Due to their dependence on a task-specific reward function, reinforcement learning agents are ineffective at responding to a dynamic goal or environment. This paper seeks to overcome this limitation of traditional reinforcement learning through a task-agnostic, self-organising autonomous agent framework. The proposed algorithm is a hybrid of TMGWR for self-adaptive learning of sensorimotor maps and value iteration for goal-directed planning. TMGWR has been previously demonstrated to overcome the problems associated with competing sensorimotor techniques such SOM, GNG, and GWR; these problems include: difficulty in setting a suitable number of neurons for a task, inflexibility, the inability to cope with non-markovian environments, challenges with noise, and inappropriate representation of sensory observations and actions together. However, the binary sensorimotor-link implementation in the original TMGWR enables catastrophic forgetting when the agent experiences changes in the task and it is therefore not suitable for self-adaptive learning. A new sensorimotor-link update rule is presented in this paper to enable the adaptation of the sensorimotor map to new experiences. This paper has demonstrated that the TMGWR-based algorithm has better sample efficiency than model-free reinforcement learning and better self-adaptivity than both the model-free and the traditional model-based reinforcement learning algorithms. Moreover, the algorithm has been demonstrated to give the lowest overall computational cost when compared to traditional reinforcement learning algorithms.