弊。随后,我们介绍了利用固态纳米孔促进 DNA 测序的进展,以评估这一平台是如何发展以应对更复杂的蛋白质测序挑战的。除了测序,我们还重点介绍了核酸、蛋白质和糖类生物传感技术的最新发展,最后展望了纳米孔技术的前沿。
{"title":"Solid-State Nanopores for Biomolecular Analysis and Detection.","authors":"Annina Stuber, Tilman Schlotter, Julian Hengsteler, Nako Nakatsuka","doi":"10.1007/10_2023_240","DOIUrl":"10.1007/10_2023_240","url":null,"abstract":"<p><p>Advances in nanopore technology and data processing have rendered DNA sequencing highly accessible, unlocking a new realm of biotechnological opportunities. Commercially available nanopores for DNA sequencing are of biological origin and have certain disadvantages such as having specific environmental requirements to retain functionality. Solid-state nanopores have received increased attention as modular systems with controllable characteristics that enable deployment in non-physiological milieu. Thus, we focus our review on summarizing recent innovations in the field of solid-state nanopores to envision the future of this technology for biomolecular analysis and detection. We begin by introducing the physical aspects of nanopore measurements ranging from interfacial interactions at pore and electrode surfaces to mass transport of analytes and data analysis of recorded signals. Then, developments in nanopore fabrication and post-processing techniques with the pros and cons of different methodologies are examined. Subsequently, progress to facilitate DNA sequencing using solid-state nanopores is described to assess how this platform is evolving to tackle the more complex challenge of protein sequencing. Beyond sequencing, we highlight the recent developments in biosensing of nucleic acids, proteins, and sugars and conclude with an outlook on the frontiers of nanopore technologies.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"283-316"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulphidogenic Bioprocesses for Acid Mine Water Treatment and Selective Recovery of Arsenic and Metals. 用于酸性矿井水处理和砷与金属选择性回收的硫化生物工艺。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2024_264
Fabienne Battaglia-Brunet, Ivan Nancucheo, Jérôme Jacob, Catherine Joulian

Human communities need water and mineral resources, the supply of which requires the implementation of recycling and saving strategies. Both closed and active mining sites could beneficiate of the implementation of nature-based solutions, including bioreactors involving sulphate-reducing prokaryotes (SRP), in order to separate and recover arsenic (As) and metals from aqueous stream while producing clean water. Selective precipitation strategies can be designed based on the selection of microbial communities adapted to the pH conditions, generally acidic, and to available low-cost electron donors. Laboratory batch and continuous experiments must be implemented for each type of mine water in order to determine the optimal flow-sheet in which As could be precipitated as sulphides (orpiment or realgar), inside the bioreactor or offline, through stripping of biologically produced hydrogen sulphides (H2S). The respective concentrations and proportions of As and metals and the initial acid mine drainage pH are key parameters that will influence the feasibility of efficient selective precipitation. SRP-based bioreactors could be combined with complementary treatment steps in optimised mine water management solutions that will minimise the production of As-contaminated end-solid waste.

人类社区需要水和矿产资源,这些资源的供应需要实施回收和节约战略。无论是已关闭的矿场还是正在开采的矿场,都可以受益于基于自然的解决方案的实施,包括涉及硫酸盐还原原核生物(SRP)的生物反应器,以便从水流中分离和回收砷(As)和金属,同时生产清洁的水。选择性沉淀策略可根据选择适应 pH 值条件(通常为酸性)和可用低成本电子供体的微生物群落来设计。必须对每种矿井水进行实验室批量和连续实验,以确定最佳流程图,在该流程图中,可通过生物产生的硫化氢(H2S)的剥离,在生物反应器内或离线将砷沉淀为硫化物(雌黄或雄黄)。砷和金属各自的浓度和比例以及酸性矿井排水的初始 pH 值是影响高效选择性沉淀可行性的关键参数。基于 SRP 的生物反应器可与矿井水管理优化方案中的补充处理步骤相结合,从而最大限度地减少受砷污染的最终固体废物的产生。
{"title":"Sulphidogenic Bioprocesses for Acid Mine Water Treatment and Selective Recovery of Arsenic and Metals.","authors":"Fabienne Battaglia-Brunet, Ivan Nancucheo, Jérôme Jacob, Catherine Joulian","doi":"10.1007/10_2024_264","DOIUrl":"10.1007/10_2024_264","url":null,"abstract":"<p><p>Human communities need water and mineral resources, the supply of which requires the implementation of recycling and saving strategies. Both closed and active mining sites could beneficiate of the implementation of nature-based solutions, including bioreactors involving sulphate-reducing prokaryotes (SRP), in order to separate and recover arsenic (As) and metals from aqueous stream while producing clean water. Selective precipitation strategies can be designed based on the selection of microbial communities adapted to the pH conditions, generally acidic, and to available low-cost electron donors. Laboratory batch and continuous experiments must be implemented for each type of mine water in order to determine the optimal flow-sheet in which As could be precipitated as sulphides (orpiment or realgar), inside the bioreactor or offline, through stripping of biologically produced hydrogen sulphides (H<sub>2</sub>S). The respective concentrations and proportions of As and metals and the initial acid mine drainage pH are key parameters that will influence the feasibility of efficient selective precipitation. SRP-based bioreactors could be combined with complementary treatment steps in optimised mine water management solutions that will minimise the production of As-contaminated end-solid waste.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"1-30"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microalgae: A Biological Tool for Removal and Recovery of Potentially Toxic Elements in Wastewater Treatment Photobioreactors. 微藻:在废水处理中去除和回收潜在有毒元素的生物工具 光生物反应器。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2024_262
Beatriz Antolín Puebla, Marisol Vega Alegre, Silvia Bolado Rodríguez, Pedro A García Encina

Potentially toxic elements (PTE) pollution in water bodies is an emerging problem in recent decades due to uncontrolled discharges from human activities. Copper, zinc, arsenic, cadmium, lead, mercury, and uranium are considered potentially toxic and carcinogenic elements that threaten human health. Microalgae-based technologies for the wastewater treatment have gained importance in recent years due to their biomass high growth rates and effectiveness. Also, these microalgae-bacteria systems are cost-effective and environmentally friendly, utilize sunlight and CO2, and simultaneously address multiple environmental challenges, such as carbon mitigation, bioremediation, and generation of valuable biomass useful for biofuel production. Additionally, microalgae possess a diverse array of extracellular and intracellular mechanisms that enable them to remove and mitigate the toxicity of PTE present in wastewater. Therefore, photobioreactors are promising candidates for practical applications in bioremediation of wastewater containing toxic elements. Despite the increasing amount of research in this field in recent years, most studies are conducted in laboratory scale and there is a scarcity of large-scale studies under real and variable environmental conditions. Besides, the limited understanding of the multiple mechanisms controlling PTE biosorption in wastewater containing high organic matter loads and potentially toxic elements requires further studies. This chapter provides a schematic representation of the mechanisms and factors involved in the remediation of potentially toxic elements by microalgae, as well as the main results obtained in recent years.

近几十年来,由于人类活动的无节制排放,水体中的潜在有毒元素(PTE)污染成为一个新出现的问题。铜、锌、砷、镉、铅、汞和铀被认为是威胁人类健康的潜在有毒致癌元素。近年来,基于微藻的废水处理技术因其生物量高生长率和有效性而受到重视。同时,这些微藻-细菌系统具有成本效益和环境友好性,可利用阳光和二氧化碳,同时应对多种环境挑战,如碳减排、生物修复和产生可用于生产生物燃料的宝贵生物质。此外,微藻拥有多种多样的细胞外和细胞内机制,使其能够去除和减轻废水中 PTE 的毒性。因此,光生物反应器有望实际应用于含有毒元素废水的生物修复。尽管近年来该领域的研究数量不断增加,但大多数研究都是在实验室范围内进行的,在真实和多变环境条件下进行的大规模研究还很少。此外,人们对控制含有高有机物负荷和潜在有毒元素的废水中 PTE 生物吸附的多种机制了解有限,需要进一步研究。本章以图表的形式介绍了微藻修复潜在有毒元素的机制和因素,以及近年来取得的主要成果。
{"title":"Microalgae: A Biological Tool for Removal and Recovery of Potentially Toxic Elements in Wastewater Treatment Photobioreactors.","authors":"Beatriz Antolín Puebla, Marisol Vega Alegre, Silvia Bolado Rodríguez, Pedro A García Encina","doi":"10.1007/10_2024_262","DOIUrl":"10.1007/10_2024_262","url":null,"abstract":"<p><p>Potentially toxic elements (PTE) pollution in water bodies is an emerging problem in recent decades due to uncontrolled discharges from human activities. Copper, zinc, arsenic, cadmium, lead, mercury, and uranium are considered potentially toxic and carcinogenic elements that threaten human health. Microalgae-based technologies for the wastewater treatment have gained importance in recent years due to their biomass high growth rates and effectiveness. Also, these microalgae-bacteria systems are cost-effective and environmentally friendly, utilize sunlight and CO<sub>2</sub>, and simultaneously address multiple environmental challenges, such as carbon mitigation, bioremediation, and generation of valuable biomass useful for biofuel production. Additionally, microalgae possess a diverse array of extracellular and intracellular mechanisms that enable them to remove and mitigate the toxicity of PTE present in wastewater. Therefore, photobioreactors are promising candidates for practical applications in bioremediation of wastewater containing toxic elements. Despite the increasing amount of research in this field in recent years, most studies are conducted in laboratory scale and there is a scarcity of large-scale studies under real and variable environmental conditions. Besides, the limited understanding of the multiple mechanisms controlling PTE biosorption in wastewater containing high organic matter loads and potentially toxic elements requires further studies. This chapter provides a schematic representation of the mechanisms and factors involved in the remediation of potentially toxic elements by microalgae, as well as the main results obtained in recent years.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"147-180"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chimeric Protein Switch Biosensors. 嵌合蛋白开关生物传感器。
4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1007/10_2023_241
Emma Campbell, Timothy Luxton, Declan Kohl, Sarah A Goodchild, Christoph Walti, Lars J C Jeuken

Rapid detection of protein and small-molecule analytes is a valuable technique across multiple disciplines, but most in vitro testing of biological or environmental samples requires long, laborious processes and trained personnel in laboratory settings, leading to long wait times for results and high expenses. Fusion of recognition with reporter elements has been introduced to detection methods such as enzyme-linked immunoassays (ELISA), with enzyme-conjugated secondary antibodies removing one of the many incubation and wash steps. Chimeric protein switch biosensors go further and provide a platform for homogenous mix-and-read assays where long wash and incubation steps are eradicated from the process. Chimeric protein switch biosensors consist of an enzyme switch (the reporter) coupled to a recognition element, where binding of the analyte results in switching the activity of the reporter enzyme on or off. Several chimeric protein switch biosensors have successfully been developed for analytes ranging from small molecule drugs to large protein biomarkers. There are two main formats of chimeric protein switch biosensor developed, one-component and multi-component, and these formats exhibit unique advantages and disadvantages. Genetically fusing a recognition protein to the enzyme switch has many advantages in the production and performance of the biosensor. A range of immune and synthetic binding proteins have been developed as alternatives to antibodies, including antibody mimetics or antibody fragments. These are mainly small, easily manipulated proteins and can be genetically fused to a reporter for recombinant expression or manipulated to allow chemical fusion. Here, aspects of chimeric protein switch biosensors will be reviewed with a comparison of different classes of recognition elements and switching mechanisms.

蛋白质和小分子分析物的快速检测是一项横跨多个学科的重要技术,但大多数生物或环境样本的体外检测都需要在实验室环境中进行漫长、费力的过程并配备训练有素的人员,导致结果等待时间长、费用高。在酶联免疫测定(ELISA)等检测方法中引入了识别与报告元件的融合,酶结合二抗省去了许多孵育和洗涤步骤中的一个步骤。嵌合蛋白开关生物传感器则更进一步,为同质混合-读取检测提供了一个平台,省去了漫长的洗涤和孵育步骤。嵌合蛋白开关生物传感器由一个酶开关(报告器)和一个识别元件组成,分析物的结合会导致报告酶活性的开启或关闭。目前已成功开发出几种嵌合蛋白开关生物传感器,用于检测从小分子药物到大型蛋白质生物标记物等各种分析物。目前开发的嵌合蛋白开关生物传感器主要有两种形式:单组分和多组分,这两种形式各有利弊。将识别蛋白与酶开关进行基因融合在生物传感器的生产和性能方面有许多优势。目前已开发出一系列免疫和合成结合蛋白作为抗体的替代品,包括抗体模拟物或抗体片段。这些蛋白主要是体积小、易操作的蛋白,可以通过基因融合到报告基因中进行重组表达,也可以通过操作进行化学融合。这里将对嵌合蛋白开关生物传感器的各个方面进行回顾,并对不同类别的识别元件和开关机制进行比较。
{"title":"Chimeric Protein Switch Biosensors.","authors":"Emma Campbell, Timothy Luxton, Declan Kohl, Sarah A Goodchild, Christoph Walti, Lars J C Jeuken","doi":"10.1007/10_2023_241","DOIUrl":"10.1007/10_2023_241","url":null,"abstract":"<p><p>Rapid detection of protein and small-molecule analytes is a valuable technique across multiple disciplines, but most in vitro testing of biological or environmental samples requires long, laborious processes and trained personnel in laboratory settings, leading to long wait times for results and high expenses. Fusion of recognition with reporter elements has been introduced to detection methods such as enzyme-linked immunoassays (ELISA), with enzyme-conjugated secondary antibodies removing one of the many incubation and wash steps. Chimeric protein switch biosensors go further and provide a platform for homogenous mix-and-read assays where long wash and incubation steps are eradicated from the process. Chimeric protein switch biosensors consist of an enzyme switch (the reporter) coupled to a recognition element, where binding of the analyte results in switching the activity of the reporter enzyme on or off. Several chimeric protein switch biosensors have successfully been developed for analytes ranging from small molecule drugs to large protein biomarkers. There are two main formats of chimeric protein switch biosensor developed, one-component and multi-component, and these formats exhibit unique advantages and disadvantages. Genetically fusing a recognition protein to the enzyme switch has many advantages in the production and performance of the biosensor. A range of immune and synthetic binding proteins have been developed as alternatives to antibodies, including antibody mimetics or antibody fragments. These are mainly small, easily manipulated proteins and can be genetically fused to a reporter for recombinant expression or manipulated to allow chemical fusion. Here, aspects of chimeric protein switch biosensors will be reviewed with a comparison of different classes of recognition elements and switching mechanisms.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"1-35"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in biochemical engineering/biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1