首页 > 最新文献

Advanced quantum technologies最新文献

英文 中文
Nonlinear Effect Analysis and Sensitivity Improvement in Spin Exchange Relaxation Free Atomic Magnetometers 自旋交换弛豫自由原子磁强计的非线性效应分析和灵敏度改进
IF 4.4 Q1 OPTICS Pub Date : 2024-07-25 DOI: 10.1002/qute.202400226
Bozheng Xing, Ning Ma, Haoran Lv, Jixi Lu

In this study, the influence of the nonlinear magneto–optical rotation effect on a spin-exchange relaxation-free (SERF) atomic magnetometer is analyzed. The nonlinear effect is described by saturation parameters obtained from the density matrix model considering the Rabi oscillation of the probe light. For better sensitivity, the nonlinear effect is suppressed, and larger output signals are achieved. Based on the nonlinear effect analysis, the relationship between the probe sensitivity and light power density is obtained, and the optimal probe light power density is measured with best probe sensitivity. The best probe sensitivity improves by ≈6 times at the optimal probe light power density compared with that in the conventional linear optical rotation detection. The proposed method can be applied to SERF magnetometers, co-magnetometers, and atomic spin gyroscopes.

本研究分析了非线性磁光旋转效应对无自旋交换弛豫(SERF)原子磁力计的影响。非线性效应由从密度矩阵模型中获得的饱和参数来描述,该模型考虑了探测光的拉比振荡。为了获得更好的灵敏度,非线性效应被抑制,从而获得更大的输出信号。根据非线性效应分析,得到了探针灵敏度与光功率密度之间的关系,并测出了最佳探针灵敏度下的最佳探针光功率密度。与传统的线性光学旋转检测相比,最佳探头光功率密度下的最佳探头灵敏度提高了≈6 倍。所提出的方法可应用于 SERF 磁强计、共磁强计和原子自旋陀螺仪。
{"title":"Nonlinear Effect Analysis and Sensitivity Improvement in Spin Exchange Relaxation Free Atomic Magnetometers","authors":"Bozheng Xing,&nbsp;Ning Ma,&nbsp;Haoran Lv,&nbsp;Jixi Lu","doi":"10.1002/qute.202400226","DOIUrl":"10.1002/qute.202400226","url":null,"abstract":"<p>In this study, the influence of the nonlinear magneto–optical rotation effect on a spin-exchange relaxation-free (SERF) atomic magnetometer is analyzed. The nonlinear effect is described by saturation parameters obtained from the density matrix model considering the Rabi oscillation of the probe light. For better sensitivity, the nonlinear effect is suppressed, and larger output signals are achieved. Based on the nonlinear effect analysis, the relationship between the probe sensitivity and light power density is obtained, and the optimal probe light power density is measured with best probe sensitivity. The best probe sensitivity improves by ≈6 times at the optimal probe light power density compared with that in the conventional linear optical rotation detection. The proposed method can be applied to SERF magnetometers, co-magnetometers, and atomic spin gyroscopes.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Manipulation of Atomic Polarization Moments for Nonlinear Magneto-Optical Rotation Atomic Magnetometers 非线性磁光旋转原子磁力计原子极化矩的识别与操纵
IF 4.4 Q1 OPTICS Pub Date : 2024-07-19 DOI: 10.1002/qute.202400063
Yanchao Chai, Liwei Jiang, Jiali Liu, Xin Zhao, Mengnan Tian, Zhenglong Lu, Xusheng Lei, Zhuo Wang, Wei Quan

Polarization moments play a crucial role in measuring magnetic fields for nonlinear magneto-optical rotation (NMOR) atomic magnetometers. However, it is challenging to distinguish between each polarization moment and evaluate its effect on the magnetic resonance response signal in an alkali vapor cell with buffer gas. To address this issue, a method is proposed to identify different polarization moments through the frequency shift of the magnetic resonance response signal. The proportion of each polarization moment is determined, and it is demonstrated that the magnetic resonance response signal is affected by the hexadecapole moment, resulting in a frequency shift and a decrease in signal amplitude. To mitigate this effect, an approach is investigated to manipulate the polarization moments by flipping the phase of the pump light. Ultimately, a 15.19% increase in response amplitude is achieved in the simulated geomagnetic environment within the magnetic shield barrel. The theory and method presented here provide strong support for the study of the polarization moments in an alkali vapor cell with buffer gas, which potentially enhance the performance of NMOR atomic magnetometers.

极化矩在非线性磁光旋转(NMOR)原子磁强计的磁场测量中起着至关重要的作用。然而,在带有缓冲气体的碱蒸气池中,区分每种极化力矩并评估其对磁共振响应信号的影响具有挑战性。为了解决这个问题,我们提出了一种通过磁共振响应信号的频率偏移来识别不同极化矩的方法。该方法确定了每种极化矩的比例,并证明磁共振响应信号受十六极矩的影响,导致频率偏移和信号振幅减小。为了减轻这种影响,研究人员研究了一种通过翻转泵浦光的相位来操纵偏振矩的方法。最终,在磁屏蔽桶内的模拟地磁环境中,响应振幅提高了 15.19%。本文介绍的理论和方法为研究带有缓冲气体的碱蒸气电池中的偏振矩提供了有力支持,从而有可能提高 NMOR 原子磁强计的性能。
{"title":"Identification and Manipulation of Atomic Polarization Moments for Nonlinear Magneto-Optical Rotation Atomic Magnetometers","authors":"Yanchao Chai,&nbsp;Liwei Jiang,&nbsp;Jiali Liu,&nbsp;Xin Zhao,&nbsp;Mengnan Tian,&nbsp;Zhenglong Lu,&nbsp;Xusheng Lei,&nbsp;Zhuo Wang,&nbsp;Wei Quan","doi":"10.1002/qute.202400063","DOIUrl":"10.1002/qute.202400063","url":null,"abstract":"<p>Polarization moments play a crucial role in measuring magnetic fields for nonlinear magneto-optical rotation (NMOR) atomic magnetometers. However, it is challenging to distinguish between each polarization moment and evaluate its effect on the magnetic resonance response signal in an alkali vapor cell with buffer gas. To address this issue, a method is proposed to identify different polarization moments through the frequency shift of the magnetic resonance response signal. The proportion of each polarization moment is determined, and it is demonstrated that the magnetic resonance response signal is affected by the hexadecapole moment, resulting in a frequency shift and a decrease in signal amplitude. To mitigate this effect, an approach is investigated to manipulate the polarization moments by flipping the phase of the pump light. Ultimately, a 15.19% increase in response amplitude is achieved in the simulated geomagnetic environment within the magnetic shield barrel. The theory and method presented here provide strong support for the study of the polarization moments in an alkali vapor cell with buffer gas, which potentially enhance the performance of NMOR atomic magnetometers.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triggering and Modulation of Quantum Magnon-Photon Hall Insulator in a 1D Cavity Magnonics Lattice 一维腔磁子晶格中量子磁子-光子霍尔绝缘体的触发与调制
IF 4.4 Q1 OPTICS Pub Date : 2024-07-19 DOI: 10.1002/qute.202400111
Lü Xiang, He Wang, Zi-Meng Li, Zhu-Cheng Zhang, Yi-Ping Wang

Quantum Hall insulators in artificial systems have become a rapidly developing research field in recent years, and have made significant breakthroughs in observing many novel topological phenomena. However, there are few reports about quantum magnon-photon Hall insulators. Here, a scheme is proposed for implementing a 1D cavity magnonics lattice that exhibits quantum magnon-photon Hall insulator behaviors, where each unit cell comprises cavity photons and magnons. By adjusting the system parameters, it is found that not only different energy spectrum structures can be triggered, but also the distribution of the edge states can show the flipping process, which allows the achievement of the multi-channel topological quantum state transmission. In addition, considering the presence of defects, dissipation, and disorder, it is found that appropriate defects can trigger new topological phases, while dissipation only causes shifts in energy levels without changing the position and period of edge states, and disorder leads to shifts in band structures and edge states, thus demonstrating the robustness of edge states. This work offers an effective way to study topological magnon-photon Hall insulators, which will have promising applications in magnon-based quantum information processing.

近年来,人工系统中的量子霍尔绝缘体已成为一个快速发展的研究领域,并在观察许多新颖的拓扑现象方面取得了重大突破。然而,有关量子镁光霍尔绝缘体的报道却很少。本文提出了一种实现一维空穴磁子晶格的方案,该晶格表现出量子磁子-光子霍尔绝缘体的行为,其中每个单元格由空穴光子和磁子组成。通过调整系统参数,我们发现不仅可以触发不同的能谱结构,边缘态的分布也可以呈现翻转过程,从而实现多通道拓扑量子态传输。此外,考虑到缺陷、耗散和无序的存在,研究发现适当的缺陷可以引发新的拓扑相,而耗散只会引起能级的移动,不会改变边缘态的位置和周期,无序则会导致能带结构和边缘态的移动,从而证明了边缘态的鲁棒性。这项工作为研究拓扑镁光霍尔绝缘体提供了一种有效的方法,它将在基于镁光的量子信息处理中具有广阔的应用前景。
{"title":"Triggering and Modulation of Quantum Magnon-Photon Hall Insulator in a 1D Cavity Magnonics Lattice","authors":"Lü Xiang,&nbsp;He Wang,&nbsp;Zi-Meng Li,&nbsp;Zhu-Cheng Zhang,&nbsp;Yi-Ping Wang","doi":"10.1002/qute.202400111","DOIUrl":"10.1002/qute.202400111","url":null,"abstract":"<p>Quantum Hall insulators in artificial systems have become a rapidly developing research field in recent years, and have made significant breakthroughs in observing many novel topological phenomena. However, there are few reports about quantum magnon-photon Hall insulators. Here, a scheme is proposed for implementing a 1D cavity magnonics lattice that exhibits quantum magnon-photon Hall insulator behaviors, where each unit cell comprises cavity photons and magnons. By adjusting the system parameters, it is found that not only different energy spectrum structures can be triggered, but also the distribution of the edge states can show the flipping process, which allows the achievement of the multi-channel topological quantum state transmission. In addition, considering the presence of defects, dissipation, and disorder, it is found that appropriate defects can trigger new topological phases, while dissipation only causes shifts in energy levels without changing the position and period of edge states, and disorder leads to shifts in band structures and edge states, thus demonstrating the robustness of edge states. This work offers an effective way to study topological magnon-photon Hall insulators, which will have promising applications in magnon-based quantum information processing.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separation and Evaluation of the Gradient Relaxation in the Atomic Comagnetometer 原子磁强计中梯度松弛的分离与评估
IF 4.4 Q1 OPTICS Pub Date : 2024-07-17 DOI: 10.1002/qute.202300464
Linlin Yuan, Lihong Duan, Hang Gao, Ze Cai, Kai Zhang, Jiong Huang, Sixun Liu, Zhuo Wang, Feng Liu, Wei Quan

In the atomic comagnetometer, nuclear spin relaxation is a core parameter that affects the magnetic field suppression ability and stability, and is influenced by various gradient fields. It is necessary to measure and separate the effects of different gradients on nuclear spin, which helps to effectively suppress them separately. This article proposes a periodic optical pumping method for separating and measuring polarization gradient relaxation and magnetic field gradient relaxation, considering the effects of pump light and applied magnetic field. The comprehensive influence model for pump light on transverse nuclear spin relaxation is established, and the measurement steps and parameter selection criteria for the proposed method considering signal decay characteristics are provided. Furthermore, the proportion of various gradient relaxations is quantified. This work provides an evaluation method for gradient relaxation suppression, supporting the improvement of the measurement sensitivity and stability of the atomic comagnetometer.

在原子慧磁力计中,核自旋弛豫是影响磁场抑制能力和稳定性的核心参数,受到各种梯度场的影响。有必要测量和分离不同梯度对核自旋的影响,这有助于分别有效地抑制它们。本文考虑了泵浦光和外加磁场的影响,提出了一种分离和测量偏振梯度弛豫和磁场梯度弛豫的周期性光泵浦方法。建立了泵浦光对横向核自旋弛豫的综合影响模型,并给出了考虑信号衰减特性的拟议方法的测量步骤和参数选择标准。此外,还量化了各种梯度弛豫的比例。这项工作提供了梯度弛豫抑制的评估方法,有助于提高原子慧磁力计的测量灵敏度和稳定性。
{"title":"Separation and Evaluation of the Gradient Relaxation in the Atomic Comagnetometer","authors":"Linlin Yuan,&nbsp;Lihong Duan,&nbsp;Hang Gao,&nbsp;Ze Cai,&nbsp;Kai Zhang,&nbsp;Jiong Huang,&nbsp;Sixun Liu,&nbsp;Zhuo Wang,&nbsp;Feng Liu,&nbsp;Wei Quan","doi":"10.1002/qute.202300464","DOIUrl":"10.1002/qute.202300464","url":null,"abstract":"<p>In the atomic comagnetometer, nuclear spin relaxation is a core parameter that affects the magnetic field suppression ability and stability, and is influenced by various gradient fields. It is necessary to measure and separate the effects of different gradients on nuclear spin, which helps to effectively suppress them separately. This article proposes a periodic optical pumping method for separating and measuring polarization gradient relaxation and magnetic field gradient relaxation, considering the effects of pump light and applied magnetic field. The comprehensive influence model for pump light on transverse nuclear spin relaxation is established, and the measurement steps and parameter selection criteria for the proposed method considering signal decay characteristics are provided. Furthermore, the proportion of various gradient relaxations is quantified. This work provides an evaluation method for gradient relaxation suppression, supporting the improvement of the measurement sensitivity and stability of the atomic comagnetometer.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entanglement in Quantum Dots: Insights from Dynamic Susceptibility and Quantum Fisher Information 量子点中的纠缠:从动态易感性和量子费雪信息中获得的启示
IF 4.4 Q1 OPTICS Pub Date : 2024-07-15 DOI: 10.1002/qute.202400117
Jahanfar Abouie, Daryoosh Vashaee
<p>This study investigates the entanglement properties of quantum dots (QDs) under a universal Hamiltonian where the Coulomb interaction between particles (electrons or holes) decouples into charging energy and exchange coupling terms. Although this formalism typically decouples the charge and spin components, confinement-induced energy splitting can induce unexpected entanglement within the system. By analyzing the dynamic susceptibility and quantum Fisher information (QFI), significant behaviors are uncovered influenced by exchange constants, temperature variations, and confinement effects. In QDs with Ising exchange interactions, far below the Stoner instability (SI) point, where the QD is in a disordered paramagnetic phase, temperature reductions lead to decreased entanglement, challenging conventional expectations. These findings demonstrate that for QDs with small exchange interactions, the responses of easy-plane (<span></span><math> <semantics> <mrow> <msub> <mi>J</mi> <mi>z</mi> </msub> <mo><</mo> <msub> <mi>J</mi> <mi>⊥</mi> </msub> </mrow> <annotation>${J}_z &lt; {J}_ bot $</annotation> </semantics></math>) and easy-axis (<span></span><math> <semantics> <mrow> <msub> <mi>J</mi> <mi>z</mi> </msub> <mo>></mo> <msub> <mi>J</mi> <mi>⊥</mi> </msub> </mrow> <annotation>${J}_z &gt; {J}_ bot $</annotation> </semantics></math>) configurations are similar, with increased anisotropy broadening susceptibility and shifting its maximum to higher frequencies. For large exchange interactions, the susceptibility differences between easy-plane and easy-axis QDs become significant, with easy-plane QDs exhibiting a higher susceptibility magnitude. Additionally, the study reveals that temperature variations affect the dynamic response functions differently in easy-axis and easy-plane QDs. In easy-plane QDs, QFI consistently decreases with increasing temperature, whereas in easy-axis QDs, QFI behavior is highly dependent on the strengths of <span></span><math> <semantics> <msub> <mi>J</mi> <mi>z</mi> </msub> <annotation>${J}_z$</annotation> </semantics></math> and <span></span><math> <semantics> <msub> <mi>J</mi> <mi>⊥</mi> </msub> <annotation>${J}_ bo
本研究探讨了量子点(QDs)在通用哈密顿方程下的纠缠特性,在该方程下,粒子(电子或空穴)之间的库仑相互作用解耦为电荷能量和交换耦合项。虽然这种形式主义通常会解耦电荷和自旋成分,但禁锢引起的能量分裂会在系统内诱发意想不到的纠缠。通过分析动态易感性和量子费雪信息(QFI),我们发现了受交换常数、温度变化和约束效应影响的重要行为。在具有伊辛交换相互作用的 QD 中,温度降低会导致纠缠度降低,远远低于斯托纳不稳定(SI)点,此时 QD 处于无序顺磁相。这些研究结果表明,对于交换相互作用较小的 QDs,易平面()和易轴()配置的响应类似,各向异性的增加会拓宽电感,并将其最大值移至更高频率。对于大交换相互作用,易平面和易轴 QDs 之间的电感差异变得显著,易平面 QDs 表现出更高的电感幅度。此外,研究还揭示了温度变化对易轴和易面 QD 动态响应函数的不同影响。在易平面 QDs 中,QFI 随温度升高而持续降低,而在易轴 QDs 中,QFI 行为高度依赖于和的强度,根据特定的耦合条件,QFI 随温度升高或降低。相反,在低温下,各向异性海森堡模型在各向同性点附近表现出增强的纠缠。总之,这项工作有助于推进对 QDs 中纠缠的理解及其在量子技术中的潜在应用。
{"title":"Entanglement in Quantum Dots: Insights from Dynamic Susceptibility and Quantum Fisher Information","authors":"Jahanfar Abouie,&nbsp;Daryoosh Vashaee","doi":"10.1002/qute.202400117","DOIUrl":"10.1002/qute.202400117","url":null,"abstract":"&lt;p&gt;This study investigates the entanglement properties of quantum dots (QDs) under a universal Hamiltonian where the Coulomb interaction between particles (electrons or holes) decouples into charging energy and exchange coupling terms. Although this formalism typically decouples the charge and spin components, confinement-induced energy splitting can induce unexpected entanglement within the system. By analyzing the dynamic susceptibility and quantum Fisher information (QFI), significant behaviors are uncovered influenced by exchange constants, temperature variations, and confinement effects. In QDs with Ising exchange interactions, far below the Stoner instability (SI) point, where the QD is in a disordered paramagnetic phase, temperature reductions lead to decreased entanglement, challenging conventional expectations. These findings demonstrate that for QDs with small exchange interactions, the responses of easy-plane (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;J&lt;/mi&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;J&lt;/mi&gt;\u0000 &lt;mi&gt;⊥&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${J}_z &amp;lt; {J}_ bot $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) and easy-axis (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;J&lt;/mi&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;J&lt;/mi&gt;\u0000 &lt;mi&gt;⊥&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${J}_z &amp;gt; {J}_ bot $&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) configurations are similar, with increased anisotropy broadening susceptibility and shifting its maximum to higher frequencies. For large exchange interactions, the susceptibility differences between easy-plane and easy-axis QDs become significant, with easy-plane QDs exhibiting a higher susceptibility magnitude. Additionally, the study reveals that temperature variations affect the dynamic response functions differently in easy-axis and easy-plane QDs. In easy-plane QDs, QFI consistently decreases with increasing temperature, whereas in easy-axis QDs, QFI behavior is highly dependent on the strengths of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;J&lt;/mi&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${J}_z$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;J&lt;/mi&gt;\u0000 &lt;mi&gt;⊥&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${J}_ bo","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141718869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Cover: Photon Number Splitting Attack – Proposal and Analysis of an Experimental Scheme (Adv. Quantum Technol. 7/2024) 封底:光子数分裂攻击--实验方案的建议和分析(Adv. Quantum Technol.)
IF 4.4 Q1 OPTICS Pub Date : 2024-07-11 DOI: 10.1002/qute.202470019
Ariel Ashkenazy, Yuval Idan, Dor Korn, Dror Fixler, Barak Dayan, Eliahu Cohen

Depicted is a novel setup for realizing the photon number splitting (PNS) attack with current-day technology, namely, using the single-photon Raman interaction. In article number 2300437, Eliahu Cohen and co-workers analyze the amount of information which the eavesdropper (Eve) can obtain using this physical realization of PNS, concluding that while part of the secret key is at risk when weak coherent states are used, there is still a price for Eve to pay in terms of the induced noise. This stresses the importance of proper countermeasures.

本文描述的是一种利用当今技术实现光子数分裂(PNS)攻击的新型装置,即利用单光子拉曼相互作用。在编号为 2300437 的文章中,Eliahu Cohen 及其合作者分析了窃听者(夏娃)利用这种物理实现的 PNS 所能获取的信息量,得出结论认为,虽然在使用弱相干态时部分密钥面临风险,但夏娃仍需付出诱导噪声的代价。这就强调了采取适当对策的重要性。
{"title":"Back Cover: Photon Number Splitting Attack – Proposal and Analysis of an Experimental Scheme (Adv. Quantum Technol. 7/2024)","authors":"Ariel Ashkenazy,&nbsp;Yuval Idan,&nbsp;Dor Korn,&nbsp;Dror Fixler,&nbsp;Barak Dayan,&nbsp;Eliahu Cohen","doi":"10.1002/qute.202470019","DOIUrl":"https://doi.org/10.1002/qute.202470019","url":null,"abstract":"<p>Depicted is a novel setup for realizing the photon number splitting (PNS) attack with current-day technology, namely, using the single-photon Raman interaction. In article number 2300437, Eliahu Cohen and co-workers analyze the amount of information which the eavesdropper (Eve) can obtain using this physical realization of PNS, concluding that while part of the secret key is at risk when weak coherent states are used, there is still a price for Eve to pay in terms of the induced noise. This stresses the importance of proper countermeasures.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202470019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information (Adv. Quantum Technol. 7/2024) 发行信息(Adv. Quantum Technol.)
IF 4.4 Q1 OPTICS Pub Date : 2024-07-11 DOI: 10.1002/qute.202470018
{"title":"Issue Information (Adv. Quantum Technol. 7/2024)","authors":"","doi":"10.1002/qute.202470018","DOIUrl":"https://doi.org/10.1002/qute.202470018","url":null,"abstract":"","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202470018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Robust Topological Feature against Non-Hermiticity in Jaynes–Cummings Model (Adv. Quantum Technol. 7/2024) 封面:杰恩斯-康明斯模型中对抗非恒定性的稳健拓扑特征(Adv. Quantum Technol.)
IF 4.4 Q1 OPTICS Pub Date : 2024-07-11 DOI: 10.1002/qute.202470017
Zu-Jian Ying

Quantum coherence suffers from environmental influence but the topological feature may not. In article number 2400053, Zu-Jian Ying rigorously shows that the topological feature manifested by the fundamental Jaynes–Cummings model of light–matter interaction is robust against a general non-Hermiticity induced by dissipation and decay rates. The non-Hermiticity only tilts the spin winding plane, while the winding number is preserved. Several revealed properties may be useful for designing topological quantum devices.

量子相干性会受到环境影响,但拓扑特征可能不会。在编号为 2400053 的文章中,应祖建严谨地证明了光-物质相互作用的基本杰尼斯-康明斯模型所表现出的拓扑特征在耗散和衰变率诱导的一般非恒定性面前是稳健的。非恒定性只会使自旋绕组平面倾斜,而绕组数则保持不变。所揭示的一些特性可能有助于设计拓扑量子器件。
{"title":"Front Cover: Robust Topological Feature against Non-Hermiticity in Jaynes–Cummings Model (Adv. Quantum Technol. 7/2024)","authors":"Zu-Jian Ying","doi":"10.1002/qute.202470017","DOIUrl":"https://doi.org/10.1002/qute.202470017","url":null,"abstract":"<p>Quantum coherence suffers from environmental influence but the topological feature may not. In article number 2400053, Zu-Jian Ying rigorously shows that the topological feature manifested by the fundamental Jaynes–Cummings model of light–matter interaction is robust against a general non-Hermiticity induced by dissipation and decay rates. The non-Hermiticity only tilts the spin winding plane, while the winding number is preserved. Several revealed properties may be useful for designing topological quantum devices.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202470017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Biphoton Sources Based on the Double- Λ $Lambda$ Spontaneous Four-Wave Mixing Process 基于双Λ$Lambda$自发四波混合过程的双光子源综述
IF 4.4 Q1 OPTICS Pub Date : 2024-07-10 DOI: 10.1002/qute.202400138
Jia-Mou Chen, Thorsten Peters, Pei-Hsuan Hsieh, Ite A. Yu

This review article focuses on biphoton sources based on the double-Λ$Lambda$ spontaneous four-wave mixing (SFWM) process in laser-cooled as well as room-temperature or hot atomic ensembles. These biphoton sources have the advantage of providing stable frequencies, ultranarrow linewidths, and a tunability of the temporal biphoton width of more than one order of magnitude for high-bandwidth applications. Therefore, the generated photons can be efficiently interfaced to, e.g., atomic quantum memories. In contrast, solid-state biphoton sources typically require assistance by an optical cavity to operate at narrow linewidth that limits the tunability of the temporal width of the biphotons. Present state-of-the-art double-Λ$Lambda$ SFWM biphoton sources can achieve one of the following results: a spectral linewidth of 50 kHz (290 kHz) or a temporal width of 13 μs$umu {rm s}$ (580 ns) with cold (hot) atoms, a detection rate of about 7×103$times 10^3$ cps, and a generation rate of 107$10^7$ cps at a duty cycle of 0.4% or of 105$10^5$ cps in the steady state. The theoretical background of these biphoton sources, experimental implementations with cold and hot atoms, and progress over the years, will be illustrated.

这篇综述文章的重点是基于激光冷却以及室温或热原子集合中双自发四波混合(SFWM)过程的双光子源。这些双光子源的优点是频率稳定、线宽超窄,而且双光子的时间宽度可调,超过高带宽应用的一个数量级。因此,产生的光子可以有效地与原子量子存储器等连接。相比之下,固态双光子源通常需要光腔的辅助才能在窄线宽下工作,这就限制了双光子时宽的可调谐性。目前最先进的双 SFWM 双光子源可以达到以下结果之一:光谱线宽为 50 kHz(290 kHz),或冷原子(热原子)的时间宽度为 13(580 ns),探测率约为 7 cps,在占空比为 0.4% 时产生率为 cps,或在稳定状态下产生率为 cps。我们将说明这些双光子源的理论背景、冷原子和热原子的实验实施情况以及多年来取得的进展。
{"title":"Review of Biphoton Sources Based on the Double-\u0000 \u0000 Λ\u0000 $Lambda$\u0000 Spontaneous Four-Wave Mixing Process","authors":"Jia-Mou Chen,&nbsp;Thorsten Peters,&nbsp;Pei-Hsuan Hsieh,&nbsp;Ite A. Yu","doi":"10.1002/qute.202400138","DOIUrl":"10.1002/qute.202400138","url":null,"abstract":"<p>This review article focuses on biphoton sources based on the double-<span></span><math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math> spontaneous four-wave mixing (SFWM) process in laser-cooled as well as room-temperature or hot atomic ensembles. These biphoton sources have the advantage of providing stable frequencies, ultranarrow linewidths, and a tunability of the temporal biphoton width of more than one order of magnitude for high-bandwidth applications. Therefore, the generated photons can be efficiently interfaced to, e.g., atomic quantum memories. In contrast, solid-state biphoton sources typically require assistance by an optical cavity to operate at narrow linewidth that limits the tunability of the temporal width of the biphotons. Present state-of-the-art double-<span></span><math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math> SFWM biphoton sources can achieve one of the following results: a spectral linewidth of 50 kHz (290 kHz) or a temporal width of 13 <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>μ</mi>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 <annotation>$umu {rm s}$</annotation>\u0000 </semantics></math> (580 ns) with cold (hot) atoms, a detection rate of about 7<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>×</mo>\u0000 <msup>\u0000 <mn>10</mn>\u0000 <mn>3</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$times 10^3$</annotation>\u0000 </semantics></math> cps, and a generation rate of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mn>10</mn>\u0000 <mn>7</mn>\u0000 </msup>\u0000 <annotation>$10^7$</annotation>\u0000 </semantics></math> cps at a duty cycle of 0.4% or of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mn>10</mn>\u0000 <mn>5</mn>\u0000 </msup>\u0000 <annotation>$10^5$</annotation>\u0000 </semantics></math> cps in the steady state. The theoretical background of these biphoton sources, experimental implementations with cold and hot atoms, and progress over the years, will be illustrated.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epitaxial Growth of Nano-Sized Pb Islands on SrTiO3 Substrate: Competition Between Electron Correlation and Enhanced Superconductivity 在 SrTiO3 基底上磊晶生长纳米尺寸的铅岛:电子相关性与增强超导性之间的竞争
IF 4.4 Q1 OPTICS Pub Date : 2024-07-08 DOI: 10.1002/qute.202300405
Zhibin Shao, Haigen Sun, Yan Cao, Zongyuan Zhang, Shaojian Li, Xin Zhang, Qi Bian, Habakubaho Gedeon, Hui Yuan, Minghu Pan

The discovery of the interface-enhanced superconductivity in the single-layer film of FeSe epitaxially grown on SrTiO3 substrates has triggered a flurry of activity in the field of superconductivity. It raised the hope to find more conventional high transition temperature (Tc) superconductors that are purely driven by the electron-phonon interaction at ambient pressure. Here the epitaxial growth of the Pb nano-sized islands on SrTiO3 (001) substrates with the island volumes ranging from 286 to 4945 nm3 is reported by molecular beam epitaxy, followed by systematic scanning tunneling microscopic/spectroscopic (STM/S) investigation. The observed STS gap for the nanoscale islands highly dependent on the volumes of nano-sized islands, can be divided into three regions. By performing a detailed spectroscopic investigation, it is founded that superconductivity in the volume above 3700 nm3 (Region I) has a zero temperature energy gap (Δ(0)) and Tc of 6.8 meV and 9.8 K obtained by BCS fitting, showing the largely-enhanced Δ and slightly-increased Tc by comparing to the bulk Pb (1.4 meV and 7.2 K). As the volume in the range from 1300 to 3700 nm3 (Region II), a large Coulomb gap induced by electron correlation emerged and shows a volume-dependent behavior, suggesting the reduced size can enhance electron correlation in Pb islands. As the volume decreases down to Region III, enhanced electron correlation and Coulomb gap become more dominant and superconductivity is totally suppressed. The experiment reveals that an electron-electron interaction in nano-sized Pb islands can be significantly enhanced by reducing the island sizes and suppresses the superconductivity, thus demonstrates a competition between superconductivity and electron correlation as the volume varies.

在 SrTiO3 基底上外延生长的单层 FeSe 薄膜中发现的界面增强超导性,引发了超导领域的一系列活动。人们希望找到更多在环境压力下完全由电子-声子相互作用驱动的传统高转变温度(Tc)超导体。本文报告了通过分子束外延技术在 SrTiO3 (001) 基底上外延生长出的铅纳米级原子岛,原子岛的体积范围为 286 至 4945 nm3,随后进行了系统的扫描隧道显微镜/光谱(STM/S)研究。观察到的纳米级岛屿的 STS 间隙与纳米级岛屿的体积密切相关,可分为三个区域。通过详细的光谱研究发现,3700 nm3 以上体积(区域 I)的超导性具有零温度能隙(Δ(0)),BCS 拟合得到的 Tc 为 6.8 meV 和 9.8 K,与块状铅(1.4 meV 和 7.2 K)相比,Δ 显著增强,Tc 略有提高。当体积在 1300 至 3700 nm3 之间(区域 II)时,电子相关性引起的库仑间隙变大,并表现出与体积相关的行为,这表明体积减小可以增强铅岛中的电子相关性。当体积减小到区域 III 时,增强的电子相关性和库仑间隙变得更加主要,超导性被完全抑制。该实验揭示了纳米尺寸铅岛中的电子-电子相互作用可通过减小铅岛尺寸而显著增强,并抑制超导性,从而证明了超导性和电子相关性之间随着体积变化而产生的竞争关系。
{"title":"Epitaxial Growth of Nano-Sized Pb Islands on SrTiO3 Substrate: Competition Between Electron Correlation and Enhanced Superconductivity","authors":"Zhibin Shao,&nbsp;Haigen Sun,&nbsp;Yan Cao,&nbsp;Zongyuan Zhang,&nbsp;Shaojian Li,&nbsp;Xin Zhang,&nbsp;Qi Bian,&nbsp;Habakubaho Gedeon,&nbsp;Hui Yuan,&nbsp;Minghu Pan","doi":"10.1002/qute.202300405","DOIUrl":"10.1002/qute.202300405","url":null,"abstract":"<p>The discovery of the interface-enhanced superconductivity in the single-layer film of FeSe epitaxially grown on SrTiO<sub>3</sub> substrates has triggered a flurry of activity in the field of superconductivity. It raised the hope to find more conventional high transition temperature (T<sub>c</sub>) superconductors that are purely driven by the electron-phonon interaction at ambient pressure. Here the epitaxial growth of the Pb nano-sized islands on SrTiO<sub>3</sub> (001) substrates with the island volumes ranging from 286 to 4945 nm<sup>3</sup> is reported by molecular beam epitaxy, followed by systematic scanning tunneling microscopic/spectroscopic (STM/S) investigation. The observed STS gap for the nanoscale islands highly dependent on the volumes of nano-sized islands, can be divided into three regions. By performing a detailed spectroscopic investigation, it is founded that superconductivity in the volume above 3700 nm<sup>3</sup> (Region I) has a zero temperature energy gap (Δ(0)) and T<sub>c</sub> of 6.8 meV and 9.8 K obtained by BCS fitting, showing the largely-enhanced Δ and slightly-increased T<sub>c</sub> by comparing to the bulk Pb (1.4 meV and 7.2 K). As the volume in the range from 1300 to 3700 nm<sup>3</sup> (Region II), a large Coulomb gap induced by electron correlation emerged and shows a volume-dependent behavior, suggesting the reduced size can enhance electron correlation in Pb islands. As the volume decreases down to Region III, enhanced electron correlation and Coulomb gap become more dominant and superconductivity is totally suppressed. The experiment reveals that an electron-electron interaction in nano-sized Pb islands can be significantly enhanced by reducing the island sizes and suppresses the superconductivity, thus demonstrates a competition between superconductivity and electron correlation as the volume varies.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced quantum technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1