首页 > 最新文献

Optical Memory and Neural Networks最新文献

英文 中文
Assault Type Detection in WSN Based on Modified DBSCAN with Osprey Optimization Using Hybrid Classifier LSTM with XGBOOST for Military Sector 基于改进的 DBSCAN 和 Osprey 优化的 WSN 攻击类型检测,使用混合分类器 LSTM 和 XGBOOST,用于军事领域
IF 1 Q4 OPTICS Pub Date : 2024-03-25 DOI: 10.3103/S1060992X24010089
R. Preethi

Military tasks constitute the most important and significant applications of Wireless sensor networks (WSNs). In military, Sensor node deployment increases activities, efficient operation, saves loss of life, and protects national sovereignty. Usually, the main difficulties in military missions are energy consumption and security in the network. Another major security issues are hacking or masquerade attack. To overcome the limitations, the proposed method modified DBSCAN with OSPREY optimization Algorithm (OOA) using hybrid classifier Long Short-Term Memory (LSTM) with Extreme Gradient Boosting (XGBOOST) to detect attack types in the WSN military sector for enhancing security. First, nodes are deployed and modified DBSCAN algorithm is used to cluster the nodes to reduce energy consumption. To select the cluster head optimally by using the OSPREY optimization Algorithm (OOA) based on small distance and high energy for transfer data between the base station and nodes. Hybrid LSTM-XGBOOST classifier utilized to learn the parameter and predict the four assault types such as scheduling, flooding, blackhole and grayhole assault. Classification and network metrics including Packet Delivery Ratio (PDR), Throughput, Average Residual Energy (ARE), Packet Loss Ratio (PLR), Accuracy and F1_score are used to evaluate the performance of the model. Performance results show that PDR of 94.12%, 3.2 Mbps throughput at 100 nodes, ARE of 8.94J, PLR of 5.88%, accuracy of 96.14%, and F1_score of 95.04% are achieved. Hence, the designed model for assault prediction types in WSN based on modified DBSCAN clustering with a hybrid classifier yields better results.

摘要 军事任务是无线传感器网络(WSN)最重要和最显著的应用。在军事领域,部署传感器节点可以增加活动、提高运行效率、避免人员伤亡并保护国家主权。通常,军事任务中的主要困难是能源消耗和网络安全。另一个主要安全问题是黑客攻击或伪装攻击。为了克服这些局限性,本文提出的方法利用混合分类器长短期记忆(LSTM)与极端梯度提升(XGBOOST)对 DBSCAN 与 OSPREY 优化算法(OOA)进行了改进,以检测 WSN 军事领域的攻击类型,从而提高安全性。首先,部署节点并使用改进的 DBSCAN 算法对节点进行聚类,以降低能耗。根据基站和节点之间传输数据的小距离和高能量,使用 OSPREY 优化算法(OOA)优化选择簇头。利用 LSTM-XGBOOST 混合分类器学习参数并预测四种攻击类型,如调度攻击、洪水攻击、黑洞攻击和灰洞攻击。分类和网络指标包括数据包交付率(PDR)、吞吐量、平均剩余能量(ARE)、数据包丢失率(PLR)、准确率和 F1_score 用于评估模型的性能。性能结果显示,PDR 为 94.12%,100 个节点的吞吐量为 3.2 Mbps,ARE 为 8.94J,PLR 为 5.88%,准确率为 96.14%,F1_score 为 95.04%。因此,基于改进的 DBSCAN 聚类和混合分类器设计的 WSN 攻击预测类型模型取得了较好的效果。
{"title":"Assault Type Detection in WSN Based on Modified DBSCAN with Osprey Optimization Using Hybrid Classifier LSTM with XGBOOST for Military Sector","authors":"R. Preethi","doi":"10.3103/S1060992X24010089","DOIUrl":"10.3103/S1060992X24010089","url":null,"abstract":"<p>Military tasks constitute the most important and significant applications of Wireless sensor networks (WSNs). In military, Sensor node deployment increases activities, efficient operation, saves loss of life, and protects national sovereignty. Usually, the main difficulties in military missions are energy consumption and security in the network. Another major security issues are hacking or masquerade attack. To overcome the limitations, the proposed method modified DBSCAN with OSPREY optimization Algorithm (OOA) using hybrid classifier Long Short-Term Memory (LSTM) with Extreme Gradient Boosting (XGBOOST) to detect attack types in the WSN military sector for enhancing security. First, nodes are deployed and modified DBSCAN algorithm is used to cluster the nodes to reduce energy consumption. To select the cluster head optimally by using the OSPREY optimization Algorithm (OOA) based on small distance and high energy for transfer data between the base station and nodes. Hybrid LSTM-XGBOOST classifier utilized to learn the parameter and predict the four assault types such as scheduling, flooding, blackhole and grayhole assault. Classification and network metrics including Packet Delivery Ratio (PDR), Throughput, Average Residual Energy (ARE), Packet Loss Ratio (PLR), Accuracy and F1_score are used to evaluate the performance of the model. Performance results show that PDR of 94.12%, 3.2 Mbps throughput at 100 nodes, ARE of 8.94J, PLR of 5.88%, accuracy of 96.14%, and F1_score of 95.04% are achieved. Hence, the designed model for assault prediction types in WSN based on modified DBSCAN clustering with a hybrid classifier yields better results.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 1","pages":"53 - 71"},"PeriodicalIF":1.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Remarks on Possible Superconductivity of Composition Pb9CuP6O25 关于 Pb9CuP6O25 成分可能具有超导性的一些评论
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070020
P. Abramian, A. Kuzanyan, V. Nikoghosyan, S. Teknowijoyo, A. Gulian

Abstract

A material called LK-99, a modified-lead apatite crystal structure with the composition Pb10 – xCux(PO4)6O (0.9 < x < 1.1) has been reported to be an above-room-temperature superconductor at ambient pressure. It is hard to expect that it will be straightforward for other groups to reproduce the original results. We provide here some remarks which may be helpful for a success.

摘要 据报道,一种名为 LK-99 的材料是一种改性铅磷灰石晶体结构,其成分为 Pb10 - xCux(PO4)6O (0.9 < x < 1.1),在常压下是一种高于室温的超导体。很难期望其他研究小组能直接重现最初的结果。我们在此提出一些意见,希望对成功有所帮助。
{"title":"Some Remarks on Possible Superconductivity of Composition Pb9CuP6O25","authors":"P. Abramian, A. Kuzanyan, V. Nikoghosyan, S. Teknowijoyo, A. Gulian","doi":"10.3103/s1060992x23070020","DOIUrl":"https://doi.org/10.3103/s1060992x23070020","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A material called LK-99, a modified-lead apatite crystal structure with the composition Pb<sub>10 – <i>x</i></sub>Cu<sub><i>x</i></sub>(PO<sub>4</sub>)<sub>6</sub>O (0.9 &lt; <i>x</i> &lt; 1.1) has been reported to be an above-room-temperature superconductor at ambient pressure. It is hard to expect that it will be straightforward for other groups to reproduce the original results. We provide here some remarks which may be helpful for a success.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"35 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconducting Polycrystalline Rhenium Films Deposited at Room Temperature 室温沉积的超导多晶铼薄膜
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070184
S. Teknowijoyo, A. Gulian

Abstract

We report on magnetron deposition of thin superconducting rhenium films on sapphire substrates. During the deposition, substrates were held at ambient temperature. Critical temperature of the films is Tc ~ 3.6 K. Films have polycrystalline structure, and grazing incidence X-ray diffractometry indicates that crystalline lattice parameters are somewhat larger compared to the bulk ones. Magnetoresistive and AC/DC susceptibilities allowed us to determine Hc1 and Hc2 of these films, as well as estimate coherence length ξ(0) and magnetic penetration depth λL(0). We also provide information on surface morphology of these films.

摘要 我们报告了在蓝宝石衬底上磁控沉积超导铼薄膜的情况。沉积过程中,衬底保持在环境温度下。薄膜具有多晶体结构,掠入射 X 射线衍射仪表明,晶格参数比块体参数大一些。通过磁阻和交流/直流电感,我们确定了这些薄膜的 Hc1 和 Hc2,并估算了相干长度 ξ(0) 和磁穿透深度 λL(0)。我们还提供了有关这些薄膜表面形态的信息。
{"title":"Superconducting Polycrystalline Rhenium Films Deposited at Room Temperature","authors":"S. Teknowijoyo, A. Gulian","doi":"10.3103/s1060992x23070184","DOIUrl":"https://doi.org/10.3103/s1060992x23070184","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We report on magnetron deposition of thin superconducting rhenium films on sapphire substrates. During the deposition, substrates were held at ambient temperature. Critical temperature of the films is <i>T</i><sub><i>c</i></sub> ~ 3.6 K. Films have polycrystalline structure, and grazing incidence X-ray diffractometry indicates that crystalline lattice parameters are somewhat larger compared to the bulk ones. Magnetoresistive and AC/DC susceptibilities allowed us to determine <i>H</i><sub><i>c</i>1</sub> and <i>H</i><sub><i>c</i>2</sub> of these films, as well as estimate coherence length ξ(0) and magnetic penetration depth λ<sub><i>L</i></sub>(0). We also provide information on surface morphology of these films.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"328 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mirrorless Lasing: A Theoretical Perspective 无反光镜蚀刻:理论视角
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070172
A. Ramaswamy, J. Chathanathil, D. Kanta, E. Klinger, A. Papoyan, S. Shmavonyan, A. Khanbekyan, A. Wickenbrock, D. Budker, S. A. Malinovskaya

Abstract

Mirrorless lasing has been a topic of particular interest for about a decade due to promising new horizons for quantum science and applications. In this work, we review first-principles theory that describes this phenomenon, and discuss degenerate mirrorless lasing in a vapor of Rb atoms, the mechanisms of amplification of light generated in the medium with population inversion between magnetic sublevels within the ({{D}_{2}}) line, and challenges associated with experimental realization.

摘要 近十年来,无镜激光一直是人们特别关注的话题,因为它为量子科学和应用开辟了前景广阔的新天地。在这项工作中,我们回顾了描述这一现象的第一原理理论,讨论了掺镱原子蒸汽中的变性无镜激光、介质中产生的光(在({{D}_{2}})线内的磁性子位点之间存在种群反转)的放大机制以及与实验实现相关的挑战。
{"title":"Mirrorless Lasing: A Theoretical Perspective","authors":"A. Ramaswamy, J. Chathanathil, D. Kanta, E. Klinger, A. Papoyan, S. Shmavonyan, A. Khanbekyan, A. Wickenbrock, D. Budker, S. A. Malinovskaya","doi":"10.3103/s1060992x23070172","DOIUrl":"https://doi.org/10.3103/s1060992x23070172","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Mirrorless lasing has been a topic of particular interest for about a decade due to promising new horizons for quantum science and applications. In this work, we review first-principles theory that describes this phenomenon, and discuss degenerate mirrorless lasing in a vapor of Rb atoms, the mechanisms of amplification of light generated in the medium with population inversion between magnetic sublevels within the <span>({{D}_{2}})</span> line, and challenges associated with experimental realization.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"8 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensing: Equation One 传感:等式一
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070056
D. Budker, M. G. Kozlov

Abstract

Spin-projection noise sets a limit for the sensitivity of spin-based magnetometers and experiments searching for parity- and time-reversal-invariance-violating dipole moments. The limit is described by a simple equation that appears to have universal applicability.

摘要自旋投影噪声为自旋磁强计和寻找违反奇偶性和时间反演不变性偶极矩的实验的灵敏度设定了一个极限。这个极限用一个简单的方程来描述,似乎具有普遍适用性。
{"title":"Sensing: Equation One","authors":"D. Budker, M. G. Kozlov","doi":"10.3103/s1060992x23070056","DOIUrl":"https://doi.org/10.3103/s1060992x23070056","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Spin-projection noise sets a limit for the sensitivity of spin-based magnetometers and experiments searching for parity- and time-reversal-invariance-violating dipole moments. The limit is described by a simple equation that appears to have universal applicability.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"29 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Bloch-Band Dispersion on the Quantized Transport in a Topological Thouless Pump 布洛赫带色散对无拓扑泵中量化传输的影响
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070226
R. G. Unanyan, M. Fleischhauer

Abstract

We study the spreading of an initially localized wave packet of a particle hopping on a one-dimensional superlattice during a cycle of a topological Thouless pump. Two contributions to the dispersion of the adiabatic pumping process are identified: a dynamical part and a geometrical part. The magnitude of the dynamical contribution to the spreading depends on the dispersion of the adiabatic transfer state and the cycle time. Unlike the dynamical one, the geometrical contribution does not depend on the duration of the adiabatic process and can be made much smaller than the lattice spacing. We show that as the adiabaticity is enhanced by prolonging the period of the pumping process, the uncertainty in coordinate space is increased linearly with the adiabaticity parameter. We propose a mechanism to smoothen the energy surface of the adiabatic transfer state to reduce the spreading of the spatial distribution of the transported particle. This diminishes or even eliminates (up to the geometric contribution) the dispersion of the coordinate during the transport process.

摘要 我们研究了在一维超晶格上跳跃的粒子的初始局部波包在拓扑无缶泵循环过程中的扩散。我们确定了绝热泵送过程的两个扩散贡献:动力学部分和几何部分。动态部分对扩散的贡献大小取决于绝热转移状态的分散性和循环时间。与动态部分不同,几何部分不依赖于绝热过程的持续时间,而且可以比晶格间距小得多。我们的研究表明,通过延长抽气过程的周期来增强绝热性,坐标空间的不确定性会随着绝热参数的增加而线性增加。我们提出了一种机制来平滑绝热转移态的能量面,以减少传输粒子空间分布的扩散。这将减小甚至消除(直至几何贡献)传输过程中坐标的分散。
{"title":"Effect of Bloch-Band Dispersion on the Quantized Transport in a Topological Thouless Pump","authors":"R. G. Unanyan, M. Fleischhauer","doi":"10.3103/s1060992x23070226","DOIUrl":"https://doi.org/10.3103/s1060992x23070226","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We study the spreading of an initially localized wave packet of a particle hopping on a one-dimensional superlattice during a cycle of a topological Thouless pump. Two contributions to the dispersion of the adiabatic pumping process are identified: a dynamical part and a geometrical part. The magnitude of the dynamical contribution to the spreading depends on the dispersion of the adiabatic transfer state and the cycle time. Unlike the dynamical one, the geometrical contribution does not depend on the duration of the adiabatic process and can be made much smaller than the lattice spacing. We show that as the adiabaticity is enhanced by prolonging the period of the pumping process, the uncertainty in coordinate space is increased linearly with the adiabaticity parameter. We propose a mechanism to smoothen the energy surface of the adiabatic transfer state to reduce the spreading of the spatial distribution of the transported particle. This diminishes or even eliminates (up to the geometric contribution) the dispersion of the coordinate during the transport process.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"25 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adiabatic States and Suppression of Dissipative Processes 绝热状态与耗散过程的抑制
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x2307007x
E. A. Gazazyan, G. G. Grigoryan

Abstract

We consider adiabatic interaction of quantum systems with electromagnetic field in the presence of various dissipation processes. As it is known that in the presence of large intermediate detunings any n-level system can be reduced to an effective two-level system, we chose the two-level model as the basic model for a detailed analytical study. We demonstrate the possibility of reducing losses due to dephasing and non-adiabatic corrections by choosing an appropriate design of time-dependent interaction parameters. Simple analytical expressions are derived for both cold and hot atomic ensembles. The results obtained for the two-level system are applied to a three-level system by using the method of adiabatic elimination. Efficient population transfer is shown despite the relatively high dephasing rates.

摘要 我们考虑了存在各种耗散过程的量子系统与电磁场的绝热相互作用。众所周知,在存在较大中间消谐的情况下,任何 n 级系统都可以简化为有效的两级系统,因此我们选择两级模型作为基本模型进行详细的分析研究。我们证明了通过选择适当的随时间变化的相互作用参数设计来减少由于去相和非绝热修正造成的损耗的可能性。对于冷原子和热原子集合,我们都推导出了简单的分析表达式。通过使用绝热消除方法,将两级系统的结果应用于三级系统。结果表明,尽管去相率相对较高,但仍能实现有效的种群转移。
{"title":"Adiabatic States and Suppression of Dissipative Processes","authors":"E. A. Gazazyan, G. G. Grigoryan","doi":"10.3103/s1060992x2307007x","DOIUrl":"https://doi.org/10.3103/s1060992x2307007x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We consider adiabatic interaction of quantum systems with electromagnetic field in the presence of various dissipation processes. As it is known that in the presence of large intermediate detunings any n-level system can be reduced to an effective two-level system, we chose the two-level model as the basic model for a detailed analytical study. We demonstrate the possibility of reducing losses due to dephasing and non-adiabatic corrections by choosing an appropriate design of time-dependent interaction parameters. Simple analytical expressions are derived for both cold and hot atomic ensembles. The results obtained for the two-level system are applied to a three-level system by using the method of adiabatic elimination. Efficient population transfer is shown despite the relatively high dephasing rates.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"17 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prospects for Using Thermoelectric Single-Photon Detectors in Quantum Information Systems and Astrophysics 在量子信息系统和天体物理学中使用热电单光子探测器的前景
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070111
A. A. Kuzanyan, A. S. Kuzanyan, V. R. Nikoghosyan

Abstract

In this paper, we propose the design of detection pixels for single-photon detectors, consisting of absorber and heat sink (Bi-2223), thermoelectric sensors (CeB6), and an antireflection layer (SiO2) located on a dielectric substrate (Al2O3). We employ modeling and simulation to study the heat propagation processes in multi-layer detection pixels following the absorption of photons with energy ranging from 0.8 eV to 1 keV. Calculations are performed using the heat transfer equation within a limited volume, employing the three-dimensional matrix method. We calculate the temperature temporal variation in different areas of the detection pixels, as well as the voltage generated on the sensor, for various thicknesses and surfaces of the detection pixel layers. We determine the maximum signal value, time at which the maximum signal is reached, signal decay time, and the detector’s count rate. We derive equations for Phonon and Johnson noise in the three-layer detection pixel and calculate the total noise. Based on the data obtained, we propose ways to improve the signal-to-noise ratio.

摘要 在本文中,我们提出了单光子探测器探测像素的设计方案,它由位于电介质基板(Al2O3)上的吸收器和散热器(Bi-2223)、热电传感器(CeB6)以及抗反射层(SiO2)组成。我们利用建模和仿真技术研究了多层探测像素在吸收能量范围为 0.8 eV 至 1 keV 的光子后的热传播过程。计算采用三维矩阵法,利用有限体积内的传热方程进行。我们计算了检测像素层不同厚度和表面的不同区域的温度时间变化,以及传感器上产生的电压。我们确定了最大信号值、达到最大信号值的时间、信号衰减时间和探测器的计数率。我们推导出三层探测像素中的 Phonon 和 Johnson 噪声方程,并计算出总噪声。根据获得的数据,我们提出了提高信噪比的方法。
{"title":"Prospects for Using Thermoelectric Single-Photon Detectors in Quantum Information Systems and Astrophysics","authors":"A. A. Kuzanyan, A. S. Kuzanyan, V. R. Nikoghosyan","doi":"10.3103/s1060992x23070111","DOIUrl":"https://doi.org/10.3103/s1060992x23070111","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we propose the design of detection pixels for single-photon detectors, consisting of absorber and heat sink (Bi-2223), thermoelectric sensors (CeB<sub>6</sub>), and an antireflection layer (SiO<sub>2</sub>) located on a dielectric substrate (Al<sub>2</sub>O<sub>3</sub>). We employ modeling and simulation to study the heat propagation processes in multi-layer detection pixels following the absorption of photons with energy ranging from 0.8 eV to 1 keV. Calculations are performed using the heat transfer equation within a limited volume, employing the three-dimensional matrix method. We calculate the temperature temporal variation in different areas of the detection pixels, as well as the voltage generated on the sensor, for various thicknesses and surfaces of the detection pixel layers. We determine the maximum signal value, time at which the maximum signal is reached, signal decay time, and the detector’s count rate. We derive equations for Phonon and Johnson noise in the three-layer detection pixel and calculate the total noise. Based on the data obtained, we propose ways to improve the signal-to-noise ratio.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"29 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Wavelength Optics of a Pair-Interacting Electron Gas in a Lens-Shaped Quantum Dot: Two-Dimensional Moshinsky Model 透镜形量子点中成对相互作用电子气体的长波光学:二维莫辛斯基模型
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070123
M. A. Mkrtchyan, E. M. Kazaryan, H. A. Sarkisyan, M. Y. Vinnichenko, D. A. Firsov

Abstract

An analytical model of a pair-interacting electron gas localized in an asymmetric biconvex strongly oblate lens-shaped GaAs quantum dot has been considered. The wave functions and the energy spectrum of the system have been calculated in the frame of the exactly solvable two-dimensional Moshinsky model. The character of long-wavelength transitions between the center of mass levels of the system have been obtained when the generalized Kohn’s theorem is realized.

摘要 研究考虑了在非对称双凸强扁平透镜状砷化镓量子点中定位的成对相互作用电子气的分析模型。在可精确求解的二维莫辛斯基模型框架内计算了该系统的波函数和能谱。在实现广义科恩定理的情况下,得到了系统质心级之间的长波跃迁特征。
{"title":"Long-Wavelength Optics of a Pair-Interacting Electron Gas in a Lens-Shaped Quantum Dot: Two-Dimensional Moshinsky Model","authors":"M. A. Mkrtchyan, E. M. Kazaryan, H. A. Sarkisyan, M. Y. Vinnichenko, D. A. Firsov","doi":"10.3103/s1060992x23070123","DOIUrl":"https://doi.org/10.3103/s1060992x23070123","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>An analytical model of a pair-interacting electron gas localized in an asymmetric biconvex strongly oblate lens-shaped GaAs quantum dot has been considered. The wave functions and the energy spectrum of the system have been calculated in the frame of the exactly solvable two-dimensional Moshinsky model. The character of long-wavelength transitions between the center of mass levels of the system have been obtained when the generalized Kohn’s theorem is realized.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"29 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Programmable Quantum Gate Operations Using Qutrit Quantum Dots 使用 Qutrit 量子点的可编程量子门操作
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070160
E. A. Pogosyan, E. A. Gazazyan

Abstract

In this article has been achieved that the utilization of quantum programmable logic elements opens new possibilities in cryptography, where the ability to process information irreversibly contributes to enhanced security measures. Furthermore, the development of such elements fosters the advancement of complex computational architectures, facilitating the creation of sophisticated and highly efficient systems.

摘要 本文指出,量子可编程逻辑元件的使用为密码学提供了新的可能性,其不可逆转地处理信息的能力有助于加强安全措施。此外,这类元件的开发促进了复杂计算架构的发展,有助于创建复杂而高效的系统。
{"title":"Programmable Quantum Gate Operations Using Qutrit Quantum Dots","authors":"E. A. Pogosyan, E. A. Gazazyan","doi":"10.3103/s1060992x23070160","DOIUrl":"https://doi.org/10.3103/s1060992x23070160","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this article has been achieved that the utilization of quantum programmable logic elements opens new possibilities in cryptography, where the ability to process information irreversibly contributes to enhanced security measures. Furthermore, the development of such elements fosters the advancement of complex computational architectures, facilitating the creation of sophisticated and highly efficient systems.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"11 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Optical Memory and Neural Networks
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1