首页 > 最新文献

Advanced quantum technologies最新文献

英文 中文
Deterministic Nanofabrication of Quantum Dot - Circular Bragg Grating Resonators with High Process Yield Using In Situ Electron Beam Lithography 基于原位电子束光刻技术的高工艺良率量子点-圆布拉格光栅谐振腔的确定性纳米制造
IF 4.3 Q1 OPTICS Pub Date : 2025-12-17 DOI: 10.1002/qute.202500782
Avijit Barua, Kartik Gaur, Léo J. Roche, Suk In Park, Priyabrata Mudi, Sven Rodt, Jin-Dong Song, Stephan Reitzenstein

The controlled integration of quantum dots (QDs) as single-photon emitters into quantum light sources is essential for the implementation of large-scale quantum networks. In this study, we employ the deterministic in situ electron-beam lithography (iEBL) nanotechnology platform to integrate individual QDs with high accuracy and process yield into a circular Bragg grating (CBG) resonators. Notably, CBG devices comprising just 3 to 4 rings exhibit photon extraction efficiencies comparable to those of structures with more rings. This facilitates faster fabrication, reduces the device footprint, and enables compatibility with electrical contacting. To demonstrate the scalability of this process, we present results of 95 optically active QD-CBG devices fabricated across two lithography sessions. These devices exhibit bright, narrow-linewidth single-photon emission with excellent optical quality. To evaluate QD placement accuracy, we apply a powerful characterization technique that combines cathodoluminescence (CL) mapping and scanning electron microscopy. Statistical analysis of these devices reveals that our iEBL approach enables high alignment accuracy and a process yield of over >90%$>90%$ across various CBG geometries. Our findings highlight a reliable route toward the scalable fabrication of high-performance QD-based single-photon sources for use in photonic quantum technology applications.

将量子点作为单光子发射体控制集成到量子光源中是实现大规模量子网络的必要条件。在这项研究中,我们采用确定性原位电子束光刻(iEBL)纳米技术平台,将具有高精度和制程良率的单个量子点集成到圆形布拉格光栅(CBG)谐振器中。值得注意的是,仅包含3到4个环的CBG器件显示出与具有更多环的结构相当的光子提取效率。这有助于更快的制造,减少设备占地面积,并实现与电接触的兼容性。为了证明这一工艺的可扩展性,我们展示了95个光主动QD-CBG器件在两个光刻过程中制造的结果。这些器件表现出明亮、窄线宽的单光子发射,具有优异的光学质量。为了评估QD定位精度,我们采用了一种强大的表征技术,结合了阴极发光(CL)制图和扫描电子显微镜。对这些器件的统计分析表明,我们的iEBL方法可以在各种CBG几何形状中实现高对准精度和超过90%的工艺良率。我们的研究结果为光子量子技术应用中高性能基于量子点的单光子源的可扩展制造提供了一条可靠的途径。
{"title":"Deterministic Nanofabrication of Quantum Dot - Circular Bragg Grating Resonators with High Process Yield Using In Situ Electron Beam Lithography","authors":"Avijit Barua,&nbsp;Kartik Gaur,&nbsp;Léo J. Roche,&nbsp;Suk In Park,&nbsp;Priyabrata Mudi,&nbsp;Sven Rodt,&nbsp;Jin-Dong Song,&nbsp;Stephan Reitzenstein","doi":"10.1002/qute.202500782","DOIUrl":"10.1002/qute.202500782","url":null,"abstract":"<p>The controlled integration of quantum dots (QDs) as single-photon emitters into quantum light sources is essential for the implementation of large-scale quantum networks. In this study, we employ the deterministic in situ electron-beam lithography (iEBL) nanotechnology platform to integrate individual QDs with high accuracy and process yield into a circular Bragg grating (CBG) resonators. Notably, CBG devices comprising just 3 to 4 rings exhibit photon extraction efficiencies comparable to those of structures with more rings. This facilitates faster fabrication, reduces the device footprint, and enables compatibility with electrical contacting. To demonstrate the scalability of this process, we present results of 95 optically active QD-CBG devices fabricated across two lithography sessions. These devices exhibit bright, narrow-linewidth single-photon emission with excellent optical quality. To evaluate QD placement accuracy, we apply a powerful characterization technique that combines cathodoluminescence (CL) mapping and scanning electron microscopy. Statistical analysis of these devices reveals that our iEBL approach enables high alignment accuracy and a process yield of over <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>&gt;</mo>\u0000 <mn>90</mn>\u0000 <mo>%</mo>\u0000 </mrow>\u0000 <annotation>$&gt;90%$</annotation>\u0000 </semantics></math> across various CBG geometries. Our findings highlight a reliable route toward the scalable fabrication of high-performance QD-based single-photon sources for use in photonic quantum technology applications.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"9 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202500782","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Intelligent Generative Models for Quantum Neural Networks (Adv. Quantum Technol. 12/2025) 封面:量子神经网络的智能生成模型(Adv. Quantum technology . 12/2025)
IF 4.3 Q1 OPTICS Pub Date : 2025-12-12 DOI: 10.1002/qute.70124
Xiaodong Ding, Qibing Xiong, Jinchen Xu, Fudong Liu, Junling Qiu, Yu Zhu, Yifan Hou, Zheng Shan

The Hyperband-QNN algorithm achieves adaptive customization of quantum neural network structure by skilfully integrating the essence of neural networks and the Hyperband optimization algorithm, perfectly matching the needs of various specific tasks. This groundbreaking method not only opens up a new path for the design of quantum neural networks but also sets a model for the deep integration of quantum computing and traditional computing. More in article number 2400178, Zheng Shan and co-workers.

Hyperband- qnn算法巧妙地融合了神经网络的本质和Hyperband优化算法,实现了量子神经网络结构的自适应定制,完美匹配了各种特定任务的需求。这一突破性的方法不仅为量子神经网络的设计开辟了一条新路径,也为量子计算与传统计算的深度融合树立了典范。在第2400178号文章中,郑山和他的同事。
{"title":"Front Cover: Intelligent Generative Models for Quantum Neural Networks (Adv. Quantum Technol. 12/2025)","authors":"Xiaodong Ding,&nbsp;Qibing Xiong,&nbsp;Jinchen Xu,&nbsp;Fudong Liu,&nbsp;Junling Qiu,&nbsp;Yu Zhu,&nbsp;Yifan Hou,&nbsp;Zheng Shan","doi":"10.1002/qute.70124","DOIUrl":"https://doi.org/10.1002/qute.70124","url":null,"abstract":"<p>The Hyperband-QNN algorithm achieves adaptive customization of quantum neural network structure by skilfully integrating the essence of neural networks and the Hyperband optimization algorithm, perfectly matching the needs of various specific tasks. This groundbreaking method not only opens up a new path for the design of quantum neural networks but also sets a model for the deep integration of quantum computing and traditional computing. More in article number 2400178, Zheng Shan and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.70124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Cover: Quantum-Noise-Driven Generative Diffusion Models (Adv. Quantum Technol. 12/2025) 封底:量子噪声驱动的生成扩散模型(Adv. Quantum technology . 12/2025)
IF 4.3 Q1 OPTICS Pub Date : 2025-12-12 DOI: 10.1002/qute.70122
Marco Parigi, Stefano Martina, Filippo Caruso

Quantum-noise-driven diffusion models are proposed here as a novel class of quantum generative AI algorithms. These models aim to exploit the intrinsic noise of currently available quantum processing units, not as an issue to be solved by quantum error mitigation and correction, but instead as a beneficial resource to generate artificial, classical or quantum, data sampled from some unknown and usually very complex probability distribution that could be difficult or even impossible to sample from via classical computers. More in article number 2300401, Filippo Caruso and co-workers.

本文提出了量子噪声驱动扩散模型作为一类新的量子生成人工智能算法。这些模型旨在利用当前可用的量子处理单元的固有噪声,而不是将其作为量子误差缓解和校正解决的问题,而是作为一种有益的资源,从一些未知的、通常非常复杂的概率分布中生成人工的、经典的或量子的数据,这些数据可能很难甚至不可能通过经典计算机进行采样。更多内容见2300401号文章,Filippo Caruso和他的同事。
{"title":"Back Cover: Quantum-Noise-Driven Generative Diffusion Models (Adv. Quantum Technol. 12/2025)","authors":"Marco Parigi,&nbsp;Stefano Martina,&nbsp;Filippo Caruso","doi":"10.1002/qute.70122","DOIUrl":"https://doi.org/10.1002/qute.70122","url":null,"abstract":"<p>Quantum-noise-driven diffusion models are proposed here as a novel class of quantum generative AI algorithms. These models aim to exploit the intrinsic noise of currently available quantum processing units, not as an issue to be solved by quantum error mitigation and correction, but instead as a beneficial resource to generate artificial, classical or quantum, data sampled from some unknown and usually very complex probability distribution that could be difficult or even impossible to sample from via classical computers. More in article number 2300401, Filippo Caruso and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.70122","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside Back Cover: Method for Noise-Induced Regularization in Quantum Neural Networks (Adv. Quantum Technol. 12/2025) 内页:量子神经网络中噪声诱导正则化的方法(Adv. Quantum technology . 12/2025)
IF 4.3 Q1 OPTICS Pub Date : 2025-12-12 DOI: 10.1002/qute.70153
Viacheslav Kuzmin, Wilfrid Somogyi, Ekaterina Pankovets, Alexey Melnikov

In article number 2400603, Alexey Melnikov and co-workers present a method to enhance the generalization capability of quantum machine learning models through controllable noise regularization. The cover visualizes a quantum circuit in which quantum gates are interleaved with engineered noise channels of tunable strength λ. This structured injection of noise acts as an implicit regularizer, stabilizing the training process and improving the model's predictive performance on previously unseen data.

在文章编号2400603中,Alexey Melnikov及其同事提出了一种通过可控噪声正则化来增强量子机器学习模型泛化能力的方法。封面可视化量子电路,其中量子门与可调谐强度λ的工程噪声通道交织。这种结构化的噪声注入作为隐式正则器,稳定了训练过程,提高了模型对以前未见过的数据的预测性能。
{"title":"Inside Back Cover: Method for Noise-Induced Regularization in Quantum Neural Networks (Adv. Quantum Technol. 12/2025)","authors":"Viacheslav Kuzmin,&nbsp;Wilfrid Somogyi,&nbsp;Ekaterina Pankovets,&nbsp;Alexey Melnikov","doi":"10.1002/qute.70153","DOIUrl":"https://doi.org/10.1002/qute.70153","url":null,"abstract":"<p>In article number 2400603, Alexey Melnikov and co-workers present a method to enhance the generalization capability of quantum machine learning models through controllable noise regularization. The cover visualizes a quantum circuit in which quantum gates are interleaved with engineered noise channels of tunable strength λ. This structured injection of noise acts as an implicit regularizer, stabilizing the training process and improving the model's predictive performance on previously unseen data.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.70153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information (Adv. Quantum Technol. 12/2025) 发布信息(Adv. Quantum technology . 12/2025)
IF 4.3 Q1 OPTICS Pub Date : 2025-12-12 DOI: 10.1002/qute.70125
{"title":"Issue Information (Adv. Quantum Technol. 12/2025)","authors":"","doi":"10.1002/qute.70125","DOIUrl":"https://doi.org/10.1002/qute.70125","url":null,"abstract":"","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.70125","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside Front Cover: Quantum-Enhanced Simulated Annealing Using Rydberg Atoms (Adv. Quantum Technol. 12/2025) 内页封面:使用里德伯原子的量子增强模拟退火(ad . Quantum technology . 12/2025)
IF 4.3 Q1 OPTICS Pub Date : 2025-12-12 DOI: 10.1002/qute.70123
Seokho Jeong, Juyoung Park, Jaewook Ahn

This image illustrates the process of Rydberg-based quantum-enhanced simulated annealing (QESA), which achieves faster computational performance than classical simulated annealing (SA). Harnessing Rydberg interactions tailored to the maximum independent set problem, QESA demonstrates a clear quantum advantage in heuristic optimization, pointing to a promising route for tackling complex combinatorial problems more efficiently than classical methods. More in article number 2500070, Jaewook Ahn and co-workers.

该图说明了基于rydberg的量子增强模拟退火(QESA)的过程,它比经典模拟退火(SA)实现了更快的计算性能。利用针对最大独立集问题的Rydberg相互作用,QESA在启发式优化中展示了明显的量子优势,指出了一条比经典方法更有效地解决复杂组合问题的有前途的途径。更多内容见第2500070号文章,安在旭和同事。
{"title":"Inside Front Cover: Quantum-Enhanced Simulated Annealing Using Rydberg Atoms (Adv. Quantum Technol. 12/2025)","authors":"Seokho Jeong,&nbsp;Juyoung Park,&nbsp;Jaewook Ahn","doi":"10.1002/qute.70123","DOIUrl":"https://doi.org/10.1002/qute.70123","url":null,"abstract":"<p>This image illustrates the process of Rydberg-based quantum-enhanced simulated annealing (QESA), which achieves faster computational performance than classical simulated annealing (SA). Harnessing Rydberg interactions tailored to the maximum independent set problem, QESA demonstrates a clear quantum advantage in heuristic optimization, pointing to a promising route for tackling complex combinatorial problems more efficiently than classical methods. More in article number 2500070, Jaewook Ahn and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.70123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Million-Atom Wave Function Simulations of a Single Donor Qubit Made in Silicon Utilizing Ion Implantation Technology 利用离子注入技术模拟硅制单供体量子比特的百万原子波函数
IF 4.3 Q1 OPTICS Pub Date : 2025-12-03 DOI: 10.1002/qute.202500675
Haolin Huang, Liam G. Thomas, Muhammad Usman, Rajib Rahman, David N. Jamieson

A large-scale quantum computer promises quantum algorithms with an exponential speed increase over classical counterparts. Ion implanted donor atom qubits in isotopically enriched 28Si$^{28}{rm Si}$ have demonstrated leading coherence times and gate fidelities. Large-scale donor architectures must be tolerant to positional uncertainties owing to ion straggling consistent with the implant energy required to place near surface donor atoms allowing manipulation by surface control electrodes. These issues are addressed with a 40 million silicon atom quantum model based on the atomistic tight-binding technique in the context of the flip-flop qubit architecture. The donor electron wavefunction operates in a state of equal superposition between the buried host donor atom and below the surface gate oxide. Key issues include: donor positional uncertainty from ion straggling coupled with non-uniform control gate potentials, the coupling of donor wave functions to gate-defined quantum wells, and the effect of bystander donors including the mitigation of non-functional adventitious channeled ions by re-implantation employing deterministic ion implantation. An upper constraint of 9 keV 31P$^{31}{rm P}$ ions minimizes straggling allowing quantum superposition and is compatible with existing fabrication techniques. With heavy donors, such as 123Sb$^{123}{rm Sb}$, the constraints are relaxed because, for a given implant depth, the heavy donors straggle less than light donors.

大规模量子计算机保证量子算法比经典计算机具有指数级的速度增长。离子注入给体原子量子比特在同位素富集的28 Si $^{28}{rm Si}$中表现出领先的相干时间和门保真度。大规模的给体结构必须能够容忍位置的不确定性,因为离子散乱与放置在表面给体原子附近所需的植入能量相一致,从而允许通过表面控制电极进行操作。在触发器量子比特架构的背景下,基于原子紧密结合技术的4000万硅原子量子模型解决了这些问题。供体电子波函数在埋藏的主供体原子和表面栅极氧化物之间以相等的叠加状态工作。关键问题包括:离子散乱与非均匀控制门电位耦合引起的供体位置不确定性,供体波函数与门定义量子阱的耦合,以及旁观者供体的影响,包括通过采用确定性离子注入重新注入来减轻非功能性非稳态通道离子的影响。9 keV 31 P $^{31}{rm P}$离子的上限约束最大限度地减少了散射,允许量子叠加,并且与现有的制造技术兼容。对于大的供体,例如123 Sb $^{123}{rm Sb}$,限制就放宽了,因为对于给定的植入深度,大的供体比小的供体更容易分散。
{"title":"Million-Atom Wave Function Simulations of a Single Donor Qubit Made in Silicon Utilizing Ion Implantation Technology","authors":"Haolin Huang,&nbsp;Liam G. Thomas,&nbsp;Muhammad Usman,&nbsp;Rajib Rahman,&nbsp;David N. Jamieson","doi":"10.1002/qute.202500675","DOIUrl":"10.1002/qute.202500675","url":null,"abstract":"<p>A large-scale quantum computer promises quantum algorithms with an exponential speed increase over classical counterparts. Ion implanted donor atom qubits in isotopically enriched <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mrow></mrow>\u0000 <mn>28</mn>\u0000 </msup>\u0000 <mi>Si</mi>\u0000 </mrow>\u0000 <annotation>$^{28}{rm Si}$</annotation>\u0000 </semantics></math> have demonstrated leading coherence times and gate fidelities. Large-scale donor architectures must be tolerant to positional uncertainties owing to ion straggling consistent with the implant energy required to place near surface donor atoms allowing manipulation by surface control electrodes. These issues are addressed with a 40 million silicon atom quantum model based on the atomistic tight-binding technique in the context of the flip-flop qubit architecture. The donor electron wavefunction operates in a state of equal superposition between the buried host donor atom and below the surface gate oxide. Key issues include: donor positional uncertainty from ion straggling coupled with non-uniform control gate potentials, the coupling of donor wave functions to gate-defined quantum wells, and the effect of bystander donors including the mitigation of non-functional adventitious channeled ions by re-implantation employing deterministic ion implantation. An upper constraint of 9 keV <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mrow></mrow>\u0000 <mn>31</mn>\u0000 </msup>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 <annotation>$^{31}{rm P}$</annotation>\u0000 </semantics></math> ions minimizes straggling allowing quantum superposition and is compatible with existing fabrication techniques. With heavy donors, such as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mrow></mrow>\u0000 <mn>123</mn>\u0000 </msup>\u0000 <mi>Sb</mi>\u0000 </mrow>\u0000 <annotation>$^{123}{rm Sb}$</annotation>\u0000 </semantics></math>, the constraints are relaxed because, for a given implant depth, the heavy donors straggle less than light donors.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"9 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202500675","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Method for Noise-Induced Regularization in Quantum Neural Networks 量子神经网络中噪声诱导正则化方法
IF 4.3 Q1 OPTICS Pub Date : 2025-11-28 DOI: 10.1002/qute.202400603
Viacheslav Kuzmin, Wilfrid Somogyi, Ekaterina Pankovets, Alexey Melnikov

In the current quantum computing paradigm, significant focus is placed on the reduction or mitigation of quantum decoherence. When designing new quantum processing units, the general objective is to reduce the amount of noise qubits are subject to, and in algorithm design, a large effort is underway to provide scalable error correction or mitigation techniques. Yet some previous work has indicated that certain classes of quantum algorithms, such as quantum machine learning, may, in fact, be intrinsically robust to or even benefit from the presence of a small amount of noise. Here, we demonstrate that noise levels in quantum hardware can be effectively tuned to enhance the ability of quantum neural networks to generalize data, acting akin to regularisation in classical neural networks. As an example, we consider two regression tasks, where, by tuning the noise level in the circuit, we demonstrated improvement of the validation mean squared error loss. Moreover, we demonstrate the method's effectiveness by numerically simulating QNN training on a realistic model of a noisy superconducting quantum computer.

在当前的量子计算范式中,重点放在减少或减轻量子退相干上。在设计新的量子处理单元时,一般目标是减少量子比特受到的噪声量,并且在算法设计中,正在进行大量努力以提供可扩展的纠错或缓解技术。然而,之前的一些研究表明,某些类别的量子算法,如量子机器学习,实际上可能对少量噪声的存在具有内在的鲁棒性,甚至受益于少量噪声。在这里,我们证明了量子硬件中的噪声水平可以有效地调整,以增强量子神经网络泛化数据的能力,类似于经典神经网络中的正则化。作为一个例子,我们考虑两个回归任务,其中,通过调整电路中的噪声水平,我们证明了验证均方误差损失的改进。此外,我们通过在噪声超导量子计算机的实际模型上数值模拟QNN训练来证明该方法的有效性。
{"title":"Method for Noise-Induced Regularization in Quantum Neural Networks","authors":"Viacheslav Kuzmin,&nbsp;Wilfrid Somogyi,&nbsp;Ekaterina Pankovets,&nbsp;Alexey Melnikov","doi":"10.1002/qute.202400603","DOIUrl":"https://doi.org/10.1002/qute.202400603","url":null,"abstract":"<p>In the current quantum computing paradigm, significant focus is placed on the reduction or mitigation of quantum decoherence. When designing new quantum processing units, the general objective is to reduce the amount of noise qubits are subject to, and in algorithm design, a large effort is underway to provide scalable error correction or mitigation techniques. Yet some previous work has indicated that certain classes of quantum algorithms, such as quantum machine learning, may, in fact, be intrinsically robust to or even benefit from the presence of a small amount of noise. Here, we demonstrate that noise levels in quantum hardware can be effectively tuned to enhance the ability of quantum neural networks to generalize data, acting akin to regularisation in classical neural networks. As an example, we consider two regression tasks, where, by tuning the noise level in the circuit, we demonstrated improvement of the validation mean squared error loss. Moreover, we demonstrate the method's effectiveness by numerically simulating QNN training on a realistic model of a noisy superconducting quantum computer.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400603","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145751157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information (Adv. Quantum Technol. 11/2025) 发行信息(量子科技11/2025)
IF 4.3 Q1 OPTICS Pub Date : 2025-11-14 DOI: 10.1002/qute.70064
{"title":"Issue Information (Adv. Quantum Technol. 11/2025)","authors":"","doi":"10.1002/qute.70064","DOIUrl":"https://doi.org/10.1002/qute.70064","url":null,"abstract":"","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.70064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Exotic Quantum States in Spin-1 Bose–Einstein Condensate with Spin-Orbit coupling in Concentric Annular Traps (Adv. Quantum Technol. 11/2025) 封面:在同心环形阱中自旋-轨道耦合的自旋-1玻色-爱因斯坦凝聚中的奇异量子态(ad . Quantum technology . 11/2025)
IF 4.3 Q1 OPTICS Pub Date : 2025-11-14 DOI: 10.1002/qute.70062
Yun Liu, Zu-Jian Ying

Bose-Einstein condensates (BECs) provide an ideal platform for exploring novel quantum states (QTs) in synthetic spin-orbit coupling (SOC). In article number 2500431, Yun Liu and Zu-Jian Ying analyse the interplay of SOC with other interactions and potential geometry by BECs in concentric annular traps. Various exotic QTs emerge, including facial-makeup states, fissure states, stripe states, half-disk states, half-skyrmion fence, etc. Peculiar density-phase separation is noticed. The study illustrates manipulations of exotic QTs and supplies abundant quantum resources for potential applications.

玻色-爱因斯坦凝聚体(BECs)为探索合成自旋-轨道耦合(SOC)中的新型量子态(QTs)提供了理想的平台。在文章2500431中,刘赟和应祖建分析了同心圆环形圈闭中有机碳与其他相互作用的相互作用和潜在几何形状。各种奇异量子态出现了,包括脸谱态、裂隙态、条纹态、半盘态、半粒子栅栏等。注意到特殊的密度相分离。该研究阐明了奇异量子力学的操作,为潜在的应用提供了丰富的量子资源。
{"title":"Front Cover: Exotic Quantum States in Spin-1 Bose–Einstein Condensate with Spin-Orbit coupling in Concentric Annular Traps (Adv. Quantum Technol. 11/2025)","authors":"Yun Liu,&nbsp;Zu-Jian Ying","doi":"10.1002/qute.70062","DOIUrl":"https://doi.org/10.1002/qute.70062","url":null,"abstract":"<p>Bose-Einstein condensates (BECs) provide an ideal platform for exploring novel quantum states (QTs) in synthetic spin-orbit coupling (SOC). In article number 2500431, Yun Liu and Zu-Jian Ying analyse the interplay of SOC with other interactions and potential geometry by BECs in concentric annular traps. Various exotic QTs emerge, including facial-makeup states, fissure states, stripe states, half-disk states, half-skyrmion fence, etc. Peculiar density-phase separation is noticed. The study illustrates manipulations of exotic QTs and supplies abundant quantum resources for potential applications.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.70062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145522180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced quantum technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1