首页 > 最新文献

Bioinformatics advances最新文献

英文 中文
evolSOM: An R package for analyzing conservation and displacement of biological variables with self-organizing maps. evolSOM:利用自组织图分析生物变量的保存和位移的 R 软件包。
IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-22 eCollection Date: 2024-01-01 DOI: 10.1093/bioadv/vbae124
Santiago Prochetto, Renata Reinheimer, Georgina Stegmayer

Motivation: Unraveling the connection between genes and traits is crucial for solving many biological puzzles. Ribonucleic acid molecules and proteins, derived from these genetic instructions, play crucial roles in shaping cell structures, influencing reactions, and guiding behavior. This fundamental biological principle links genetic makeup to observable traits, but integrating and extracting meaningful relationships from this complex, multimodal data present a significant challenge.

Results: We introduce evolSOM, a novel R package that allows exploring and visualizing the conservation or displacement of biological variables, easing the integration of phenotypic and genotypic attributes. It enables the projection of multi-dimensional expression profiles onto interpretable two-dimensional grids, aiding in the identification of conserved or displaced genes/phenotypes across multiple conditions. Variables displaced together suggest membership to the same regulatory network, where the nature of the displacement may hold biological significance. The conservation or displacement of variables is automatically calculated and graphically presented by evolSOM. Its user-friendly interface and visualization capabilities enhance the accessibility of complex network analyses.

Availability and implementation: The package is open-source under the GPL ( 3) and is available at https://github.com/sanprochetto/evolSOM, along with a step-by-step vignette and a full example dataset that can be accessed at https://github.com/sanprochetto/evolSOM/tree/main/inst/extdata.

动机揭示基因与性状之间的联系对于解决许多生物学难题至关重要。从这些遗传指令中衍生出来的核糖核酸分子和蛋白质在塑造细胞结构、影响反应和指导行为方面发挥着至关重要的作用。这一基本生物学原理将基因构成与可观察到的性状联系起来,但从这些复杂的多模态数据中整合和提取有意义的关系是一项重大挑战:我们介绍了 evolSOM,这是一个新颖的 R 软件包,可用于探索和可视化生物变量的保持或位移,从而简化表型和基因型属性的整合。它能将多维表达谱投影到可解释的二维网格上,帮助识别在多种条件下保守或移位的基因/表型。一起移位的变量表明属于同一调控网络,移位的性质可能具有生物学意义。evolSOM 可自动计算变量的保留或移位,并以图形方式显示出来。其友好的用户界面和可视化功能提高了复杂网络分析的可访问性:该软件包在 GPL ( ≥ 3) 下开源,可在 https://github.com/sanprochetto/evolSOM 网站上获取,还可在 https://github.com/sanprochetto/evolSOM/tree/main/inst/extdata 网站上获取分步说明和完整的示例数据集。
{"title":"evolSOM: An R package for analyzing conservation and displacement of biological variables with self-organizing maps.","authors":"Santiago Prochetto, Renata Reinheimer, Georgina Stegmayer","doi":"10.1093/bioadv/vbae124","DOIUrl":"https://doi.org/10.1093/bioadv/vbae124","url":null,"abstract":"<p><strong>Motivation: </strong>Unraveling the connection between genes and traits is crucial for solving many biological puzzles. Ribonucleic acid molecules and proteins, derived from these genetic instructions, play crucial roles in shaping cell structures, influencing reactions, and guiding behavior. This fundamental biological principle links genetic makeup to observable traits, but integrating and extracting meaningful relationships from this complex, multimodal data present a significant challenge.</p><p><strong>Results: </strong>We introduce evolSOM, a novel R package that allows exploring and visualizing the conservation or displacement of biological variables, easing the integration of phenotypic and genotypic attributes. It enables the projection of multi-dimensional expression profiles onto interpretable two-dimensional grids, aiding in the identification of conserved or displaced genes/phenotypes across multiple conditions. Variables displaced together suggest membership to the same regulatory network, where the nature of the displacement may hold biological significance. The conservation or displacement of variables is automatically calculated and graphically presented by evolSOM. Its user-friendly interface and visualization capabilities enhance the accessibility of complex network analyses.</p><p><strong>Availability and implementation: </strong>The package is open-source under the GPL ( <math><mo>≥</mo></math> 3) and is available at https://github.com/sanprochetto/evolSOM, along with a step-by-step vignette and a full example dataset that can be accessed at https://github.com/sanprochetto/evolSOM/tree/main/inst/extdata.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae124"},"PeriodicalIF":2.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
refseqR: an R package for common computational operations with records on RefSeq collection. refseqR:一个 R 软件包,用于对 RefSeq 数据库中的记录进行常见计算操作。
IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-21 eCollection Date: 2024-01-01 DOI: 10.1093/bioadv/vbae122
Jose V Die

Summary: We introduce refseqR, an R package that offers a user-friendly solution, enabling common computational operations on RefSeq entries (GenBank, NCBI). The package is specifically designed to interact with records curated from the RefSeq database. Most importantly, the interoperability and integration with several Bioconductor objects allow connections to be applied to other projects.

Availability and implementation: The package refseqR is implemented in R and published under the MIT open-source license. The source code, documentation, and usage instructions are available on CRAN (https://CRAN.R-project.org/package=refseqR).

摘要:我们介绍的 refseqR 是一个 R 软件包,它提供了一个用户友好的解决方案,能够对 RefSeq 条目(GenBank、NCBI)进行常见的计算操作。该软件包专为与 RefSeq 数据库中的记录进行交互而设计。最重要的是,与多个 Bioconductor 对象的互操作性和集成性允许将连接应用于其他项目:refseqR 软件包是用 R 语言实现的,以 MIT 开源许可证发布。源代码、文档和使用说明可在 CRAN (https://CRAN.R-project.org/package=refseqR) 上获取。
{"title":"refseqR: an R package for common computational operations with records on RefSeq collection.","authors":"Jose V Die","doi":"10.1093/bioadv/vbae122","DOIUrl":"10.1093/bioadv/vbae122","url":null,"abstract":"<p><strong>Summary: </strong>We introduce refseqR, an R package that offers a user-friendly solution, enabling common computational operations on RefSeq entries (GenBank, NCBI). The package is specifically designed to interact with records curated from the RefSeq database. Most importantly, the interoperability and integration with several Bioconductor objects allow connections to be applied to other projects.</p><p><strong>Availability and implementation: </strong>The package refseqR is implemented in R and published under the MIT open-source license. The source code, documentation, and usage instructions are available on CRAN (https://CRAN.R-project.org/package=refseqR).</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae122"},"PeriodicalIF":2.4,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CoNECo: a Corpus for Named Entity recognition and normalization of protein Complexes. CoNECo:蛋白质复合体命名实体识别和规范化语料库。
IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI: 10.1093/bioadv/vbae116
Katerina Nastou, Mikaela Koutrouli, Sampo Pyysalo, Lars Juhl Jensen

Motivation: Despite significant progress in biomedical information extraction, there is a lack of resources for Named Entity Recognition (NER) and Named Entity Normalization (NEN) of protein-containing complexes. Current resources inadequately address the recognition of protein-containing complex names across different organisms, underscoring the crucial need for a dedicated corpus.

Results: We introduce the Complex Named Entity Corpus (CoNECo), an annotated corpus for NER and NEN of complexes. CoNECo comprises 1621 documents with 2052 entities, 1976 of which are normalized to Gene Ontology. We divided the corpus into training, development, and test sets and trained both a transformer-based and dictionary-based tagger on them. Evaluation on the test set demonstrated robust performance, with F-scores of 73.7% and 61.2%, respectively. Subsequently, we applied the best taggers for comprehensive tagging of the entire openly accessible biomedical literature.

Availability and implementation: All resources, including the annotated corpus, training data, and code, are available to the community through Zenodo https://zenodo.org/records/11263147 and GitHub https://zenodo.org/records/10693653.

动机:尽管在生物医学信息提取方面取得了重大进展,但在含蛋白质复合物的命名实体识别(NER)和命名实体规范化(NEN)方面却缺乏资源。目前的资源不足以解决不同生物体中含蛋白质复合物名称的识别问题,这突出表明了对专用语料库的迫切需要:结果:我们介绍了复杂命名实体语料库(CoNECo),这是一个用于复合体 NER 和 NEN 的注释语料库。CoNECo 由 1621 篇文档和 2052 个实体组成,其中 1976 个实体已规范化为基因本体。我们将该语料库分为训练集、开发集和测试集,并对它们进行了基于转换器和基于词典的标记训练。在测试集上的评估结果表明该方法性能稳定,F 值分别为 73.7% 和 61.2%。随后,我们应用最佳标记器对所有可公开获取的生物医学文献进行了全面标记:所有资源,包括注释语料库、训练数据和代码,都可通过 Zenodo https://zenodo.org/records/11263147 和 GitHub https://zenodo.org/records/10693653 向社区提供。
{"title":"CoNECo: a Corpus for Named Entity recognition and normalization of protein Complexes.","authors":"Katerina Nastou, Mikaela Koutrouli, Sampo Pyysalo, Lars Juhl Jensen","doi":"10.1093/bioadv/vbae116","DOIUrl":"https://doi.org/10.1093/bioadv/vbae116","url":null,"abstract":"<p><strong>Motivation: </strong>Despite significant progress in biomedical information extraction, there is a lack of resources for Named Entity Recognition (NER) and Named Entity Normalization (NEN) of protein-containing complexes. Current resources inadequately address the recognition of protein-containing complex names across different organisms, underscoring the crucial need for a dedicated corpus.</p><p><strong>Results: </strong>We introduce the Complex Named Entity Corpus (CoNECo), an annotated corpus for NER and NEN of complexes. CoNECo comprises 1621 documents with 2052 entities, 1976 of which are normalized to Gene Ontology. We divided the corpus into training, development, and test sets and trained both a transformer-based and dictionary-based tagger on them. Evaluation on the test set demonstrated robust performance, with F-scores of 73.7% and 61.2%, respectively. Subsequently, we applied the best taggers for comprehensive tagging of the entire openly accessible biomedical literature.</p><p><strong>Availability and implementation: </strong>All resources, including the annotated corpus, training data, and code, are available to the community through Zenodo https://zenodo.org/records/11263147 and GitHub https://zenodo.org/records/10693653.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae116"},"PeriodicalIF":2.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IVEA: an integrative variational Bayesian inference method for predicting enhancer-gene regulatory interactions. IVEA:预测增强子-基因调控相互作用的综合变异贝叶斯推理方法。
IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI: 10.1093/bioadv/vbae118
Yasumasa Kimura, Yoshimasa Ono, Kotoe Katayama, Seiya Imoto

Motivation: Enhancers play critical roles in cell-type-specific transcriptional control. Despite the identification of thousands of candidate enhancers, unravelling their regulatory relationships with their target genes remains challenging. Therefore, computational approaches are needed to accurately infer enhancer-gene regulatory relationships.

Results: In this study, we propose a new method, IVEA, that predicts enhancer-gene regulatory interactions by estimating promoter and enhancer activities. Its statistical model is based on the gene regulatory mechanism of transcriptional bursting, which is characterized by burst size and frequency controlled by promoters and enhancers, respectively. Using transcriptional readouts, chromatin accessibility, and chromatin contact data as inputs, promoter and enhancer activities were estimated using variational Bayesian inference, and the contribution of each enhancer-promoter pair to target gene transcription was calculated. Our analysis demonstrates that the proposed method can achieve high prediction accuracy and provide biologically relevant enhancer-gene regulatory interactions.

Availability and implementation: The IVEA code is available on GitHub at https://github.com/yasumasak/ivea. The publicly available datasets used in this study are described in Supplementary Table S4.

动机增强子在细胞类型特异性转录调控中发挥着关键作用。尽管已鉴定出数千个候选增强子,但揭示它们与其靶基因之间的调控关系仍具有挑战性。因此,需要用计算方法来准确推断增强子与基因的调控关系:在这项研究中,我们提出了一种新方法 IVEA,它可以通过估计启动子和增强子的活性来预测增强子与基因之间的调控相互作用。其统计模型基于转录突变的基因调控机制,该机制的特点是突变大小和频率分别由启动子和增强子控制。利用转录读数、染色质可及性和染色质接触数据作为输入,使用变异贝叶斯推理估算启动子和增强子的活性,并计算出每对增强子-启动子对目标基因转录的贡献。我们的分析表明,所提出的方法可以达到很高的预测精度,并提供与生物学相关的增强子-基因调控相互作用:IVEA 代码可在 GitHub 上获取:https://github.com/yasumasak/ivea。本研究中使用的公开数据集见补充表 S4。
{"title":"IVEA: an integrative variational Bayesian inference method for predicting enhancer-gene regulatory interactions.","authors":"Yasumasa Kimura, Yoshimasa Ono, Kotoe Katayama, Seiya Imoto","doi":"10.1093/bioadv/vbae118","DOIUrl":"10.1093/bioadv/vbae118","url":null,"abstract":"<p><strong>Motivation: </strong>Enhancers play critical roles in cell-type-specific transcriptional control. Despite the identification of thousands of candidate enhancers, unravelling their regulatory relationships with their target genes remains challenging. Therefore, computational approaches are needed to accurately infer enhancer-gene regulatory relationships.</p><p><strong>Results: </strong>In this study, we propose a new method, IVEA, that predicts enhancer-gene regulatory interactions by estimating promoter and enhancer activities. Its statistical model is based on the gene regulatory mechanism of transcriptional bursting, which is characterized by burst size and frequency controlled by promoters and enhancers, respectively. Using transcriptional readouts, chromatin accessibility, and chromatin contact data as inputs, promoter and enhancer activities were estimated using variational Bayesian inference, and the contribution of each enhancer-promoter pair to target gene transcription was calculated. Our analysis demonstrates that the proposed method can achieve high prediction accuracy and provide biologically relevant enhancer-gene regulatory interactions.</p><p><strong>Availability and implementation: </strong>The IVEA code is available on GitHub at https://github.com/yasumasak/ivea. The publicly available datasets used in this study are described in Supplementary Table S4.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae118"},"PeriodicalIF":2.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving protein function prediction by learning and integrating representations of protein sequences and function labels. 通过学习和整合蛋白质序列与功能标签的表征,改进蛋白质功能预测。
IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-17 eCollection Date: 2024-01-01 DOI: 10.1093/bioadv/vbae120
Frimpong Boadu, Jianlin Cheng

Motivation: As fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt.

Results: We introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with limited annotations by facilitating annotation transfer between GO terms.

Availability and implementation: https://github.com/BioinfoMachineLearning/TransFew.

动机由于只有不到1%的蛋白质通过实验确定了蛋白质的功能信息,因此计算预测蛋白质的功能对于获得大多数蛋白质的功能信息至关重要,这也是蛋白质生物信息学的一大挑战。尽管近十年来,蛋白质功能预测领域取得了重大进展,但蛋白质功能预测的总体准确率仍然不高,尤其是与蛋白质功能注释数据库(如 UniProt.Results)中少数蛋白质相关的罕见功能术语:我们介绍了一种新的转换器模型 TransFew,它可以学习蛋白质序列和功能标签 [基因本体(GO)术语] 的表示,从而预测蛋白质的功能。TransFew 利用大型预训练蛋白质语言模型(ESM2-t48)从原始蛋白质序列中学习与蛋白质功能相关的表征,并使用生物自然语言模型(BioBert)和基于图卷积神经网络的自动编码器从文本定义和层次关系中生成 GO 术语的语义表征,然后将这些表征结合在一起,通过交叉关注预测蛋白质功能。整合蛋白质序列和标签表征不仅提高了整体功能预测的准确性,而且通过促进GO术语之间的注释转移,在预测注释有限的罕见功能术语时提供了强大的性能。可用性和实现:https://github.com/BioinfoMachineLearning/TransFew。
{"title":"Improving protein function prediction by learning and integrating representations of protein sequences and function labels.","authors":"Frimpong Boadu, Jianlin Cheng","doi":"10.1093/bioadv/vbae120","DOIUrl":"10.1093/bioadv/vbae120","url":null,"abstract":"<p><strong>Motivation: </strong>As fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt.</p><p><strong>Results: </strong>We introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with limited annotations by facilitating annotation transfer between GO terms.</p><p><strong>Availability and implementation: </strong>https://github.com/BioinfoMachineLearning/TransFew.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae120"},"PeriodicalIF":2.4,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142135095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In the twilight zone of protein sequence homology: do protein language models learn protein structure? 蛋白质序列同源性的黄昏地带:蛋白质语言模型能学习蛋白质结构吗?
IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-17 eCollection Date: 2024-01-01 DOI: 10.1093/bioadv/vbae119
Anowarul Kabir, Asher Moldwin, Yana Bromberg, Amarda Shehu

Motivation: Protein language models based on the transformer architecture are increasingly improving performance on protein prediction tasks, including secondary structure, subcellular localization, and more. Despite being trained only on protein sequences, protein language models appear to implicitly learn protein structure. This paper investigates whether sequence representations learned by protein language models encode structural information and to what extent.

Results: We address this by evaluating protein language models on remote homology prediction, where identifying remote homologs from sequence information alone requires structural knowledge, especially in the "twilight zone" of very low sequence identity. Through rigorous testing at progressively lower sequence identities, we profile the performance of protein language models ranging from millions to billions of parameters in a zero-shot setting. Our findings indicate that while transformer-based protein language models outperform traditional sequence alignment methods, they still struggle in the twilight zone. This suggests that current protein language models have not sufficiently learned protein structure to address remote homology prediction when sequence signals are weak.

Availability and implementation: We believe this opens the way for further research both on remote homology prediction and on the broader goal of learning sequence- and structure-rich representations of protein molecules. All code, data, and models are made publicly available.

动机:基于转换器架构的蛋白质语言模型在蛋白质预测任务(包括二级结构、亚细胞定位等)上的性能日益提高。尽管蛋白质语言模型只针对蛋白质序列进行训练,但它似乎能隐式地学习蛋白质结构。本文研究了蛋白质语言模型学习到的序列表征是否编码了结构信息以及编码的程度:我们通过评估远程同源预测中的蛋白质语言模型来解决这个问题,在远程同源预测中,仅从序列信息识别远程同源物需要结构知识,尤其是在序列同一性非常低的 "曙光地带"。通过在序列同一性逐渐降低的情况下进行严格的测试,我们对蛋白质语言模型的性能进行了剖析,其参数范围从数百万到数十亿不等。我们的研究结果表明,虽然基于变换器的蛋白质语言模型优于传统的序列比对方法,但它们在 "黄昏区 "仍然很吃力。这表明,目前的蛋白质语言模型还没有充分学习蛋白质结构,无法在序列信号较弱的情况下解决远程同源性预测问题:我们相信,这为进一步研究远程同源性预测以及学习蛋白质分子富含序列和结构的表征这一更广泛的目标开辟了道路。所有代码、数据和模型均可公开获取。
{"title":"In the twilight zone of protein sequence homology: do protein language models learn protein structure?","authors":"Anowarul Kabir, Asher Moldwin, Yana Bromberg, Amarda Shehu","doi":"10.1093/bioadv/vbae119","DOIUrl":"10.1093/bioadv/vbae119","url":null,"abstract":"<p><strong>Motivation: </strong>Protein language models based on the transformer architecture are increasingly improving performance on protein prediction tasks, including secondary structure, subcellular localization, and more. Despite being trained only on protein sequences, protein language models appear to implicitly learn protein structure. This paper investigates whether sequence representations learned by protein language models encode structural information and to what extent.</p><p><strong>Results: </strong>We address this by evaluating protein language models on remote homology prediction, where identifying remote homologs from sequence information alone requires structural knowledge, especially in the \"twilight zone\" of very low sequence identity. Through rigorous testing at progressively lower sequence identities, we profile the performance of protein language models ranging from millions to billions of parameters in a zero-shot setting. Our findings indicate that while transformer-based protein language models outperform traditional sequence alignment methods, they still struggle in the twilight zone. This suggests that current protein language models have not sufficiently learned protein structure to address remote homology prediction when sequence signals are weak.</p><p><strong>Availability and implementation: </strong>We believe this opens the way for further research both on remote homology prediction and on the broader goal of learning sequence- and structure-rich representations of protein molecules. All code, data, and models are made publicly available.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae119"},"PeriodicalIF":2.4,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
splicekit: an integrative toolkit for splicing analysis from short-read RNA-seq. splicekit:从短线程 RNA-seq 进行剪接分析的综合工具包。
IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-17 eCollection Date: 2024-01-01 DOI: 10.1093/bioadv/vbae121
Gregor Rot, Arne Wehling, Roland Schmucki, Nikolaos Berntenis, Jitao David Zhang, Martin Ebeling

Motivation: Analysis of alternative splicing using short-read RNA-seq data is a complex process that involves several steps: alignment of reads to the reference genome, identification of alternatively spliced features, motif discovery, analysis of RNA-protein binding near donor and acceptor splice sites, and exploratory data visualization. To the best of our knowledge, there is currently no integrative open-source software dedicated to this task.

Results: Here, we introduce splicekit, a Python package that provides and integrates a set of existing and novel splicing analysis tools for conducting splicing analysis.

Availability and implementation: The software splicekit is open-source and available at Github (https://github.com/bedapub/splicekit) and via the Python Package Index.

动机:利用短线程 RNA-seq 数据分析替代剪接是一个复杂的过程,涉及多个步骤:将读数与参考基因组比对、识别替代剪接特征、发现主题、分析供体和受体剪接位点附近的 RNA 蛋白结合以及探索性数据可视化。据我们所知,目前还没有专门用于这项任务的集成式开源软件:在此,我们介绍了 splicekit,它是一个 Python 软件包,提供并集成了一套现有的和新颖的剪接分析工具,用于进行剪接分析:软件 splicekit 是开源的,可通过 Github (https://github.com/bedapub/splicekit) 和 Python 软件包索引获取。
{"title":"<i>splicekit</i>: an integrative toolkit for splicing analysis from short-read RNA-seq.","authors":"Gregor Rot, Arne Wehling, Roland Schmucki, Nikolaos Berntenis, Jitao David Zhang, Martin Ebeling","doi":"10.1093/bioadv/vbae121","DOIUrl":"10.1093/bioadv/vbae121","url":null,"abstract":"<p><strong>Motivation: </strong>Analysis of alternative splicing using short-read RNA-seq data is a complex process that involves several steps: alignment of reads to the reference genome, identification of alternatively spliced features, motif discovery, analysis of RNA-protein binding near donor and acceptor splice sites, and exploratory data visualization. To the best of our knowledge, there is currently no integrative open-source software dedicated to this task.</p><p><strong>Results: </strong>Here, we introduce <i>splicekit</i>, a Python package that provides and integrates a set of existing and novel splicing analysis tools for conducting splicing analysis.</p><p><strong>Availability and implementation: </strong>The software <i>splicekit</i> is open-source and available at Github (https://github.com/bedapub/splicekit) and <i>via</i> the Python Package Index.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae121"},"PeriodicalIF":2.4,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C2CDB: an advanced platform integrating comprehensive information and analysis tools of cancer-related circRNAs. C2CDB:一个集成了癌症相关 circRNAs 综合信息和分析工具的先进平台。
IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-16 eCollection Date: 2024-01-01 DOI: 10.1093/bioadv/vbae112
Yuanli Zuo, Wenrong Liu, Yang Jin, Yitong Pan, Ting Fan, Xin Fu, Jiawei Guo, Shuangyan Tan, Juan He, Yang Yang, Zhang Li, Chenyu Yang, Yong Peng

Motivation: Circular RNAs (circRNAs) play important roles in gene expression and their involvement in tumorigenesis is emerging. circRNA-related database is a powerful tool for researchers to investigate circRNAs. However, existing databases lack advanced platform integrating comprehensive information and analysis tools of cancer-related circRNAs.

Results: We developed a comprehensive platform called CircRNA to Cancer Database (C2CDB), encompassing 318 158 cancer-related circRNAs expressed in tumors and adjacent tissues across 30 types of cancers. C2CDB provides basic details such as sequence and expression levels of circRNAs, as well as crucial insights into biological mechanisms, including miRNA binding, RNA-binding protein interaction, coding potential, base modification, mutation, and secondary structure. Moreover, C2CDB collects an extensive compilation of published literature on cancer circRNAs, extracting and presenting pivotal content encompassing biological functions, underlying mechanisms, and molecular tools in these studies. Additionally, C2CDB offers integrated tools to analyse three potential mechanisms: circRNA-miRNA ceRNA interaction, circRNA encoding, and circRNA biogenesis, facilitating investigators with convenient access to highly reliable information. To enhance clarity and organization, C2CDB has meticulously curated and integrated the previously chaotic nomenclature of circRNAs, addressing the prevailing confusion and ambiguity surrounding their designations.

Availability and implementation: C2CDB is freely available at http://pengyonglab.com/c2cdb.

动因:环状RNA(circRNA)在基因表达中发挥着重要作用,其参与肿瘤发生的情况正在逐渐显现。环状RNA相关数据库是研究人员研究环状RNA的有力工具。然而,现有数据库缺乏整合癌症相关 circRNAs 综合信息和分析工具的先进平台:我们开发了一个名为 "癌症循环RNA数据库(CircRNA to Cancer Database,C2CDB)"的综合平台,涵盖了30种癌症中318 158个在肿瘤和邻近组织中表达的癌症相关循环RNA。C2CDB提供了circRNA的序列和表达水平等基本信息,以及对生物学机制的重要见解,包括miRNA结合、RNA结合蛋白相互作用、编码潜能、碱基修饰、突变和二级结构等。此外,C2CDB 收集了大量已发表的癌症 circRNAs 文献,提取并呈现了这些研究中涵盖生物功能、基本机制和分子工具的关键内容。此外,C2CDB 还提供了综合工具,用于分析 circRNA-miRNA ceRNA 相互作用、circRNA 编码和 circRNA 生物发生这三种潜在机制,方便研究人员获取高度可靠的信息。为了提高清晰度和组织性,C2CDB 对以前混乱的 circRNA 命名方法进行了精心整理和整合,解决了目前围绕其命名的混乱和模糊问题:C2CDB 可从 http://pengyonglab.com/c2cdb 免费获取。
{"title":"C2CDB: an advanced platform integrating comprehensive information and analysis tools of cancer-related circRNAs.","authors":"Yuanli Zuo, Wenrong Liu, Yang Jin, Yitong Pan, Ting Fan, Xin Fu, Jiawei Guo, Shuangyan Tan, Juan He, Yang Yang, Zhang Li, Chenyu Yang, Yong Peng","doi":"10.1093/bioadv/vbae112","DOIUrl":"10.1093/bioadv/vbae112","url":null,"abstract":"<p><strong>Motivation: </strong>Circular RNAs (circRNAs) play important roles in gene expression and their involvement in tumorigenesis is emerging. circRNA-related database is a powerful tool for researchers to investigate circRNAs. However, existing databases lack advanced platform integrating comprehensive information and analysis tools of cancer-related circRNAs.</p><p><strong>Results: </strong>We developed a comprehensive platform called CircRNA to Cancer Database (C2CDB), encompassing 318 158 cancer-related circRNAs expressed in tumors and adjacent tissues across 30 types of cancers. C2CDB provides basic details such as sequence and expression levels of circRNAs, as well as crucial insights into biological mechanisms, including miRNA binding, RNA-binding protein interaction, coding potential, base modification, mutation, and secondary structure. Moreover, C2CDB collects an extensive compilation of published literature on cancer circRNAs, extracting and presenting pivotal content encompassing biological functions, underlying mechanisms, and molecular tools in these studies. Additionally, C2CDB offers integrated tools to analyse three potential mechanisms: circRNA-miRNA ceRNA interaction, circRNA encoding, and circRNA biogenesis, facilitating investigators with convenient access to highly reliable information. To enhance clarity and organization, C2CDB has meticulously curated and integrated the previously chaotic nomenclature of circRNAs, addressing the prevailing confusion and ambiguity surrounding their designations.</p><p><strong>Availability and implementation: </strong>C2CDB is freely available at http://pengyonglab.com/c2cdb.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae112"},"PeriodicalIF":2.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current and future directions in network biology. 网络生物学的当前和未来发展方向。
IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-14 eCollection Date: 2024-01-01 DOI: 10.1093/bioadv/vbae099
Marinka Zitnik, Michelle M Li, Aydin Wells, Kimberly Glass, Deisy Morselli Gysi, Arjun Krishnan, T M Murali, Predrag Radivojac, Sushmita Roy, Anaïs Baudot, Serdar Bozdag, Danny Z Chen, Lenore Cowen, Kapil Devkota, Anthony Gitter, Sara J C Gosline, Pengfei Gu, Pietro H Guzzi, Heng Huang, Meng Jiang, Ziynet Nesibe Kesimoglu, Mehmet Koyuturk, Jian Ma, Alexander R Pico, Nataša Pržulj, Teresa M Przytycka, Benjamin J Raphael, Anna Ritz, Roded Sharan, Yang Shen, Mona Singh, Donna K Slonim, Hanghang Tong, Xinan Holly Yang, Byung-Jun Yoon, Haiyuan Yu, Tijana Milenković

Summary: Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology.

Availability and implementation: Not applicable.

摘要:网络生物学是一个连接计算科学和生物科学的跨学科领域,事实证明,它在推动人们了解跨生物系统和生物尺度的细胞功能和疾病方面起着举足轻重的作用。虽然该领域已经存在了二十年,但仍处于起步阶段。它经历了快速发展,同时也面临着新的挑战。这些挑战源于各种因素,特别是数据的复杂性和数量不断增加,以及描述不同层次生物组织的数据类型日益多样化。我们将讨论网络生物学的当前研究方向,重点关注分子/细胞网络,同时也关注其他生物网络类型,如生物医学知识图谱、患者相似性网络、脑网络以及与疾病传播相关的社会/联系网络。更详细地说,我们将重点介绍生物网络的推理和比较、多模态数据整合和异构网络、高阶网络分析、网络机器学习以及基于网络的个性化医疗等领域。在概述这五个领域的最新突破之后,我们将展望网络生物学的未来发展方向。此外,我们还讨论了科学界、教育计划以及促进该领域多样性的重要性。本文为网络生物学的近期和长期愿景绘制了路线图:不适用。
{"title":"Current and future directions in network biology.","authors":"Marinka Zitnik, Michelle M Li, Aydin Wells, Kimberly Glass, Deisy Morselli Gysi, Arjun Krishnan, T M Murali, Predrag Radivojac, Sushmita Roy, Anaïs Baudot, Serdar Bozdag, Danny Z Chen, Lenore Cowen, Kapil Devkota, Anthony Gitter, Sara J C Gosline, Pengfei Gu, Pietro H Guzzi, Heng Huang, Meng Jiang, Ziynet Nesibe Kesimoglu, Mehmet Koyuturk, Jian Ma, Alexander R Pico, Nataša Pržulj, Teresa M Przytycka, Benjamin J Raphael, Anna Ritz, Roded Sharan, Yang Shen, Mona Singh, Donna K Slonim, Hanghang Tong, Xinan Holly Yang, Byung-Jun Yoon, Haiyuan Yu, Tijana Milenković","doi":"10.1093/bioadv/vbae099","DOIUrl":"10.1093/bioadv/vbae099","url":null,"abstract":"<p><strong>Summary: </strong>Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology.</p><p><strong>Availability and implementation: </strong>Not applicable.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae099"},"PeriodicalIF":2.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the natural language of DNA using encoder-decoder foundation models with byte-level precision. 利用具有字节级精度的编码器-解码器基础模型理解 DNA 的自然语言。
IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2024-08-12 eCollection Date: 2024-01-01 DOI: 10.1093/bioadv/vbae117
Aditya Malusare, Harish Kothandaraman, Dipesh Tamboli, Nadia A Lanman, Vaneet Aggarwal

Summary: This article presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model, analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture. ENBED uses a subquadratic implementation of attention to develop an efficient model capable of sequence-to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only architectures. We use Masked Language Modeling to pretrain the foundation model using reference genome sequences and apply it in the following downstream tasks: (i) identification of enhancers, promotors, and splice sites, (ii) recognition of sequences containing base call mismatches and insertion/deletion errors, an advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-level precision, (iii) identification of biological function annotations of genomic sequences, and (iv) generating mutations of the Influenza virus using the encoder-decoder architecture and validating them against real-world observations. In each of these tasks, we demonstrate significant improvement as compared to the existing state-of-the-art results.

Availability and implementation: The source code used to develop and fine-tune the foundation model has been released on Github (https://github.itap.purdue.edu/Clan-labs/ENBED).

摘要:本文介绍了组合核苷酸字节级编码器-解码器(ENBED)基础模型,利用编码器-解码器变换器架构分析字节级精度的 DNA 序列。ENBED利用注意力的亚二次方实现,开发出一种能够进行序列到序列转换的高效模型,从而推广了以往仅使用编码器或仅使用解码器架构的基因组模型。我们使用掩码语言建模技术(Masked Language Modeling),利用参考基因组序列对基础模型进行预训练,并将其应用于以下下游任务:(i) 识别增强子、启动子和剪接位点;(ii) 识别包含碱基调用错配和插入/删除错误的序列,这比涉及多个碱基对的标记化方案更有优势,因为后者失去了以字节级精度进行分析的能力;(iii) 识别基因组序列的生物功能注释;(iv) 使用编码器-解码器架构生成流感病毒的突变,并根据真实世界的观察结果对其进行验证。与现有的最先进成果相比,我们在上述每项任务中都取得了显著进步:用于开发和微调基础模型的源代码已在 Github 上发布(https://github.itap.purdue.edu/Clan-labs/ENBED)。
{"title":"Understanding the natural language of DNA using encoder-decoder foundation models with byte-level precision.","authors":"Aditya Malusare, Harish Kothandaraman, Dipesh Tamboli, Nadia A Lanman, Vaneet Aggarwal","doi":"10.1093/bioadv/vbae117","DOIUrl":"10.1093/bioadv/vbae117","url":null,"abstract":"<p><strong>Summary: </strong>This article presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model, analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture. ENBED uses a subquadratic implementation of attention to develop an efficient model capable of sequence-to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only architectures. We use Masked Language Modeling to pretrain the foundation model using reference genome sequences and apply it in the following downstream tasks: (i) identification of enhancers, promotors, and splice sites, (ii) recognition of sequences containing base call mismatches and insertion/deletion errors, an advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-level precision, (iii) identification of biological function annotations of genomic sequences, and (iv) generating mutations of the Influenza virus using the encoder-decoder architecture and validating them against real-world observations. In each of these tasks, we demonstrate significant improvement as compared to the existing state-of-the-art results.</p><p><strong>Availability and implementation: </strong>The source code used to develop and fine-tune the foundation model has been released on Github (https://github.itap.purdue.edu/Clan-labs/ENBED).</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae117"},"PeriodicalIF":2.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioinformatics advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1