Pub Date : 2022-07-01DOI: 10.29328/journal.acee.1001035
Shahne Maryam Zare, Sezavar Amir, Najibi Fatemeh
The SARS-CoV-2 (COVID-19) pandemic outbreak has led to some lockdowns and changed human mobility and lifestyle in this country. Mashhad, one of the most polluted cities in Iran has experienced critical air pollution conditions in recent years. In the present study, the potential relationships between air quality conditions (such as popular index and criteria air pollutant concentration) and COVID-19 cases and deaths were investigated in Mashhad, Iran. To do that, the Long Short-Term Memory (LSTM) based hybrid deep learning architecture was implemented on AQI, meteorological data (such as temperature, sea level pressure, dew points, and wind speed), traffic index and impact number of death, and active cases COVID-19 from March 2019 to March 2022 in Mashhad. The results reveal the LSTM model could predict the AQI accurately. The lower error between the real and predicted AQI, including MSE, MSLE, and MAE is 0.0153, 0.0058, and 0.1043, respectively. Also, the cosine similarity between predicted AQI and real amounts of it is 1. Moreover, in the first peak of the pandemic (Aug 2021), we have the minimum amount of AQI. Meanwhile, by increasing the number of active cases and death and by starting lockdown, because the traffic is decreased, the air quality is good and the amount of AQI related to PM2.5 is 54.68. Furthermore, the decrease the active cases and death in pandemic causes a significant increase in AQI, which is 123.52 in Nov 2021, due to a decline in lockdowns, resumption of human activities, and probable temperature inversions.
{"title":"A hybrid deep learning model to forecast air quality data based on COVID-19 outbreak in Mashhad, Iran","authors":"Shahne Maryam Zare, Sezavar Amir, Najibi Fatemeh","doi":"10.29328/journal.acee.1001035","DOIUrl":"https://doi.org/10.29328/journal.acee.1001035","url":null,"abstract":"The SARS-CoV-2 (COVID-19) pandemic outbreak has led to some lockdowns and changed human mobility and lifestyle in this country. Mashhad, one of the most polluted cities in Iran has experienced critical air pollution conditions in recent years. In the present study, the potential relationships between air quality conditions (such as popular index and criteria air pollutant concentration) and COVID-19 cases and deaths were investigated in Mashhad, Iran. To do that, the Long Short-Term Memory (LSTM) based hybrid deep learning architecture was implemented on AQI, meteorological data (such as temperature, sea level pressure, dew points, and wind speed), traffic index and impact number of death, and active cases COVID-19 from March 2019 to March 2022 in Mashhad. The results reveal the LSTM model could predict the AQI accurately. The lower error between the real and predicted AQI, including MSE, MSLE, and MAE is 0.0153, 0.0058, and 0.1043, respectively. Also, the cosine similarity between predicted AQI and real amounts of it is 1. Moreover, in the first peak of the pandemic (Aug 2021), we have the minimum amount of AQI. Meanwhile, by increasing the number of active cases and death and by starting lockdown, because the traffic is decreased, the air quality is good and the amount of AQI related to PM2.5 is 54.68. Furthermore, the decrease the active cases and death in pandemic causes a significant increase in AQI, which is 123.52 in Nov 2021, due to a decline in lockdowns, resumption of human activities, and probable temperature inversions.","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42359641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-24DOI: 10.29328/journal.acee.1001034
Tchanang Gustave, Djangang Chantale Njiomou, Abi Charles Fon, Moukouri Danie Laure Mbella, Djabo Guillonnel Trésor Nyadjou, Kepdieu Jean Marie, Blanchart Philippe
The increasing occurrence of wastewaters associated with industrial development has begotten a permanent search for new and more efficient techniques for the removal of hazardous substances such as heavy metals and dyes. The use of natural and available resources to develop improved and sustainable commodities for this purpose remains crucial and is among promising emerging green technologies for water treatment. It offers the gradual shifting of hazardous industrial chemicals precursors to the abundant non-metallic mineral resources that receive an added value. This work investigated the uptake capacity by the adsorption process of methylene blue (MB) and azocarmine G (AG) onto nano-silica synthesized from kaolinite clay. The effects of contact time (0-30 min), the adsorbent dosage (5-100 mg), the initial pH of the solution (1-11 for MB and 1-7 for AG), and the initial dye concentration (5-50 mg/L) were studied. The selected conditions to carry out kinetic and isotherm adsorption experiments were: 15 mins, 20 mg, 11 for MB, 1.01 for AG, and 50 mg/L. Four adsorption isotherms and three kinetic models were used to model the adsorption data thanks to linear and non-linear regression methods. From the obtained results, the Freundlich isotherm model fitted well the adsorption phenomenon while the pseudo-second-order kinetic model described well the adsorption mechanism. Furthermore, the free energy of adsorption was similar for the two absorbents, 0.71 kJ, pointing physisorption as the dominant adsorption mechanism. The optimum MB and AG uptake were respectively 13.8 and 36.1 mg/g. Conclusively, the nano-silica represents a potentially viable and powerful adsorbent whose use could lead to a plausible improvement in environmental preservation.
{"title":"Nano-silica from kaolinitic clay used as adsorbent for anionic and cationic dyes removal: linear and non-linear regression isotherms and kinetics studies","authors":"Tchanang Gustave, Djangang Chantale Njiomou, Abi Charles Fon, Moukouri Danie Laure Mbella, Djabo Guillonnel Trésor Nyadjou, Kepdieu Jean Marie, Blanchart Philippe","doi":"10.29328/journal.acee.1001034","DOIUrl":"https://doi.org/10.29328/journal.acee.1001034","url":null,"abstract":"The increasing occurrence of wastewaters associated with industrial development has begotten a permanent search for new and more efficient techniques for the removal of hazardous substances such as heavy metals and dyes. The use of natural and available resources to develop improved and sustainable commodities for this purpose remains crucial and is among promising emerging green technologies for water treatment. It offers the gradual shifting of hazardous industrial chemicals precursors to the abundant non-metallic mineral resources that receive an added value. This work investigated the uptake capacity by the adsorption process of methylene blue (MB) and azocarmine G (AG) onto nano-silica synthesized from kaolinite clay. The effects of contact time (0-30 min), the adsorbent dosage (5-100 mg), the initial pH of the solution (1-11 for MB and 1-7 for AG), and the initial dye concentration (5-50 mg/L) were studied. The selected conditions to carry out kinetic and isotherm adsorption experiments were: 15 mins, 20 mg, 11 for MB, 1.01 for AG, and 50 mg/L. Four adsorption isotherms and three kinetic models were used to model the adsorption data thanks to linear and non-linear regression methods. From the obtained results, the Freundlich isotherm model fitted well the adsorption phenomenon while the pseudo-second-order kinetic model described well the adsorption mechanism. Furthermore, the free energy of adsorption was similar for the two absorbents, 0.71 kJ, pointing physisorption as the dominant adsorption mechanism. The optimum MB and AG uptake were respectively 13.8 and 36.1 mg/g. Conclusively, the nano-silica represents a potentially viable and powerful adsorbent whose use could lead to a plausible improvement in environmental preservation.","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43311062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-04DOI: 10.29328/journal.acee.1001032
Abdel Rahim Khalid Abdel Naser
A new design system is introduced to generate clean eco-friendly electricity from rain fall water. The majority of traffic roads in the world has constructed water ditches for one aim. This is for the accumulation of rain fall water from the roads.
{"title":"Generating eco-friendly electricity from rain water","authors":"Abdel Rahim Khalid Abdel Naser","doi":"10.29328/journal.acee.1001032","DOIUrl":"https://doi.org/10.29328/journal.acee.1001032","url":null,"abstract":"A new design system is introduced to generate clean eco-friendly electricity from rain fall water. The majority of traffic roads in the world has constructed water ditches for one aim. This is for the accumulation of rain fall water from the roads.","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44534170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-17DOI: 10.29328/journal.acee.1001031
K. Manikanda Bharath, N. Usha, P. Balamadeswaran, S. Srinivasalu
The lockdown, implemented in response to the COVID-19 epidemic, restricted the operation of various sectors in the country and its highlights a good environmental outcome. Thus, a comparison of air pollutants in India before and after the imposed lockdown indicated an overall improvement air quality across major Indian cities. This was established by utilizing the Central Pollution Control Board’s database of air quality monitoring station statistics, such as air quality patterns. During the COVID-19 epidemic, India’s pre-to-post nationwide lockdown was examined. The air quality data was collected from 30-12-2019 to 28-04-2020 and synthesized using 231 Automatic air quality monitoring stations in a major Indian metropolis. Specifically, air pollutant concentrations, temperature, and relative humidity variation during COVID-19 pandemic pre-to-post lockdown variation in India were monitored. As an outcome, several cities around the country have reported improved air quality. Generally, the air quality, on a categorical scale was found to be ‘Good’. However, a few cities from the North-eastern part of India were categorized as ‘Moderate/Satisfactory’. Overall, the particulate matters reduction was in around 60% and other gaseous pollutants was in 40% reduction was observed during the lockdown period. The results of this study include an analysis of air quality data derived from continuous air quality monitoring stations from the pre-lockdown to post-lockdown period. Air quality in India improved following the national lockdown, the interpretation of trends for PM 2.5, PM 10, SO2, NO2, and the Air Quality Index has been provided in studies for major cities across India, including Delhi, Gurugram, Noida, Mumbai, Kolkata, Bengaluru, Patna, and others.
{"title":"Short-term environmental impact of ambient air quality trends in during the COVID-19 pandemic in India","authors":"K. Manikanda Bharath, N. Usha, P. Balamadeswaran, S. Srinivasalu","doi":"10.29328/journal.acee.1001031","DOIUrl":"https://doi.org/10.29328/journal.acee.1001031","url":null,"abstract":"The lockdown, implemented in response to the COVID-19 epidemic, restricted the operation of various sectors in the country and its highlights a good environmental outcome. Thus, a comparison of air pollutants in India before and after the imposed lockdown indicated an overall improvement air quality across major Indian cities. This was established by utilizing the Central Pollution Control Board’s database of air quality monitoring station statistics, such as air quality patterns. During the COVID-19 epidemic, India’s pre-to-post nationwide lockdown was examined. The air quality data was collected from 30-12-2019 to 28-04-2020 and synthesized using 231 Automatic air quality monitoring stations in a major Indian metropolis. Specifically, air pollutant concentrations, temperature, and relative humidity variation during COVID-19 pandemic pre-to-post lockdown variation in India were monitored. As an outcome, several cities around the country have reported improved air quality. Generally, the air quality, on a categorical scale was found to be ‘Good’. However, a few cities from the North-eastern part of India were categorized as ‘Moderate/Satisfactory’. Overall, the particulate matters reduction was in around 60% and other gaseous pollutants was in 40% reduction was observed during the lockdown period. The results of this study include an analysis of air quality data derived from continuous air quality monitoring stations from the pre-lockdown to post-lockdown period. Air quality in India improved following the national lockdown, the interpretation of trends for PM 2.5, PM 10, SO2, NO2, and the Air Quality Index has been provided in studies for major cities across India, including Delhi, Gurugram, Noida, Mumbai, Kolkata, Bengaluru, Patna, and others.","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43267635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since snow load is one of the loads of designing the industrial shed roof, this research presents a new system to reduce the industrial sheds roof design. In this system, sensitive units of moisture and temperature, which can be adjusted with different areas, are installed on the shed’s roof. The mechanism of system is that the sensors in the units detect the presence of snow on the shed roof and send an order to connect electricity to the elements; therefore, the snow on the roof melts by the heat generated. In this system, solar panels are used to supply electricity. As with the help of this mechanism, snow does not remain on the roof, it is possible to eliminate the snow load in the calculations of the shed and apply at least the live load of the sixth regulation (Due to having a one-story shed, minimum live load applied and it used only for the foundation design of the structure.), this issue will create an economic plan in shed designing. According to the study conducted in this research, it is shown that the dimensions of the sheet beam used in the shed are reduced, which will significantly reduce the cost of construction and installation to some extent. In the following, two samples of sheds with a span of 20 meters in the presence of snow and the absence of snow in the software were modelled, and the results were compared with each other.
{"title":"Investigation of snow load reduction in the industrial sheds roof design with photovoltaic systems by mathematical modelling, solar system evaluation, X-steel simulation and thermodynamic practices","authors":"Ghadami Nasim, Deravian Bita, `Deravian Behzad, Takhtravan Amir, Khatibi Seyed Mohammad, Gheibi Mohammad","doi":"10.29328/journal.acee.1001030","DOIUrl":"https://doi.org/10.29328/journal.acee.1001030","url":null,"abstract":"Since snow load is one of the loads of designing the industrial shed roof, this research presents a new system to reduce the industrial sheds roof design. In this system, sensitive units of moisture and temperature, which can be adjusted with different areas, are installed on the shed’s roof. The mechanism of system is that the sensors in the units detect the presence of snow on the shed roof and send an order to connect electricity to the elements; therefore, the snow on the roof melts by the heat generated. In this system, solar panels are used to supply electricity. As with the help of this mechanism, snow does not remain on the roof, it is possible to eliminate the snow load in the calculations of the shed and apply at least the live load of the sixth regulation (Due to having a one-story shed, minimum live load applied and it used only for the foundation design of the structure.), this issue will create an economic plan in shed designing. According to the study conducted in this research, it is shown that the dimensions of the sheet beam used in the shed are reduced, which will significantly reduce the cost of construction and installation to some extent. In the following, two samples of sheds with a span of 20 meters in the presence of snow and the absence of snow in the software were modelled, and the results were compared with each other.","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42904257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-08DOI: 10.29328/journal.acee.1001028
Chahkandi Benyamin, Gheibi Mohammad, Takhtravan Amir
Cadmium is one of the transition metals, known by the scientific name Cd. One of its main characteristics is the high toxicity, even in very little amounts. Cadmium is often released through industrial effluents, pesticides, chemical fertilizers, and the burning of fossil fuels. Since the presence of cadmium ions in the living organisms’ body, especially humans, can cause serious damage to the liver and pancreas, and also because its role in causing cancer has been proven, measuring very low amounts of this metal is of high importance. In the first step, this study has reviewed and analyzed common laboratory methods for measuring small amounts of cadmium. Then, according to economic, environmental, feasibility, speed, and accuracy factors, all available methods were evaluated using the ELECTRE technique. The results showed that the extraction methods using Dowex Optipore V-493 resin and extraction system in Triton X-114 surfactant, placed in the first and second positions.
{"title":"Ranking of cadmium low amount measurement systems according to economic, environmental, and functional indicators using ELECTRE analytical method","authors":"Chahkandi Benyamin, Gheibi Mohammad, Takhtravan Amir","doi":"10.29328/journal.acee.1001028","DOIUrl":"https://doi.org/10.29328/journal.acee.1001028","url":null,"abstract":"Cadmium is one of the transition metals, known by the scientific name Cd. One of its main characteristics is the high toxicity, even in very little amounts. Cadmium is often released through industrial effluents, pesticides, chemical fertilizers, and the burning of fossil fuels. Since the presence of cadmium ions in the living organisms’ body, especially humans, can cause serious damage to the liver and pancreas, and also because its role in causing cancer has been proven, measuring very low amounts of this metal is of high importance. In the first step, this study has reviewed and analyzed common laboratory methods for measuring small amounts of cadmium. Then, according to economic, environmental, feasibility, speed, and accuracy factors, all available methods were evaluated using the ELECTRE technique. The results showed that the extraction methods using Dowex Optipore V-493 resin and extraction system in Triton X-114 surfactant, placed in the first and second positions.","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45044658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-29DOI: 10.29328/journal.acee.1001022
Khan Nida Tabassum
Lemongrass is an enriched source of iber, carbohydrates, Vitamin A, B and C that strengthens body immune system, repairs tissue damage and promotes cell division respectively [3,4], magnesium that is required for protein synthesis, glycolysis and muscle activity [5], selenium for cognitive function and fertility [6], phosphorus for DNA/RNA and cell membrane synthesis [7], zinc required for wound healing, normal growth and development [8].
{"title":"Therapeutic benefits of lemongrass and tea tree","authors":"Khan Nida Tabassum","doi":"10.29328/journal.acee.1001022","DOIUrl":"https://doi.org/10.29328/journal.acee.1001022","url":null,"abstract":"Lemongrass is an enriched source of iber, carbohydrates, Vitamin A, B and C that strengthens body immune system, repairs tissue damage and promotes cell division respectively [3,4], magnesium that is required for protein synthesis, glycolysis and muscle activity [5], selenium for cognitive function and fertility [6], phosphorus for DNA/RNA and cell membrane synthesis [7], zinc required for wound healing, normal growth and development [8].","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69930744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-11DOI: 10.29328/journal.acee.1001020
Intiqam Huseyn H. oqlu Aliyev
The article discusses approaches to solving problems of accurately determining strength in kinematic pairs. It is known that the nature of the bonds imposed by kinematic pairs is determined by the geometric shapes of the elements of the pairs. For what, here, the bonds acted during the entire time the mechanism was moving, so that the elements of the kinematic pairs would continuously touch each other. Where it is recognized that one of the simplest methods for taking into account the inertia of a link is the principal moment method. How the contradiction is sought is here because the normal acceleration has a direction opposite because normal acceleration has a direction opposite to the link (directed toward the center), and the image of tangential acceleration is directed parallel to this acceleration. The following simplification can be made if the main vector of inertia is considered together with the weight of the link.
{"title":"Studies of the possibility of determining amplifications in kinematic pairs","authors":"Intiqam Huseyn H. oqlu Aliyev","doi":"10.29328/journal.acee.1001020","DOIUrl":"https://doi.org/10.29328/journal.acee.1001020","url":null,"abstract":"The article discusses approaches to solving problems of accurately determining strength in kinematic pairs. It is known that the nature of the bonds imposed by kinematic pairs is determined by the geometric shapes of the elements of the pairs. For what, here, the bonds acted during the entire time the mechanism was moving, so that the elements of the kinematic pairs would continuously touch each other. Where it is recognized that one of the simplest methods for taking into account the inertia of a link is the principal moment method. How the contradiction is sought is here because the normal acceleration has a direction opposite because normal acceleration has a direction opposite to the link (directed toward the center), and the image of tangential acceleration is directed parallel to this acceleration. The following simplification can be made if the main vector of inertia is considered together with the weight of the link.","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44054790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-27DOI: 10.29328/JOURNAL.ACEE.1001015
Seyed Masoud Hadian
Assuming that the road infrastructure has been implemented in accordance with specifications and standards, poor adhesion between the two layers of asphalt mix can be a significant cause of pavement problems. The general problem observed with the weak adhesion between the layers is the slip failure. Slipping disruption in areas where transport acceleration increases, in areas where acceleration decreases or may occur in bumps. One of the criteria and a test method for measuring adhesion resistance between the hot mix asphalt layers is needed to improve the surface finish. The main objective of this study is to determine the effect of reducing the coefficient of friction between asphalt layers in the displacement of asphaltic layers. Because performing experimental experiments in the country is a deterrent to this goal, the use of analytical and numerical methods has been shown to play an important role in conducting studies. Therefore, in this paper, using vehicle simulation in ABAQUS software and analyzes, it has been found that decreasing the coefficient of friction (adhesion reduction) increases the interlayer deformation, which causes the surface of the pavement to fail. Three different thicknesses for asphalt cladding, including 4, 6, and 7 centimeters, and three different thicknesses for roller concrete layers of 18, 20 and 22 centimeters are used. Modeling and analysis of pavements with finite element method has been performed and the depth of the asphalt and tensile strain slope is calculated at the maximum level. The results show that the type of asphalt mix has a high impact on the amount of sloping and tensile strain at the maximum level. So that under different conditions it is estimated to be about 2-3 times in the amount of rotation at the surface. Also, the amount of groove and strain in the middle of the procedure is increased by a thickness of 11% the thickness of the roller concrete thickness has not changed, but the surface strain has been reduced by 9%.
{"title":"Investigation and analysis of fracture failure and fatigue cracking in High-rise pavement using simulation software of ABAQUS","authors":"Seyed Masoud Hadian","doi":"10.29328/JOURNAL.ACEE.1001015","DOIUrl":"https://doi.org/10.29328/JOURNAL.ACEE.1001015","url":null,"abstract":"Assuming that the road infrastructure has been implemented in accordance with specifications and standards, poor adhesion between the two layers of asphalt mix can be a significant cause of pavement problems. The general problem observed with the weak adhesion between the layers is the slip failure. Slipping disruption in areas where transport acceleration increases, in areas where acceleration decreases or may occur in bumps. One of the criteria and a test method for measuring adhesion resistance between the hot mix asphalt layers is needed to improve the surface finish. The main objective of this study is to determine the effect of reducing the coefficient of friction between asphalt layers in the displacement of asphaltic layers. Because performing experimental experiments in the country is a deterrent to this goal, the use of analytical and numerical methods has been shown to play an important role in conducting studies. Therefore, in this paper, using vehicle simulation in ABAQUS software and analyzes, it has been found that decreasing the coefficient of friction (adhesion reduction) increases the interlayer deformation, which causes the surface of the pavement to fail. Three different thicknesses for asphalt cladding, including 4, 6, and 7 centimeters, and three different thicknesses for roller concrete layers of 18, 20 and 22 centimeters are used. Modeling and analysis of pavements with finite element method has been performed and the depth of the asphalt and tensile strain slope is calculated at the maximum level. The results show that the type of asphalt mix has a high impact on the amount of sloping and tensile strain at the maximum level. So that under different conditions it is estimated to be about 2-3 times in the amount of rotation at the surface. Also, the amount of groove and strain in the middle of the procedure is increased by a thickness of 11% the thickness of the roller concrete thickness has not changed, but the surface strain has been reduced by 9%.","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43310125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-04-25DOI: 10.29328/JOURNAL.ACEE.1001014
Hadian Seyed Masoud
{"title":"A qualitative method for determining the surfaces between asphalt layers using ABAQUS software","authors":"Hadian Seyed Masoud","doi":"10.29328/JOURNAL.ACEE.1001014","DOIUrl":"https://doi.org/10.29328/JOURNAL.ACEE.1001014","url":null,"abstract":"","PeriodicalId":72214,"journal":{"name":"Annals of civil and environmental engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42472353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}