首页 > 最新文献

ACS polymers Au最新文献

英文 中文
Performance-Guided Design of Chemically Recyclable Polymeric Materials: A Case Study on Thermoplastic Elastomers. 化学可回收高分子材料的性能导向设计:以热塑性弹性体为例。
IF 6.9 Q1 POLYMER SCIENCE Pub Date : 2025-07-11 eCollection Date: 2025-10-08 DOI: 10.1021/acspolymersau.5c00033
Ye Sha, Wei Sun, Songtao Ding, Pengjin Ye, Yongsheng Zhang, Puyou Jia

Thermoplastic polymer materials include both plastics and elastomers. Elastomers stand out as a crucial class of materials because of their wide-ranging applications. Polymers that can depolymerize back to their original monomers present a hopeful avenue to tackle the problems associated with polymer sustainability. In recent years, a great deal of research has been centered on the chemical recycling of monomers of polymers, and there are numerous reviews on this topic. Nevertheless, these reviews typically classify materials according to polymerization methods or polymer types, seldom taking into account the functional classification of the products. This method of categorization creates difficulties for those interested in material application scenarios, as they find it hard to obtain relevant information. Hence, this perspective takes a function-oriented approach, offering solutions for recyclable thermoplastic elastomers (TPEs) by classifying them into polyurethanes, copolyesters, and polyolefins with specific sequence control (e.g., homo, random, alternating, triblock, pseudotriblock, and multiblock). We offer an overview of the synthesis methods of various polymers and the properties of the constructed TPEs, making comparisons with those of conventional TPEs. Special attention is given to the depolymerization process, including the necessary conditions and recovery efficiency of the constituent monomers. Finally, we put forward future directions for the chemical recycling of TPEs, highlighting the critical issue of "monomer reuse and performance degradation over successive recycling cycles" that has been overlooked. This perspective seeks to promote more in-depth, cross-disciplinary research involving both academic and industrial partners to develop next-generation TPEs with improved sustainability.

热塑性高分子材料包括塑料和弹性体。弹性体因其广泛的应用而成为一类重要的材料。聚合物可以解聚回到原来的单体,这为解决与聚合物可持续性相关的问题提供了一条有希望的途径。近年来,人们对聚合物单体的化学回收进行了大量的研究,并对这一课题进行了大量的综述。然而,这些评论通常根据聚合方法或聚合物类型对材料进行分类,很少考虑到产品的功能分类。这种分类方法给那些对材料应用场景感兴趣的人带来了困难,因为他们很难获得相关信息。因此,这一观点采取了以功能为导向的方法,通过将可回收热塑性弹性体(tpe)分类为聚氨酯、共聚酯和聚烯烃,并通过特定的顺序控制(例如,同质、随机、交替、三嵌段、伪三嵌段和多嵌段),为其提供解决方案。我们概述了各种聚合物的合成方法和构建的tpe的性能,并与传统的tpe进行了比较。特别注意解聚过程,包括必要的条件和组分单体的回收效率。最后,我们提出了TPEs化学回收的未来发展方向,并强调了被忽视的“单体再利用和连续循环中性能下降”的关键问题。这一观点旨在促进更深入的跨学科研究,包括学术和工业合作伙伴,以开发具有更高可持续性的下一代tpe。
{"title":"Performance-Guided Design of Chemically Recyclable Polymeric Materials: A Case Study on Thermoplastic Elastomers.","authors":"Ye Sha, Wei Sun, Songtao Ding, Pengjin Ye, Yongsheng Zhang, Puyou Jia","doi":"10.1021/acspolymersau.5c00033","DOIUrl":"10.1021/acspolymersau.5c00033","url":null,"abstract":"<p><p>Thermoplastic polymer materials include both plastics and elastomers. Elastomers stand out as a crucial class of materials because of their wide-ranging applications. Polymers that can depolymerize back to their original monomers present a hopeful avenue to tackle the problems associated with polymer sustainability. In recent years, a great deal of research has been centered on the chemical recycling of monomers of polymers, and there are numerous reviews on this topic. Nevertheless, these reviews typically classify materials according to polymerization methods or polymer types, seldom taking into account the functional classification of the products. This method of categorization creates difficulties for those interested in material application scenarios, as they find it hard to obtain relevant information. Hence, this perspective takes a function-oriented approach, offering solutions for recyclable thermoplastic elastomers (TPEs) by classifying them into polyurethanes, copolyesters, and polyolefins with specific sequence control (e.g., homo, random, alternating, triblock, pseudotriblock, and multiblock). We offer an overview of the synthesis methods of various polymers and the properties of the constructed TPEs, making comparisons with those of conventional TPEs. Special attention is given to the depolymerization process, including the necessary conditions and recovery efficiency of the constituent monomers. Finally, we put forward future directions for the chemical recycling of TPEs, highlighting the critical issue of \"monomer reuse and performance degradation over successive recycling cycles\" that has been overlooked. This perspective seeks to promote more in-depth, cross-disciplinary research involving both academic and industrial partners to develop next-generation TPEs with improved sustainability.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 5","pages":"432-444"},"PeriodicalIF":6.9,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145281970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing the Tutorial Manuscript Type at the ACS Au Community Journals 介绍ACS Au社区期刊的教程稿件类型
IF 6.9 Q1 POLYMER SCIENCE Pub Date : 2025-07-10 DOI: 10.1021/acspolymersau.5c00054
Squire J. Booker, Stephanie L. Brock, Xiangdong Li, Géraldine Masson, Sébastien Perrier, Vivek V. Ranade, Raymond E. Schaak, Gemma C. Solomon and Shelley D. Minteer*, 
{"title":"Introducing the Tutorial Manuscript Type at the ACS Au Community Journals","authors":"Squire J. Booker,&nbsp;Stephanie L. Brock,&nbsp;Xiangdong Li,&nbsp;Géraldine Masson,&nbsp;Sébastien Perrier,&nbsp;Vivek V. Ranade,&nbsp;Raymond E. Schaak,&nbsp;Gemma C. Solomon and Shelley D. Minteer*,&nbsp;","doi":"10.1021/acspolymersau.5c00054","DOIUrl":"https://doi.org/10.1021/acspolymersau.5c00054","url":null,"abstract":"","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 4","pages":"323–324"},"PeriodicalIF":6.9,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acspolymersau.5c00054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144826218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PVDF Nanofiber Membranes for Dissolved Methane Recovery from Water Prepared by Combining Electrospinning and Hot-Pressing Methods 静电纺丝与热压相结合制备用于水中溶解甲烷回收的PVDF纳米纤维膜
IF 6.9 Q1 POLYMER SCIENCE Pub Date : 2025-06-19 DOI: 10.1021/acspolymersau.5c00021
Félix Montero-Rocca, Jose D. Badia-Valiente, Ramón Jiménez-Robles, Vicente Martínez-Soria and Marta Izquierdo*, 

Polyvinylidene fluoride (PVDF) electrospun nanofiber membranes (ENMs) could potentially be used in membrane contactors (MCs) for environmental applications, such as the removal of dissolved CH4 from anaerobic effluents. In this work, a PVDF flat-sheet ENM fabrication protocol, including the electrospinning processing and the subsequent hot-pressing treatment (HP), has been developed to produce hydrophobic membranes with suitable integrity and pore size distribution for gas–liquid separations in MCs. The HP study explored the effects of pressure (1, 10, and 20 MPa), temperature (25, 60, 80, and 120 °C), and time (2, 4, 6, and 10 min) on the morphological properties and hydrophobicity of the membranes. Our research revealed that fibers in the PVDF ENMs began to sinter at temperatures above 60 °C when hot-pressed between 1 and 20 MPa. ENM samples were prepared at different dope compositions (10–15% PVDF, 0.00–0.043% LiCl). After HP (≥1 MPa, ≥60 °C, and 6 min), the membrane thickness and water contact angle (WCA) decreased considerably, and lower pore sizes with narrower distributions were obtained. At higher pressure (10 MPa), a noticeable decrease in thickness (from 270 to 38 μm) and WCA (from 139 to 110°) was observed. Additionally, pore size distribution shifted toward a predominant narrow peak of around 0.40 μm. HP enhanced the uniformity of the PVDF crystalline structure without altering its overall crystallinity degree (40–42%). The HP ENM exhibited a comparable dissolved CH4 recovery performance to a commercial PVDF membrane and demonstrated sufficient mechanical integrity to endure operating conditions, maintaining a stable performance for at least 80 h.

聚偏氟乙烯(PVDF)静电纺纳米纤维膜(enm)可能用于膜接触器(mc)的环境应用,例如从厌氧废水中去除溶解的CH4。在这项工作中,开发了PVDF平板ENM制造方案,包括静电纺丝加工和随后的热压处理(HP),以生产具有合适完整性和孔径分布的疏水膜,用于MCs中的气液分离。HP研究探讨了压力(1、10和20 MPa)、温度(25、60、80和120°C)和时间(2、4、6和10分钟)对膜的形态特性和疏水性的影响。我们的研究表明,当热压在1到20 MPa之间时,PVDF enm中的纤维在60℃以上的温度下开始烧结。采用不同的涂料组成(10-15% PVDF, 0.00-0.043% LiCl)制备ENM样品。高温(≥1 MPa,≥60°C, 6 min)后,膜厚度和水接触角(WCA)明显减小,孔径变小,分布变窄。在较高的压力(10 MPa)下,观察到厚度(从270 μm到38 μm)和WCA(从139°到110°)的显著减小。孔径分布向0.40 μm左右的窄峰偏移。HP增强了PVDF晶体结构的均匀性,但不改变其整体结晶度(40-42%)。HP ENM表现出与商用PVDF膜相当的溶解CH4回收性能,并且表现出足够的机械完整性,可以承受操作条件,保持至少80小时的稳定性能。
{"title":"PVDF Nanofiber Membranes for Dissolved Methane Recovery from Water Prepared by Combining Electrospinning and Hot-Pressing Methods","authors":"Félix Montero-Rocca,&nbsp;Jose D. Badia-Valiente,&nbsp;Ramón Jiménez-Robles,&nbsp;Vicente Martínez-Soria and Marta Izquierdo*,&nbsp;","doi":"10.1021/acspolymersau.5c00021","DOIUrl":"https://doi.org/10.1021/acspolymersau.5c00021","url":null,"abstract":"<p >Polyvinylidene fluoride (PVDF) electrospun nanofiber membranes (ENMs) could potentially be used in membrane contactors (MCs) for environmental applications, such as the removal of dissolved CH<sub>4</sub> from anaerobic effluents. In this work, a PVDF flat-sheet ENM fabrication protocol, including the electrospinning processing and the subsequent hot-pressing treatment (HP), has been developed to produce hydrophobic membranes with suitable integrity and pore size distribution for gas–liquid separations in MCs. The HP study explored the effects of pressure (1, 10, and 20 MPa), temperature (25, 60, 80, and 120 °C), and time (2, 4, 6, and 10 min) on the morphological properties and hydrophobicity of the membranes. Our research revealed that fibers in the PVDF ENMs began to sinter at temperatures above 60 °C when hot-pressed between 1 and 20 MPa. ENM samples were prepared at different dope compositions (10–15% PVDF, 0.00–0.043% LiCl). After HP (≥1 MPa, ≥60 °C, and 6 min), the membrane thickness and water contact angle (WCA) decreased considerably, and lower pore sizes with narrower distributions were obtained. At higher pressure (10 MPa), a noticeable decrease in thickness (from 270 to 38 μm) and WCA (from 139 to 110°) was observed. Additionally, pore size distribution shifted toward a predominant narrow peak of around 0.40 μm. HP enhanced the uniformity of the PVDF crystalline structure without altering its overall crystallinity degree (40–42%). The HP ENM exhibited a comparable dissolved CH<sub>4</sub> recovery performance to a commercial PVDF membrane and demonstrated sufficient mechanical integrity to endure operating conditions, maintaining a stable performance for at least 80 h.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 4","pages":"353–368"},"PeriodicalIF":6.9,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acspolymersau.5c00021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144826116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale Structure–Property Relationships of Cyanate Ester as a Function of Extent of Cure 纳米级氰酸酯的结构-性能关系及其固化程度的函数
IF 6.9 Q1 POLYMER SCIENCE Pub Date : 2025-06-16 DOI: 10.1021/acspolymersau.5c00022
Khatereh Kashmari, Josh Kemppainen, Sagar U. Patil, Julieta Barroeta Robles, Pascal Hubert and Gregory M. Odegard*, 

Cyanate esters are key thermosetting resins for composite materials that require structural integrity and resistance to elevated temperatures. Because cyanate ester composites require relatively high processing temperatures, they are susceptible to the formation of process-induced residual stresses, which compromise their overall strength and durability. Process modeling is a key strategy for optimizing processing parameters to minimize such residual stresses. A necessary component of effective and efficient process modeling of composites is computationally established resin property evolution relationships for a range of processing parameters. In this study, the physical, mechanical, and thermal properties of a cyanate ester resin are established as a function of processing time and temperature using experimentally validated molecular dynamics modeling. The results show that the properties are strongly dependent on the processing temperature. At processing temperatures above 160 °C, the properties quickly approach their fully cured values, whereas at processing temperatures below 140 °C, the chemical cross-linking is significantly inhibited, and processing times to complete cure are relatively long. The evolution of the physical, mechanical, and thermal properties as a function of processing time is established, which is critical data needed as input into multiscale process modeling and optimization of cyanate ester composites for computationally driven composite design.

氰酸酯是要求结构完整性和耐高温的复合材料的关键热固性树脂。由于氰酸酯复合材料需要相对较高的加工温度,它们很容易形成工艺诱导的残余应力,从而损害其整体强度和耐久性。过程建模是优化加工参数以最小化残余应力的关键策略。有效和高效的复合材料工艺建模的必要组成部分是计算建立树脂性能演化关系的一系列加工参数。在本研究中,利用实验验证的分子动力学模型,建立了氰酸酯树脂的物理、机械和热性能作为加工时间和温度的函数。结果表明,合金的性能与加工温度密切相关。在160°C以上的加工温度下,其性能迅速接近完全固化值,而在140°C以下的加工温度下,化学交联明显受到抑制,完全固化的加工时间相对较长。建立了氰酸酯复合材料的物理、力学和热性能随加工时间的变化规律,这是计算驱动复合材料设计中多尺度工艺建模和优化所需的关键数据。
{"title":"Nanoscale Structure–Property Relationships of Cyanate Ester as a Function of Extent of Cure","authors":"Khatereh Kashmari,&nbsp;Josh Kemppainen,&nbsp;Sagar U. Patil,&nbsp;Julieta Barroeta Robles,&nbsp;Pascal Hubert and Gregory M. Odegard*,&nbsp;","doi":"10.1021/acspolymersau.5c00022","DOIUrl":"https://doi.org/10.1021/acspolymersau.5c00022","url":null,"abstract":"<p >Cyanate esters are key thermosetting resins for composite materials that require structural integrity and resistance to elevated temperatures. Because cyanate ester composites require relatively high processing temperatures, they are susceptible to the formation of process-induced residual stresses, which compromise their overall strength and durability. Process modeling is a key strategy for optimizing processing parameters to minimize such residual stresses. A necessary component of effective and efficient process modeling of composites is computationally established resin property evolution relationships for a range of processing parameters. In this study, the physical, mechanical, and thermal properties of a cyanate ester resin are established as a function of processing time and temperature using experimentally validated molecular dynamics modeling. The results show that the properties are strongly dependent on the processing temperature. At processing temperatures above 160 °C, the properties quickly approach their fully cured values, whereas at processing temperatures below 140 °C, the chemical cross-linking is significantly inhibited, and processing times to complete cure are relatively long. The evolution of the physical, mechanical, and thermal properties as a function of processing time is established, which is critical data needed as input into multiscale process modeling and optimization of cyanate ester composites for computationally driven composite design.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 4","pages":"369–378"},"PeriodicalIF":6.9,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acspolymersau.5c00022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144826131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2025-06-11
Brittany K. Roopnarine, Adediwura Deborah Adedeji, Sujata Dhakal, Sneha Suresh and Svetlana Morozova*, 
{"title":"","authors":"Brittany K. Roopnarine,&nbsp;Adediwura Deborah Adedeji,&nbsp;Sujata Dhakal,&nbsp;Sneha Suresh and Svetlana Morozova*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":4.7,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acspolymersau.4c00099","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144423132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2025-06-11
Magdalena A. Beres, Cyrille Boyer, Matthias Hartlieb, Dominik Konkolewicz, Greg G. Qiao, Brent S. Sumerlin and Sébastien Perrier*, 
{"title":"","authors":"Magdalena A. Beres,&nbsp;Cyrille Boyer,&nbsp;Matthias Hartlieb,&nbsp;Dominik Konkolewicz,&nbsp;Greg G. Qiao,&nbsp;Brent S. Sumerlin and Sébastien Perrier*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":4.7,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acspolymersau.4c00101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144423137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2025-06-11
Yanpu Yao, Xiaofan Yang, Cansu Aydogan, James Town, William Pointer and David M. Haddleton*, 
{"title":"","authors":"Yanpu Yao,&nbsp;Xiaofan Yang,&nbsp;Cansu Aydogan,&nbsp;James Town,&nbsp;William Pointer and David M. Haddleton*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":4.7,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acspolymersau.5c00020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144356750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2025-06-11
Ioana Luca, Mădălina Georgiana Albu Kaya*, Irina Titorencu*, Cristina-Elena Dinu-Pîrvu, Maria Minodora Marin, Lăcrămioara Popa, Ana-Maria Rosca, Aurora Antoniac, Valentina Anuta, Răzvan Mihai Prisada, Durmus Alpaslan Kaya and Mihaela Violeta Ghica, 
{"title":"","authors":"Ioana Luca,&nbsp;Mădălina Georgiana Albu Kaya*,&nbsp;Irina Titorencu*,&nbsp;Cristina-Elena Dinu-Pîrvu,&nbsp;Maria Minodora Marin,&nbsp;Lăcrămioara Popa,&nbsp;Ana-Maria Rosca,&nbsp;Aurora Antoniac,&nbsp;Valentina Anuta,&nbsp;Răzvan Mihai Prisada,&nbsp;Durmus Alpaslan Kaya and Mihaela Violeta Ghica,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":4.7,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acspolymersau.5c00010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144423130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2025-06-11
Pilar A. Haro Gutiérrez, Samuele Colombi, Jordi Casanovas, Leonor Resina, Jordi Sans, Elisabeth Engel, Hamidreza Enshaei*, José García-Torres*, Maria M. Pérez-Madrigal* and Carlos Alemán*, 
{"title":"","authors":"Pilar A. Haro Gutiérrez,&nbsp;Samuele Colombi,&nbsp;Jordi Casanovas,&nbsp;Leonor Resina,&nbsp;Jordi Sans,&nbsp;Elisabeth Engel,&nbsp;Hamidreza Enshaei*,&nbsp;José García-Torres*,&nbsp;Maria M. Pérez-Madrigal* and Carlos Alemán*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":4.7,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acspolymersau.4c00097","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144423134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 4.7 Q1 POLYMER SCIENCE Pub Date : 2025-06-11
{"title":"","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"5 3","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":4.7,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/lgv005i003_1945148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144356751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS polymers Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1