首页 > 最新文献

Optical Memory and Neural Networks最新文献

英文 中文
Photovoltaic Tweezers Based on Optical Holography: Application to 2D Trapping of DNA Molecules on a Lithium Niobate Crystal 基于光学全息技术的光电镊子:应用于 DNA 分子在铌酸锂晶体上的二维捕获
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070214
Lusine Tsarukyan, Anahit Badalyan, Lusine Aloyan, Yeva Dalyan, Rafael Drampyan

Abstract

The nonuniform 2D photovoltaic fields generated near the surface of a photorefractive Fe-doped lithium niobate (LN:Fe) crystal by a nondiffracting optical Bessel beam with concentric ring structures and 532 nm wavelength are used for the trapping of DNA molecules in NaCl buffer on the crystal surface. The simultaneous observation of the long-living Bessel-like refractive lattice recorded in the LN:Fe crystal and the trapped DNA molecules on the crystal surface was performed by an optical phase microscope operating in the transmission mode. With this approach, the DNA molecules are registered as refractive index nonuniformities on the Bessel lattice refractive index pattern. Observations show that DNA molecules are immobilized and trapped at the borderlines of the concentric rings of the refractive lattice recorded by the Bessel beam. The formation of neutral molecular clusters of DNA by Na+ counterions with a nearly globular shape and cluster average size of ~4 μm is revealed. A physical model is developed for the analysis of the electric forces map and explanation of the experimental results. The photovoltaic strategy of trapping and manipulation of micro- and nanoparticles on the crystal surface is promising for the elaboration of the lab-on-a-chip devices operating in an autonomous regime with applications in photonics, micro/nano-electronics and biotechnology.

摘要 利用波长为 532 nm、具有同心环结构的非折射贝塞尔光束在光折射掺杂铁的铌酸锂 (LN:Fe) 晶体表面附近产生的非均匀二维光电场,在晶体表面捕获 NaCl 缓冲液中的 DNA 分子。利用光学相位显微镜,在透射模式下同时观察 LN:Fe 晶体中记录的长寿命贝塞尔样折射晶格和晶体表面被捕获的 DNA 分子。通过这种方法,DNA 分子在贝塞尔晶格折射率图案上被记录为折射率不均匀。观察结果表明,DNA 分子被固定并被困在贝塞尔光束记录的折射率晶格同心环的边界线上。在 Na+ 反离子的作用下,DNA 形成了中性分子簇,其形状接近球状,簇的平均大小约为 4 μm。为分析电场力图和解释实验结果,建立了一个物理模型。在晶体表面捕获和操纵微米和纳米粒子的光电策略,对于在光子学、微/纳米电子学和生物技术领域应用的自主运行的片上实验室设备的研制是很有前途的。
{"title":"Photovoltaic Tweezers Based on Optical Holography: Application to 2D Trapping of DNA Molecules on a Lithium Niobate Crystal","authors":"Lusine Tsarukyan, Anahit Badalyan, Lusine Aloyan, Yeva Dalyan, Rafael Drampyan","doi":"10.3103/s1060992x23070214","DOIUrl":"https://doi.org/10.3103/s1060992x23070214","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The nonuniform 2D photovoltaic fields generated near the surface of a photorefractive Fe-doped lithium niobate (LN:Fe) crystal by a nondiffracting optical Bessel beam with concentric ring structures and 532 nm wavelength are used for the trapping of DNA molecules in NaCl buffer on the crystal surface. The simultaneous observation of the long-living Bessel-like refractive lattice recorded in the LN:Fe crystal and the trapped DNA molecules on the crystal surface was performed by an optical phase microscope operating in the transmission mode. With this approach, the DNA molecules are registered as refractive index nonuniformities on the Bessel lattice refractive index pattern. Observations show that DNA molecules are immobilized and trapped at the borderlines of the concentric rings of the refractive lattice recorded by the Bessel beam. The formation of neutral molecular clusters of DNA by Na<sup>+</sup> counterions with a nearly globular shape and cluster average size of ~4 μm is revealed. A physical model is developed for the analysis of the electric forces map and explanation of the experimental results. The photovoltaic strategy of trapping and manipulation of micro- and nanoparticles on the crystal surface is promising for the elaboration of the lab-on-a-chip devices operating in an autonomous regime with applications in photonics, micro/nano-electronics and biotechnology.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"110 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of an Optical Neural Network Trained by the Maximum-Likelihood Algorithm 用最大似然算法训练的光学神经网络的稳定性
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x2307010x
B. V. Kryzhanovsky, V. I. Egorov

Abstract

The possibility of the maximum-likelihood algorithm-based deep learning of an optical neural network is considered. Using the optimization of thermodynamic parameters of the network, the algorithm can fail when the network undergoes a phase transition caused by changes of network weights in learning. The approach based on Schraudolph–Kamenetsky [1] and Karandashev–Malsagov [2] algorithms is used in computer simulation. Both algorithms allow the free energy of the system on a planar graph to be computed exactly. The restrictions on the number of negative connections are determined that secure the stability of the system, the absence of the phase transition and unrestrained use of the maximum-likelihood algorithm.

摘要 研究了基于最大似然算法的光神经网络深度学习的可能性。利用网络热力学参数的优化,当网络在学习过程中因网络权重变化而发生相变时,算法可能会失效。计算机模拟中使用了基于 Schraudolph-Kamenetsky [1] 和 Karandashev-Malsagov [2] 算法的方法。这两种算法都能精确计算平面图上系统的自由能。对负连接数的限制是为了确保系统的稳定性、不出现相变和不受限制地使用最大似然算法。
{"title":"Stability of an Optical Neural Network Trained by the Maximum-Likelihood Algorithm","authors":"B. V. Kryzhanovsky, V. I. Egorov","doi":"10.3103/s1060992x2307010x","DOIUrl":"https://doi.org/10.3103/s1060992x2307010x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The possibility of the maximum-likelihood algorithm-based deep learning of an optical neural network is considered. Using the optimization of thermodynamic parameters of the network, the algorithm can fail when the network undergoes a phase transition caused by changes of network weights in learning. The approach based on Schraudolph–Kamenetsky [1] and Karandashev–Malsagov [2] algorithms is used in computer simulation. Both algorithms allow the free energy of the system on a planar graph to be computed exactly. The restrictions on the number of negative connections are determined that secure the stability of the system, the absence of the phase transition and unrestrained use of the maximum-likelihood algorithm.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"18 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric Version of the Second Demkov–Kunike Level-Crossing Model 第二个德姆科夫-库尼克水平跨越模型的非对称版本
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070093
A. M. Ishkhanyan, T. A. Shahverdyan, A. M. Ghazaryan

Abstract

We present a novel time-dependent two-state model that describes a constant-amplitude level-crossing field configuration, where the frequency detuning varies within a finite interval. A distinctive feature of this configuration is that the resonance crossing always occurs asymmetrically in time, making it an asymmetric version of the second Demkov-Kunike model. The general solution of the problem is expressed in terms of two independent irreducible linear combinations of the Gauss hypergeometric functions. We analyze the asymptotes of the solution in terms of corresponding quasi-energies and calculate the final transition probability in the case when the system starts from the first quasi-energy state.

摘要 我们提出了一种新颖的随时间变化的双态模型,它描述了一种恒定振幅的电平交叉场配置,其中频率失谐在有限区间内变化。这种配置的一个显著特点是共振交叉总是在时间上不对称地发生,这使它成为第二个 Demkov-Kunike 模型的不对称版本。问题的一般解可以用高斯超几何函数的两个独立不可还原线性组合来表示。我们用相应的准能量分析了解的渐近线,并计算了系统从第一个准能量状态开始时的最终过渡概率。
{"title":"Asymmetric Version of the Second Demkov–Kunike Level-Crossing Model","authors":"A. M. Ishkhanyan, T. A. Shahverdyan, A. M. Ghazaryan","doi":"10.3103/s1060992x23070093","DOIUrl":"https://doi.org/10.3103/s1060992x23070093","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We present a novel time-dependent two-state model that describes a constant-amplitude level-crossing field configuration, where the frequency detuning varies within a finite interval. A distinctive feature of this configuration is that the resonance crossing always occurs asymmetrically in time, making it an asymmetric version of the second Demkov-Kunike model. The general solution of the problem is expressed in terms of two independent irreducible linear combinations of the Gauss hypergeometric functions. We analyze the asymptotes of the solution in terms of corresponding quasi-energies and calculate the final transition probability in the case when the system starts from the first quasi-energy state.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"18 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase-Slip Centers as Cooling Engines 作为冷却引擎的相位滑动中心
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070147
Iris Mowgood, Serafim Teknowijoyo, Sara Chahid, Armen Gulian

Abstract

Based on time-dependent Ginzburg-Landau system of equations, Éliashberg’s kinetic equations and finite element modeling, we analyze phonon emission by the phase-slip centers in superconducting filaments. Our results show that in the dissipative regime with these centers, thin superconducting filaments can be effective in originating not only positive but also negative thermal fluxes, i.e., they both generate and absorb phonons. In a stationary oscillatory regime, at a given moment of time, this generation and absorption of phonons reveals itself as positive and negative spectrum of phonons at different spectral ranges. Moreover, at a given spectral range, the emission reverses its sign during the period of oscillation. This fact is associated with the reciprocation of the energy emission and absorption at different spectral intervals during the oscillation period of the phase-slip center. The integral value of energy over the whole spectral range is time-dependent, being positive for some part of the period and negative for the rest of it. Its time integral over the period reveals a positive value, which corresponds to the total energy released in this dissipative state of superconducting filament. In a simple case, when the filament is embedded in a thermal heat bath (substrates typically play that role), this energy dissipates, elevating locally the temperature of filament’s environment. However, in a more sophisticated design, the positive and negative fluxes may become separated. This can be achieved by using the thermal diode effect (the Kapitza boundaries can play the role of such diodes). Such a separation may yield to the net cooling of some part of the filament environment, while the other part will serve as a heat sink. Thus, with an appropriate design of their thermal surroundings, the phase-slip centers can serve as effective solid-state cooling engines. They may be effective for reducing further the cryostat cold finger temperature; for example, from 1 K to sub-K temperatures.

摘要基于时间相关的金兹堡-朗道方程组、埃利亚什伯格动力学方程和有限元建模,我们分析了超导丝中相滑中心的声子发射。我们的研究结果表明,在有这些中心的耗散状态下,细超导丝不仅能有效地产生正的热通量,也能有效地产生负的热通量,也就是说,它们既能产生声子,也能吸收声子。在静态振荡机制中,在给定的时间内,声子的产生和吸收表现为不同光谱范围的正负声子谱。此外,在给定的光谱范围内,声子的发射在振荡期间会反转其符号。这与相位滑动中心振荡期间不同光谱区间的能量发射和吸收互为因果有关。整个光谱范围内的能量积分值与时间有关,在振荡周期的某些时段为正值,其余时段为负值。它在整个周期内的时间积分为正值,相当于超导丝在这种耗散状态下释放的总能量。在简单的情况下,当超导丝嵌入热浴盆中时(基板通常起到这种作用),这种能量就会耗散,使超导丝所处环境的局部温度升高。然而,在更复杂的设计中,正负通量可能会分离。这可以通过热二极管效应来实现(卡皮查边界可以起到这种二极管的作用)。这种分离可以使灯丝环境的某些部分实现净冷却,而另一部分则充当散热器。因此,只要对其热环境进行适当设计,相位滑动中心就能成为有效的固态冷却引擎。它们可以有效地进一步降低低温恒温器的冷指温度,例如从 1 K 降到亚 K 温度。
{"title":"Phase-Slip Centers as Cooling Engines","authors":"Iris Mowgood, Serafim Teknowijoyo, Sara Chahid, Armen Gulian","doi":"10.3103/s1060992x23070147","DOIUrl":"https://doi.org/10.3103/s1060992x23070147","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Based on time-dependent Ginzburg-Landau system of equations, Éliashberg’s kinetic equations and finite element modeling, we analyze phonon emission by the phase-slip centers in superconducting filaments. Our results show that in the dissipative regime with these centers, thin superconducting filaments can be effective in originating not only positive but also negative thermal fluxes, i.e., they both generate and absorb phonons. In a stationary oscillatory regime, at a given moment of time, this generation and absorption of phonons reveals itself as positive and negative spectrum of phonons at different spectral ranges. Moreover, at a given spectral range, the emission reverses its sign during the period of oscillation. This fact is associated with the reciprocation of the energy emission and absorption at different spectral intervals during the oscillation period of the phase-slip center. The integral value of energy over the whole spectral range is time-dependent, being positive for some part of the period and negative for the rest of it. Its time integral over the period reveals a positive value, which corresponds to the total energy released in this dissipative state of superconducting filament. In a simple case, when the filament is embedded in a thermal heat bath (substrates typically play that role), this energy dissipates, elevating locally the temperature of filament’s environment. However, in a more sophisticated design, the positive and negative fluxes may become separated. This can be achieved by using the thermal diode effect (the Kapitza boundaries can play the role of such diodes). Such a separation may yield to the net cooling of some part of the filament environment, while the other part will serve as a heat sink. Thus, with an appropriate design of their thermal surroundings, the phase-slip centers can serve as effective solid-state cooling engines. They may be effective for reducing further the cryostat cold finger temperature; for example, from 1 K to sub-K temperatures.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"79 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LaF3–Er3+ Crystal as Materials for MIR-Lasing Operating 作为近红外激光操作材料的 LaF3-Er3+ 晶体
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070068
G. G. Demirkhanyan, R. B. Kostanyan

Abstract—

The possibilities of LaF3–Er3+crystal to obtain cascade lasing with CW pumping at 0.52 μm wavelength are considered. The conditions for the formation of inverse populations between Stark levels of neighboring manifolds are determined. It is shown that, at 100 K and CW pump intensity ({{J}_{p}} geqslant 350,,{{text{W}} mathord{left/ {vphantom {{text{W}} {{text{c}}{{{text{m}}}^{2}}}}} right. kern-0em} {{text{c}}{{{text{m}}}^{2}}}}), it is possible to obtain simultaneously laser radiation at 3.21 and 2.88 μm wavelengths.

摘要 研究考虑了 LaF3-Er3+ 晶体在 0.52 μm 波长下用 CW 泵获得级联激光的可能性。确定了在相邻流形的斯塔克水平之间形成反向群体的条件。结果表明,在 100 K 和 CW 泵强度 ({{J}_{p}}ungeqslant 350,{{text{W}}{{J}{p} {geqslant 350,{{text{W}} {{mathord{left/ {vphantom {{text{W}}{{text{c}}{{{text{m}}}^{2}}}}}right.kern-0em}{{text{c}}{{text{m}}}^{2}}}}),就有可能同时获得 3.21 和 2.88 μm 波长的激光辐射。
{"title":"LaF3–Er3+ Crystal as Materials for MIR-Lasing Operating","authors":"G. G. Demirkhanyan, R. B. Kostanyan","doi":"10.3103/s1060992x23070068","DOIUrl":"https://doi.org/10.3103/s1060992x23070068","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract—</h3><p>The possibilities of LaF<sub>3</sub>–Er<sup>3+</sup>crystal to obtain cascade lasing with CW pumping at 0.52 μm wavelength are considered. The conditions for the formation of inverse populations between Stark levels of neighboring manifolds are determined. It is shown that, at 100 K and CW pump intensity <span>({{J}_{p}} geqslant 350,,{{text{W}} mathord{left/ {vphantom {{text{W}} {{text{c}}{{{text{m}}}^{2}}}}} right. kern-0em} {{text{c}}{{{text{m}}}^{2}}}})</span>, it is possible to obtain simultaneously laser radiation at 3.21 and 2.88 μm wavelengths.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"36 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micrometric-Thin Cell Filled with Rb Vapor for High-Resolution Atomic Spectroscopy 用于高分辨率原子光谱的充满铷原子蒸气的微米级薄电池
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070135
R. Momier, A. Sargsyan, A. Tonoyan, C. Leroy, D. Sarkisyan

Abstract

In strong magnetic fields (0.1–6 kG), many atomic lines closely spaced in frequency appear in the absorption spectrum of alkali metal vapors. Due to the small frequency interval between them and the Doppler broadening of the atomic lines, they are overlapped. For spectral separation and study of individual atomic lines, it is necessary to ensure their spectral narrowing. It is shown that this can be done using the saturated absorption method in an atomic vapor contained in a 30 μm-thick cell filled with Rb vapor. All 10 atomic transitions of Rb D1 line are spectrally very well resolved in the second derivative of the saturated absorption spectrum. Complete resolution of atomic transitions makes this method useful for the determination of a wide range of magnetic fields. The theoretical curves describe the experimental results very well.

摘要 在强磁场(0.1-6 kG)中,碱金属蒸气的吸收光谱中会出现许多频率间隔很近的原子线。由于它们之间的频率间隔较小以及原子线的多普勒展宽,它们会相互重叠。要对单条原子线进行光谱分离和研究,就必须确保它们的光谱变窄。实验表明,在一个充满铷原子蒸汽的 30 μm 厚的样品池中的原子蒸汽中,使用饱和吸收法就可以做到这一点。在饱和吸收光谱的二阶导数中,掺镱 D1 线的所有 10 个原子跃迁都得到了很好的光谱解析。原子跃迁的完全解析使得这种方法在测定大范围磁场时非常有用。理论曲线很好地描述了实验结果。
{"title":"Micrometric-Thin Cell Filled with Rb Vapor for High-Resolution Atomic Spectroscopy","authors":"R. Momier, A. Sargsyan, A. Tonoyan, C. Leroy, D. Sarkisyan","doi":"10.3103/s1060992x23070135","DOIUrl":"https://doi.org/10.3103/s1060992x23070135","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In strong magnetic fields (0.1–6 kG), many atomic lines closely spaced in frequency appear in the absorption spectrum of alkali metal vapors. Due to the small frequency interval between them and the Doppler broadening of the atomic lines, they are overlapped. For spectral separation and study of individual atomic lines, it is necessary to ensure their spectral narrowing. It is shown that this can be done using the saturated absorption method in an atomic vapor contained in a 30 μm-thick cell filled with Rb vapor. All 10 atomic transitions of Rb D<sub>1</sub> line are spectrally very well resolved in the second derivative of the saturated absorption spectrum. Complete resolution of atomic transitions makes this method useful for the determination of a wide range of magnetic fields. The theoretical curves describe the experimental results very well.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"86 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representation of the Electromagnetic Field of an Arbitrarily Moving Charged Particle by Electric Field Lines 用电场线表示任意运动的带电粒子的电磁场
IF 0.9 Q4 OPTICS Pub Date : 2024-01-30 DOI: 10.3103/s1060992x23070032
S. G. Arutunian, M. A. Aginian, E. G. Lazareva, M. Chung

Abstract

The paper discusses the representation of the electromagnetic field of an arbitrarily moving charged particle by means of electric field lines. Expressions for the field line equations are derived on the basis of exact Lienar-Wichert field formulas. Parameterization of field lines by means of light signals (dots) emitted at delayed moments of time allows us to avoid the problem of solving the retardation equation. The resulting nonlinear equations are linearized using the Lorentz transformation applied to the emission rate of these light dots in the particle’s rest frame. These linear equations coincide with the Thomas precession equation, which allows us to state that field lines can be thought of as comprised of light dots that were emitted isotropically in the particle’s rest frame at speed (c). The exact solution of the equations is found in the case when the ratio of the trajectory torsion to the product of the trajectory curvature by the Lorentz factor of the particle is a constant value for the trajectory. The class of such fields in particular includes all flat trajectories. Illustrations of field lines are given for two applications of practical interest – the motion of a charged particle in the field of a plane monochromatic linearly polarized wave and for a helical undulator. In addition, it is shown that the developed mathematical apparatus admits consideration of the superluminal motion of the charge. Exact solutions and illustrations of lines for the superluminal motion of a particle along a circle (superluminal synchrotron radiation) are given.

摘要 本文讨论了用电场线表示任意运动的带电粒子的电磁场。场线方程的表达式是在精确的利纳尔-维切特场公式基础上推导出来的。通过在延迟时刻发射的光信号(点)对场线进行参数化,可以避免求解延迟方程的问题。利用洛伦兹变换对这些光点在粒子静止帧中的发射率进行线性化,就可以得到非线性方程。这些线性方程与托马斯前冲方程相吻合,因此我们可以认为场线是由光点组成的,这些光点在粒子的静止帧中以 (c)的速度等距发射。当轨迹扭转与轨迹曲率与粒子洛伦兹系数的乘积之比为轨迹的恒定值时,方程的精确解就会出现。此类场尤其包括所有平面轨迹。我们给出了两个具有实际意义的场线示例--带电粒子在平面单色线性偏振波场中的运动和螺旋起伏器。此外,还证明了所开发的数学装置可以考虑电荷的超光速运动。给出了粒子沿圆周超光速运动(超光速同步辐射)的精确解和线条图示。
{"title":"Representation of the Electromagnetic Field of an Arbitrarily Moving Charged Particle by Electric Field Lines","authors":"S. G. Arutunian, M. A. Aginian, E. G. Lazareva, M. Chung","doi":"10.3103/s1060992x23070032","DOIUrl":"https://doi.org/10.3103/s1060992x23070032","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper discusses the representation of the electromagnetic field of an arbitrarily moving charged particle by means of electric field lines. Expressions for the field line equations are derived on the basis of exact Lienar-Wichert field formulas. Parameterization of field lines by means of light signals (dots) emitted at delayed moments of time allows us to avoid the problem of solving the retardation equation. The resulting nonlinear equations are linearized using the Lorentz transformation applied to the emission rate of these light dots in the particle’s rest frame. These linear equations coincide with the Thomas precession equation, which allows us to state that field lines can be thought of as comprised of light dots that were emitted isotropically in the particle’s rest frame at speed <span>(c)</span>. The exact solution of the equations is found in the case when the ratio of the trajectory torsion to the product of the trajectory curvature by the Lorentz factor of the particle is a constant value for the trajectory. The class of such fields in particular includes all flat trajectories. Illustrations of field lines are given for two applications of practical interest – the motion of a charged particle in the field of a plane monochromatic linearly polarized wave and for a helical undulator. In addition, it is shown that the developed mathematical apparatus admits consideration of the superluminal motion of the charge. Exact solutions and illustrations of lines for the superluminal motion of a particle along a circle (superluminal synchrotron radiation) are given.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"46 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139649445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Information Added U-Net with Sharp Block for Nucleus Segmentation of Histopathology Images 用于组织病理学图像细胞核分割的带有锐块的信息添加 U-Net
IF 1 Q4 OPTICS Pub Date : 2023-12-22 DOI: 10.3103/S1060992X23040070
Anusua Basu, Mainak Deb, Arunita Das, Krishna Gopal Dhal

Segmenting nuclei from histopathology images is a crucial step in the early identification and diagnosis of several diseases. Due to the complexity of histopathology images, accurate nucleus segmentation is not a simple operation. However, convolutional neural networks (CNNs) have recently been revealed to be a viable option. The well-known CNN model, namely the U-Net, demonstrated its image segmentation effectiveness in medical field. However, U-Net has several drawbacks, such as information loss after transmission through particular steps. Another significant one is the likelihood of feature mismatches in the encoder and decoder sub-networks in skip connection, which can lead to the fusing of semantically unrelated information and, as a consequence, fuzzy feature maps throughout the learning process. In order to solve these issues, an improved U-Net architecture called Information Added U-Net with Sharp Block (IASB-U-Net) has been proposed for nuclei segmentation from histopathology images. Information is added to the encoder-decoder path in the proposed model after each layer, and sharpening spatial filters are utilized in place of skip connections. The experimental study over a merged dataset demonstrates that the proposed IASB-U-Net produces competitive results when compared to established CNN models such as U-Net, Dense U-Net, SCPP Net, and LiverNet.

摘要 从组织病理学图像中分割细胞核是早期识别和诊断多种疾病的关键步骤。由于组织病理学图像的复杂性,准确分割细胞核并非易事。然而,最近发现卷积神经网络(CNN)是一种可行的选择。众所周知的卷积神经网络模型,即 U-Net,已在医学领域证明了其图像分割的有效性。不过,U-Net 也有一些缺点,例如在经过特定步骤传输后会丢失信息。另一个重要问题是,在跳接过程中,编码器和解码器子网络中的特征可能不匹配,这可能导致语义不相关的信息融合,从而在整个学习过程中出现模糊的特征图。为了解决这些问题,有人提出了一种改进的 U-Net 架构,称为 "带锐块的信息添加 U-Net (IASB-U-Net)",用于组织病理学图像的细胞核分割。在提出的模型中,每一层之后的编码器-解码器路径中都添加了信息,并利用锐化空间滤波器来代替跳过连接。对合并数据集的实验研究表明,与 U-Net、Dense U-Net、SCPP Net 和 LiverNet 等成熟的 CNN 模型相比,所提出的 IASB-U-Net 能产生具有竞争力的结果。
{"title":"Information Added U-Net with Sharp Block for Nucleus Segmentation of Histopathology Images","authors":"Anusua Basu,&nbsp;Mainak Deb,&nbsp;Arunita Das,&nbsp;Krishna Gopal Dhal","doi":"10.3103/S1060992X23040070","DOIUrl":"10.3103/S1060992X23040070","url":null,"abstract":"<p>Segmenting nuclei from histopathology images is a crucial step in the early identification and diagnosis of several diseases. Due to the complexity of histopathology images, accurate nucleus segmentation is not a simple operation. However, convolutional neural networks (CNNs) have recently been revealed to be a viable option. The well-known CNN model, namely the U-Net, demonstrated its image segmentation effectiveness in medical field. However, U-Net has several drawbacks, such as information loss after transmission through particular steps. Another significant one is the likelihood of feature mismatches in the encoder and decoder sub-networks in skip connection, which can lead to the fusing of semantically unrelated information and, as a consequence, fuzzy feature maps throughout the learning process. In order to solve these issues, an improved U-Net architecture called Information Added U-Net with Sharp Block (IASB-U-Net) has been proposed for nuclei segmentation from histopathology images. Information is added to the encoder-decoder path in the proposed model after each layer, and sharpening spatial filters are utilized in place of skip connections. The experimental study over a merged dataset demonstrates that the proposed IASB-U-Net produces competitive results when compared to established CNN models such as U-Net, Dense U-Net, SCPP Net, and LiverNet.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 4","pages":"318 - 330"},"PeriodicalIF":1.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139029215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of Knowledge Distillation via Non-Linear Feature Alignment 通过非线性特征对齐加强知识提炼
IF 1 Q4 OPTICS Pub Date : 2023-12-22 DOI: 10.3103/S1060992X23040136
Jiangxiao Zhang, Feng Gao, Lina Huo, Hongliang Wang, Ying Dang

Deploying AI models on resource-constrained devices is indeed a challenging task. It requires models to have a small parameter while maintaining high performance. Achieving a balance between model size and performance is essential to ensuring the efficient and effective deployment of AI models in such environments. Knowledge distillation (KD) is an important model compression technique that aims to have a small model learn from a larger model by leveraging the high-performance features of the larger model to enhance the performance of the smaller model, ultimately achieving or surpassing the performance of the larger models. This paper presents a pipeline-based knowledge distillation method that improves model performance through non-linear feature alignment (FA) after the feature extraction stage. We conducted experiments on both single-teacher distillation and multi-teacher distillation and through extensive experimentation, we demonstrated that our method can improve the accuracy of knowledge distillation on the existing KD loss function and further improve the performance of small models.

摘要在资源有限的设备上部署人工智能模型确实是一项具有挑战性的任务。它要求模型在保持高性能的同时具有较小的参数。要确保在此类环境中高效部署人工智能模型,实现模型大小与性能之间的平衡至关重要。知识蒸馏(KD)是一种重要的模型压缩技术,其目的是让小型模型从大型模型中学习,利用大型模型的高性能特征来提高小型模型的性能,最终达到或超过大型模型的性能。本文提出了一种基于流水线的知识提炼方法,该方法在特征提取阶段之后通过非线性特征对齐(FA)提高模型性能。我们对单教师蒸馏和多教师蒸馏进行了实验,通过大量实验证明,我们的方法可以在现有的 KD 损失函数上提高知识蒸馏的准确性,并进一步提高小型模型的性能。
{"title":"Enhancement of Knowledge Distillation via Non-Linear Feature Alignment","authors":"Jiangxiao Zhang,&nbsp;Feng Gao,&nbsp;Lina Huo,&nbsp;Hongliang Wang,&nbsp;Ying Dang","doi":"10.3103/S1060992X23040136","DOIUrl":"10.3103/S1060992X23040136","url":null,"abstract":"<p>Deploying AI models on resource-constrained devices is indeed a challenging task. It requires models to have a small parameter while maintaining high performance. Achieving a balance between model size and performance is essential to ensuring the efficient and effective deployment of AI models in such environments. Knowledge distillation (KD) is an important model compression technique that aims to have a small model learn from a larger model by leveraging the high-performance features of the larger model to enhance the performance of the smaller model, ultimately achieving or surpassing the performance of the larger models. This paper presents a pipeline-based knowledge distillation method that improves model performance through non-linear feature alignment (FA) after the feature extraction stage. We conducted experiments on both single-teacher distillation and multi-teacher distillation and through extensive experimentation, we demonstrated that our method can improve the accuracy of knowledge distillation on the existing KD loss function and further improve the performance of small models.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 4","pages":"310 - 317"},"PeriodicalIF":1.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139029221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Video Codec Using Machine Learning Based on Parametric Orthogonal Filters 基于参数正交滤波器的机器学习视频编解码器
IF 1 Q4 OPTICS Pub Date : 2023-12-22 DOI: 10.3103/S1060992X23040021
M. V. Gashnikov

The research deals with video encoding using a machine learning-based videoframe approximator. The use of neural networks and hierarchical classifiers is considered in the context of this sort of approximator. Using a machine learning-based hierarchical classifier, the approximator switches at each point of a videoframe between elementary approximators from a predefined set of elementary classifiers. Convolutional filters with parametric orthogonal kernels are used as elementary classifiers. An algorithm for optimizing the hierarchical classifier is considered. The algorithm is based on recursive recalculations of the entropy quality index, which provides a good approximation of the encoded-data size. This sort of videoframe approximator is intended for a video codec using nested representations of videoframes. Real video sequences are used in computational experiments. The results indicate that the use of the videoframe approximator with a hierarchical classifier engaging parametric orthogonal kernels enables a noticeable reduction of the size of the encoded-data array.

该研究涉及使用基于机器学习的视频帧近似器进行视频编码。在这种近似器中考虑了神经网络和分层分类器的使用。通过使用基于机器学习的分层分类器,近似器可在视频帧的每个点上从一组预定义的基本分类器中切换基本近似器。使用具有参数正交核的卷积滤波器作为基本分类器。本文考虑了优化分层分类器的算法。该算法基于对熵质量指数的递归重新计算,它提供了编码数据大小的良好近似值。这种视频帧近似器适用于使用视频帧嵌套表示法的视频编解码器。在计算实验中使用了真实的视频序列。结果表明,将视频帧近似器与采用参数正交内核的分层分类器配合使用,可明显减小编码数据阵列的大小。
{"title":"Video Codec Using Machine Learning Based on Parametric Orthogonal Filters","authors":"M. V. Gashnikov","doi":"10.3103/S1060992X23040021","DOIUrl":"10.3103/S1060992X23040021","url":null,"abstract":"<p>The research deals with video encoding using a machine learning-based videoframe approximator. The use of neural networks and hierarchical classifiers is considered in the context of this sort of approximator. Using a machine learning-based hierarchical classifier, the approximator switches at each point of a videoframe between elementary approximators from a predefined set of elementary classifiers. Convolutional filters with parametric orthogonal kernels are used as elementary classifiers. An algorithm for optimizing the hierarchical classifier is considered. The algorithm is based on recursive recalculations of the entropy quality index, which provides a good approximation of the encoded-data size. This sort of videoframe approximator is intended for a video codec using nested representations of videoframes. Real video sequences are used in computational experiments. The results indicate that the use of the videoframe approximator with a hierarchical classifier engaging parametric orthogonal kernels enables a noticeable reduction of the size of the encoded-data array.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 4","pages":"226 - 232"},"PeriodicalIF":1.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139023715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Optical Memory and Neural Networks
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1