Background: We hypothesized that hydroxychloroquine (HCQ) attenuates myocardial ischemia/reperfusion injury (IRI) via TLR9 - type I interferon (IFN-I) pathway inhibition.
Methods: The left coronary artery of wild-type (WT) C57BL/6 and congenic TLR9-/- mice was occluded for 40 minutes, with or without 60 minutes of reperfusion (40'/0' or 40'/60'). Either ODN-2088 or HCQ (TLR9 inhibitors), or ODN-1826 (TLR9 agonist) was administered to determine effect on infarct size (IS). After 40'/0', cardiac perfusate (CP) was collected from harvested hearts and administered to either intact WT mice after 20 minutes of ischemia or isolated splenocytes. Type-I interferon (IFNα and IFNβ) levels were measured in plasma and splenocyte culture supernatant, and levels of damage associated molecular patterns HMGB1 and cell-free DNA (cfDNA) were measured in CP.
Results: After 40'/60', WT mice treated with HCQ or ODN-2088 had significantly reduced IS. TLR9-/- mice and HCQ-treated WT mice undergoing 40'/0' and 40'/60' similarly attenuated IS, with significantly lower IFN-Is in CP after 40'/0' and in plasma after 40'/60'. IS was significantly increased in 40'/0' CP-treated and ODN-1826-treated 20'/60' WT mice. CP-treated WT splenocytes produced significantly higher IFN-I in culture supernatant, which was significantly reduced with HCQ.
Conclusions: The TLR9-IFN-I-mediated inflammatory response contributes significantly to both ischemic and post-ischemic myocardial ischemia-reperfusion injury. HMGB1 and cfDNA released from ischemic myocardium activated the intra-myocardial TLR9 - IFN-I inflammatory pathway during ischemia and the extra-myocardial TLR9 - IFN-I inflammatory pathway during reperfusion. Hydroxychloroquine reduces production of IFN-I and attenuates myocardial IRI, likely by inhibiting the TLR9-IFN-I pathway.
Aim: This study investigated a patient-specific approach of using cardiac magnetic resonance (CMR) feature tracking for scar detection in a heterogenous patient group with chronic ischemic and non-ischemic heart disease.
Methods: CMR exams of 89 patients with concomitant chronic ischemic and non-ischemic heart disease (IHD+) as well as 65 patients with ischemic scars only (IHD) were retrospectively evaluated. In all patients, global (GCS) and segmental circumferential strain (SCS) was derived from native cine images using a dedicated software (Segment CMR, Medviso). After calculation of patient-specific median GCS (GCSmedian), segmental values from GCSmedian percentage plots were correlated with corresponding myocardial segments in late gadolinium enhancement (LGE).
Results: Overall GCS ranged between -3.5% to -19.8% and average GCS was lower in IHD+ than in IHD (p <0.05). In IHD, 19% of all myocardial segments were infarcted, in IHD+ 16.6%. Additionally, non-ischemic LGE was present in 6.7% of segments in IHD+. Correlation of GCSmedian percentage plots with corresponding LGE showed that presence of ischemic scar tissue in a myocardial segment was very likely below a cut-off of 39.5% GCSmedian (87.5% sensitivity, 86.3% specificity, AUC 0.907, 95% CI 0.875-0.938, p < 0.05).
Conclusion: In patient-specific GCSmedian percentage plots calculated from native cine images, ischemic scar tissue can be suspected in myocardial segments below the threshold of 40% GCSmedian (sensitivity 88%, specificity 86%), even in a heterogenous patient cohort with ischemic and non-ischemic heart disease.