There is a demand to remove CO2 from thermal plants to abate global warming. At the same time authorities demand treating wastewater to remove nitrogen and phosphorus and also to produce food. By combining algae farming at a power plant and using nutrients from the wastewater, actions to meet all these demands can be combined to a win-win situation. In this paper we make estimates what the dimensions and design criteria there would be for such an integrated system. The size of the algae farm will be significant. If placed in the sea, this may be feasible, but then storms must be considered. If we place in lakes, it is more competition for other uses that causes a problem. Combining with also greenhouses may be a possible solution. The biomass produced can be used directly as food or be processed by, e.g., fermentation to produce chemicals and methane (biogas).
{"title":"Simultaneous CO<sub>2</sub> Absorption from a Power Plant and Wastewater Treatment.","authors":"Erik Dahlquist, Sebastian Schwede, Eva Thorin","doi":"10.1007/10_2024_260","DOIUrl":"10.1007/10_2024_260","url":null,"abstract":"<p><p>There is a demand to remove CO<sub>2</sub> from thermal plants to abate global warming. At the same time authorities demand treating wastewater to remove nitrogen and phosphorus and also to produce food. By combining algae farming at a power plant and using nutrients from the wastewater, actions to meet all these demands can be combined to a win-win situation. In this paper we make estimates what the dimensions and design criteria there would be for such an integrated system. The size of the algae farm will be significant. If placed in the sea, this may be feasible, but then storms must be considered. If we place in lakes, it is more competition for other uses that causes a problem. Combining with also greenhouses may be a possible solution. The biomass produced can be used directly as food or be processed by, e.g., fermentation to produce chemicals and methane (biogas).</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"137-149"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar
{"title":"Correction to: Mixed Culture Cultivation in Microbial Bioprocesses.","authors":"Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar","doi":"10.1007/10_2024_258","DOIUrl":"10.1007/10_2024_258","url":null,"abstract":"","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"241"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elias Hakalehto, Anneli Heitto, Frank Adusei-Mensah, Ari Jääskeläinen, Reino Laatikainen, Jukka Kivelä, Erik Dahlquist, Jan den Boer, Emilia den Boer
Organic raw materials are the renewable sources of substrates for our industries and for our microbial communities. As industrial, agricultural or forestry side streams, they are usually affordable raw materials if the process entities, equipment and protocols are properly designed. The microbial communities that are used as biocatalysts take care of the process development together with the process team. Moreover, they constitute or shape the process to resemble the natural bioprocess as it takes place or occurs in nature and thus make it "Industry Like Nature®" - type of endeavor. As an ultimate result, we could make our industries increasingly 100% sustainable with the help of microbes. In case of food or forest industry side streams, this means fossil-free production of valuable chemicals, food and feed components, energy and gases, and soil improvement agents or organic fertilizers. The so-called "Finnoflag biorefinery" idea has been tested in many cases together with domestic and international colleagues and industries. In here, we attempt to share the basic thinking.
{"title":"Food and Forest Industry Waste Reuse Using Mixed Microflora.","authors":"Elias Hakalehto, Anneli Heitto, Frank Adusei-Mensah, Ari Jääskeläinen, Reino Laatikainen, Jukka Kivelä, Erik Dahlquist, Jan den Boer, Emilia den Boer","doi":"10.1007/10_2024_268","DOIUrl":"10.1007/10_2024_268","url":null,"abstract":"<p><p>Organic raw materials are the renewable sources of substrates for our industries and for our microbial communities. As industrial, agricultural or forestry side streams, they are usually affordable raw materials if the process entities, equipment and protocols are properly designed. The microbial communities that are used as biocatalysts take care of the process development together with the process team. Moreover, they constitute or shape the process to resemble the natural bioprocess as it takes place or occurs in nature and thus make it \"Industry Like Nature®\" - type of endeavor. As an ultimate result, we could make our industries increasingly 100% sustainable with the help of microbes. In case of food or forest industry side streams, this means fossil-free production of valuable chemicals, food and feed components, energy and gases, and soil improvement agents or organic fertilizers. The so-called \"Finnoflag biorefinery\" idea has been tested in many cases together with domestic and international colleagues and industries. In here, we attempt to share the basic thinking.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"189-211"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Rovira-Alsina, Meritxell Romans-Casas, Elisabet Perona-Vico, Alba Ceballos-Escalera, M Dolors Balaguer, Lluís Bañeras, Sebastià Puig
Addressing global challenges of waste management demands innovative approaches to turn biowaste into valuable resources. This chapter explores the potential of microbial electrochemical technologies (METs) as an alternative opportunity for biowaste valorisation and resource recovery due to their potential to address limitations associated with traditional methods. METs leverage microbial-driven oxidation and reduction reactions, enabling the conversion of different feedstocks into energy or value-added products. Their versatility spans across gas, food, water and soil streams, offering multiple solutions at different technological readiness levels to advance several sustainable development goals (SDGs) set out in the 2030 Agenda. By critically examining recent studies, this chapter uncovers challenges, optimisation strategies, and future research directions for real-world MET implementations. The integration of economic perspectives with technological developments provides a comprehensive understanding of the opportunities and demands associated with METs in advancing the circular economy agenda, emphasising their pivotal role in waste minimisation, resource efficiency promotion, and closed-loop system renovation.
{"title":"Microbial Electrochemical Technologies: Sustainable Solutions for Addressing Environmental Challenges.","authors":"Laura Rovira-Alsina, Meritxell Romans-Casas, Elisabet Perona-Vico, Alba Ceballos-Escalera, M Dolors Balaguer, Lluís Bañeras, Sebastià Puig","doi":"10.1007/10_2024_273","DOIUrl":"10.1007/10_2024_273","url":null,"abstract":"<p><p>Addressing global challenges of waste management demands innovative approaches to turn biowaste into valuable resources. This chapter explores the potential of microbial electrochemical technologies (METs) as an alternative opportunity for biowaste valorisation and resource recovery due to their potential to address limitations associated with traditional methods. METs leverage microbial-driven oxidation and reduction reactions, enabling the conversion of different feedstocks into energy or value-added products. Their versatility spans across gas, food, water and soil streams, offering multiple solutions at different technological readiness levels to advance several sustainable development goals (SDGs) set out in the 2030 Agenda. By critically examining recent studies, this chapter uncovers challenges, optimisation strategies, and future research directions for real-world MET implementations. The integration of economic perspectives with technological developments provides a comprehensive understanding of the opportunities and demands associated with METs in advancing the circular economy agenda, emphasising their pivotal role in waste minimisation, resource efficiency promotion, and closed-loop system renovation.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"283-332"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Today, organic chemical products are predominantly produced based on fossil raw materials. The demand for climate-friendly products, legal requirements and the EU emissions trading scheme (EU-ETS) are forcing the chemical industry to focus on increased recycling and production based on CO2 and biomass in the future. To avoid competition with the food sector associated with the industrial use of biomass, organic waste, residual materials and CO2 are to be tapped as carbon sources. This chapter describes the volume potential of these alternative raw materials in the EU and technologies for their utilisation in basic, speciality and fine chemical products for various applications and markets. The question of the availability of sustainable carbon sources arises for the large-volume products of basic chemistry. A detailed techno-economic analysis (TEA) to produce methanol based on CO2 is therefore presented as an example. Finally, the requirements for achieving the raw material transition by 2050 are discussed.
{"title":"Recycling Biowaste and Residuals into Chemical Products.","authors":"Thomas Bayer, Alexander May, Manfred Kircher","doi":"10.1007/10_2025_280","DOIUrl":"10.1007/10_2025_280","url":null,"abstract":"<p><p>Today, organic chemical products are predominantly produced based on fossil raw materials. The demand for climate-friendly products, legal requirements and the EU emissions trading scheme (EU-ETS) are forcing the chemical industry to focus on increased recycling and production based on CO<sub>2</sub> and biomass in the future. To avoid competition with the food sector associated with the industrial use of biomass, organic waste, residual materials and CO<sub>2</sub> are to be tapped as carbon sources. This chapter describes the volume potential of these alternative raw materials in the EU and technologies for their utilisation in basic, speciality and fine chemical products for various applications and markets. The question of the availability of sustainable carbon sources arises for the large-volume products of basic chemistry. A detailed techno-economic analysis (TEA) to produce methanol based on CO<sub>2</sub> is therefore presented as an example. Finally, the requirements for achieving the raw material transition by 2050 are discussed.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"23-61"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Argyro Tsipa, Constantina K Varnava, Rosa Anna Nastro, Ioannis Ieropoulos
Electro-bioremediation of wastewater is a novel, nature-based solution towards clean water, based on microbial electrochemical technologies (METs). Electro-bioremediation technologies for wastewater treatment, except enhanced bioremediation results and renewable energy generation, offer an unlocked opportunity for harvesting by-products and using them in other applications. This concept contributes to circularity, sustainability, and environmental compatibility, mitigating the impact of climate change. In addition, wastewater valorization and, thus, water resilience are possible thereby leading to protection of water resources. Compounds and metabolites naturally synthesized by the microorganisms involved in the wastewater electro-assisted biodegradation, can result in the enhancement of both extracellular electron transfer (EET) and bioremediation. Such microbial products are added-value, natural, non-toxic and biodegradable such as biosurfactants (BSFs) and polyhydroxyalkanoates (PHAs). In this chapter, the effect of the presence of BSFs and PHAs in MET during electro-bioremediation, as well as when fed with conventional substrates, are exhaustively evaluated. The significance of BSFs even when they are added exogenously is also examined. The major categories of by-products biosynthesis including organic acids, biopolymers, recovered heavy metals and phenazines such as pyocyanin during electro-bioremediation processes are also discussed. Consequently, a future direction in wastewater electro-bioremediation is proposed.
{"title":"Biosurfactants, Polyhydroxyalkanoates, and Other Added-Value Products from Wastewater Electro-bioremediation: A New Biorefinery Concept.","authors":"Argyro Tsipa, Constantina K Varnava, Rosa Anna Nastro, Ioannis Ieropoulos","doi":"10.1007/10_2025_279","DOIUrl":"10.1007/10_2025_279","url":null,"abstract":"<p><p>Electro-bioremediation of wastewater is a novel, nature-based solution towards clean water, based on microbial electrochemical technologies (METs). Electro-bioremediation technologies for wastewater treatment, except enhanced bioremediation results and renewable energy generation, offer an unlocked opportunity for harvesting by-products and using them in other applications. This concept contributes to circularity, sustainability, and environmental compatibility, mitigating the impact of climate change. In addition, wastewater valorization and, thus, water resilience are possible thereby leading to protection of water resources. Compounds and metabolites naturally synthesized by the microorganisms involved in the wastewater electro-assisted biodegradation, can result in the enhancement of both extracellular electron transfer (EET) and bioremediation. Such microbial products are added-value, natural, non-toxic and biodegradable such as biosurfactants (BSFs) and polyhydroxyalkanoates (PHAs). In this chapter, the effect of the presence of BSFs and PHAs in MET during electro-bioremediation, as well as when fed with conventional substrates, are exhaustively evaluated. The significance of BSFs even when they are added exogenously is also examined. The major categories of by-products biosynthesis including organic acids, biopolymers, recovered heavy metals and phenazines such as pyocyanin during electro-bioremediation processes are also discussed. Consequently, a future direction in wastewater electro-bioremediation is proposed.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"119-149"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143661888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bacterial cellulose (BC) is a polymer produced by specific species of bacteria, most often by the species Komagataeibacter xylinus and Gluconacetobacter xylinus. BC may be distinguished from other types of cellulose by its origin. It is a kind of cellulose that is highly pure and robust, which is made up of long chains of glucose units that create a 3D network. The production of BC takes place via fermentation. During this process, the bacteria utilize sugar and produce cellulose as a byproduct. BC has been extensively researched for its potential use in the medical industry, food industry, and many other fields. Application includes development of an artificial skin for wound dressing because of its remarkable inter- and intramolecular hydrogen bonding and thermal and mechanical strength. BC has a large potential to be used in the food industry, where it can be combined with other polysaccharides to be used in food products as additives, edible film/coating, or active food packaging material to prolong the shelf life of the product and reduce the rate of chemical reactions and microbial growth in food products.
{"title":"Novel Approaches in Production and Application of Bacterial Cellulose in Food Industries.","authors":"Aakankshya Dhakal, Lidia Stasiak-Różańska, Achyut Adhikari","doi":"10.1007/10_2025_285","DOIUrl":"10.1007/10_2025_285","url":null,"abstract":"<p><p>Bacterial cellulose (BC) is a polymer produced by specific species of bacteria, most often by the species Komagataeibacter xylinus and Gluconacetobacter xylinus. BC may be distinguished from other types of cellulose by its origin. It is a kind of cellulose that is highly pure and robust, which is made up of long chains of glucose units that create a 3D network. The production of BC takes place via fermentation. During this process, the bacteria utilize sugar and produce cellulose as a byproduct. BC has been extensively researched for its potential use in the medical industry, food industry, and many other fields. Application includes development of an artificial skin for wound dressing because of its remarkable inter- and intramolecular hydrogen bonding and thermal and mechanical strength. BC has a large potential to be used in the food industry, where it can be combined with other polysaccharides to be used in food products as additives, edible film/coating, or active food packaging material to prolong the shelf life of the product and reduce the rate of chemical reactions and microbial growth in food products.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"249-282"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
What is an unconventional organism in biotechnology? The γ-proteobacterium Shewanella oneidensis might fall into this category as it was initially established as a laboratory model organism for a process that was not seen as potentially interesting for biotechnology. The reduction of solid-state extracellular electron acceptors such as iron and manganese oxides is highly relevant for many biogeochemical cycles, although it turned out in recent years to be quite relevant for many potential biotechnological applications as well. Applications started with the production of nanoparticles and dramatically increased after understanding that electrodes in bioelectrochemical systems can also be used by these organisms. From the potential production of current and hydrogen in these systems and the development of biosensors, the field expanded to anode-assisted fermentations enabling fermentation reactions that were - so far - dependent on oxygen as an electron acceptor. Now the field expands further to cathode-dependent production routines. As a side product to all these application endeavors, S. oneidensis was understood more and more, and our understanding and genetic repertoire is at eye level to E. coli. Corresponding to this line of thought, this chapter will first summarize the available arsenal of tools in molecular biology that was established for working with the organism and thereafter describe so far established directions of application. Last but not least, we will highlight potential future directions of work with the unconventional model organism S. oneidensis.
什么是生物技术中的非常规生物?γ-蛋白菌 Shewanella oneidensis 可能就属于这一类,因为它最初是作为一种实验室模式生物被建立起来的,而这一过程并不被认为对生物技术具有潜在的意义。固态细胞外电子受体(如铁和锰氧化物)的还原与许多生物地球化学循环密切相关,但近年来发现它与许多潜在的生物技术应用也相当相关。其应用始于纳米颗粒的生产,在了解到生物电化学系统中的电极也可由这些生物体使用后,其应用急剧增加。从这些系统中可能产生的电流和氢气以及生物传感器的开发,该领域扩展到阳极辅助发酵,使迄今为止依赖氧气作为电子受体的发酵反应成为可能。现在,该领域进一步扩展到阴极辅助生产工艺。作为所有这些应用努力的附带产物,人们对 S. oneidensis 的了解越来越多,我们对它的了解和基因库已达到大肠杆菌的水平。根据这一思路,本章将首先总结分子生物学的现有工具库,这些工具库是为研究该生物而建立的,然后介绍迄今为止已确立的应用方向。最后,我们还将重点介绍非传统模式生物 S. oneidensis 的潜在未来工作方向。
{"title":"Shewanella oneidensis: Biotechnological Application of Metal-Reducing Bacteria.","authors":"Lukas Kneuer, René Wurst, Johannes Gescher","doi":"10.1007/10_2024_272","DOIUrl":"10.1007/10_2024_272","url":null,"abstract":"<p><p>What is an unconventional organism in biotechnology? The γ-proteobacterium Shewanella oneidensis might fall into this category as it was initially established as a laboratory model organism for a process that was not seen as potentially interesting for biotechnology. The reduction of solid-state extracellular electron acceptors such as iron and manganese oxides is highly relevant for many biogeochemical cycles, although it turned out in recent years to be quite relevant for many potential biotechnological applications as well. Applications started with the production of nanoparticles and dramatically increased after understanding that electrodes in bioelectrochemical systems can also be used by these organisms. From the potential production of current and hydrogen in these systems and the development of biosensors, the field expanded to anode-assisted fermentations enabling fermentation reactions that were - so far - dependent on oxygen as an electron acceptor. Now the field expands further to cathode-dependent production routines. As a side product to all these application endeavors, S. oneidensis was understood more and more, and our understanding and genetic repertoire is at eye level to E. coli. Corresponding to this line of thought, this chapter will first summarize the available arsenal of tools in molecular biology that was established for working with the organism and thereafter describe so far established directions of application. Last but not least, we will highlight potential future directions of work with the unconventional model organism S. oneidensis.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"117-154"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The wine industry is very important, the European wine production representing over 60% of the global production. According to the European Commission, the total annual wine production (2013-2020) in European countries reached a volume of 165 million hL. Europe is also the most important wine exporter occupying around 70% of the global market. In parallel, the wine industry produces a large quantity of biowaste that, in the context of a sustainable economy, needs to be valorized. In order to protect the environment, the landfilling of such biowaste has to be avoided due to its acidity and the possible generation of hazardous products by decomposition. On the other hand, vinification residues contain valuable compounds like: oils, polyphenols, tocopherols, and organic elements (carbon and nitrogen) making the valorization of these by-products compulsory. Ecological solutions for the valorization of grape seeds, grape skins, stems, as well as wine lees resulting from grape vinification have to be found. Different solutions for the processing of these biowastes to generate added value products are described and the economic aspects underlined.
{"title":"Biowaste Valorization: The Wine Industry Case.","authors":"Michaela Dina Stanescu","doi":"10.1007/10_2025_277","DOIUrl":"10.1007/10_2025_277","url":null,"abstract":"<p><p>The wine industry is very important, the European wine production representing over 60% of the global production. According to the European Commission, the total annual wine production (2013-2020) in European countries reached a volume of 165 million hL. Europe is also the most important wine exporter occupying around 70% of the global market. In parallel, the wine industry produces a large quantity of biowaste that, in the context of a sustainable economy, needs to be valorized. In order to protect the environment, the landfilling of such biowaste has to be avoided due to its acidity and the possible generation of hazardous products by decomposition. On the other hand, vinification residues contain valuable compounds like: oils, polyphenols, tocopherols, and organic elements (carbon and nitrogen) making the valorization of these by-products compulsory. Ecological solutions for the valorization of grape seeds, grape skins, stems, as well as wine lees resulting from grape vinification have to be found. Different solutions for the processing of these biowastes to generate added value products are described and the economic aspects underlined.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial strains, communities, and enzymes process side-streams into valuable products in a microbiological biorefinery. Proactive engineering and manufacturing of related bioreactors and other equipment is crucial. Production processes should be engineered in a seamless collaboration, so that the equipment optimally supports the biorefinery's function. This chapter presents various ways to educate microbiological biorefinery principles and operations for professionals. This education can occur in the classroom and hands-on, in biorefinery pilots, laboratories or purification plants.
{"title":"Microbial Biorefinery Education for Professionals.","authors":"Ari Jääskeläinen, Elias Hakalehto","doi":"10.1007/10_2024_259","DOIUrl":"10.1007/10_2024_259","url":null,"abstract":"<p><p>Microbial strains, communities, and enzymes process side-streams into valuable products in a microbiological biorefinery. Proactive engineering and manufacturing of related bioreactors and other equipment is crucial. Production processes should be engineered in a seamless collaboration, so that the equipment optimally supports the biorefinery's function. This chapter presents various ways to educate microbiological biorefinery principles and operations for professionals. This education can occur in the classroom and hands-on, in biorefinery pilots, laboratories or purification plants.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"107-123"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}