首页 > 最新文献

Channels (Austin, Tex.)最新文献

英文 中文
Cardiac L-type calcium channel regulation by Leucine-Rich Repeat-Containing Protein 10. 含亮氨酸丰富重复蛋白 10 对心脏 L 型钙通道的调控。
Pub Date : 2024-12-01 Epub Date: 2024-05-19 DOI: 10.1080/19336950.2024.2355121
Natthaphat Siri-Angkul, Timothy J Kamp

L-type calcium channels (LTCCs), the major portal for Ca2+ entry into cardiomyocytes, are essential for excitation-contraction coupling and thus play a central role in regulating overall cardiac function. LTCC function is finely tuned by multiple signaling pathways and accessory proteins. Leucine-rich repeat-containing protein 10 (LRRC10) is a little studied cardiomyocyte-specific protein recently identified as a modulator of LTCCs. LRRC10 exerts a remarkable effect on LTCC function, more than doubling L-type Ca2+ current (ICa,L) amplitude in a heterologous expression system by altering the gating of the channels without changing their surface membrane expression. Genetic ablation of LRRC10 expression in mouse and zebrafish hearts leads to a significant reduction in ICa,L density and a slowly progressive dilated cardiomyopathy in mice. Rare sequence variants of LRRC10 have been identified in dilated cardiomyopathy and sudden unexplained nocturnal cardiac death syndrome, but these variants have not been clearly linked to disease. Nevertheless, the DCM-associated variant, I195T, converted LRRC10 from a ICa,L potentiator to a ICa,L suppressor, thus illustrating the wide dynamic range of LRRC10-mediated ICa,L regulation. This review focuses on the contemporary knowledge of LTCC modulation by LRRC10 and discusses potential directions for future investigations.

L 型钙通道(LTCC)是 Ca2+ 进入心肌细胞的主要通道,对兴奋-收缩耦合至关重要,因此在调节整体心脏功能方面发挥着核心作用。LTCC 的功能由多种信号通路和附属蛋白进行微调。富亮氨酸重复序列蛋白 10(LRRC10)是一种研究较少的心肌细胞特异性蛋白,最近被发现是 LTCC 的调节因子。LRRC10 对 LTCC 的功能有显著影响,在异源表达系统中,它通过改变通道的门控而不改变其表面膜的表达,使 L 型 Ca2+ 电流(ICa,L)的振幅增加了一倍多。小鼠和斑马鱼心脏中 LRRC10 表达的基因消减会导致 ICa,L 密度显著降低,并导致小鼠出现缓慢进行性扩张型心肌病。在扩张型心肌病和原因不明的夜间心脏猝死综合征中发现了 LRRC10 的罕见序列变异,但这些变异尚未与疾病明确相关。然而,DCM 相关变体 I195T 将 LRRC10 从 ICa,L 的增效剂转变为 ICa,L 的抑制剂,从而说明了 LRRC10 介导的 ICa,L 调节具有广泛的动态范围。本综述重点介绍 LRRC10 调节 LTCC 的现代知识,并讨论未来研究的潜在方向。
{"title":"Cardiac L-type calcium channel regulation by Leucine-Rich Repeat-Containing Protein 10.","authors":"Natthaphat Siri-Angkul, Timothy J Kamp","doi":"10.1080/19336950.2024.2355121","DOIUrl":"10.1080/19336950.2024.2355121","url":null,"abstract":"<p><p>L-type calcium channels (LTCCs), the major portal for Ca<sup>2+</sup> entry into cardiomyocytes, are essential for excitation-contraction coupling and thus play a central role in regulating overall cardiac function. LTCC function is finely tuned by multiple signaling pathways and accessory proteins. Leucine-rich repeat-containing protein 10 (LRRC10) is a little studied cardiomyocyte-specific protein recently identified as a modulator of LTCCs. LRRC10 exerts a remarkable effect on LTCC function, more than doubling L-type Ca<sup>2+</sup> current (I<sub>Ca,L</sub>) amplitude in a heterologous expression system by altering the gating of the channels without changing their surface membrane expression. Genetic ablation of LRRC10 expression in mouse and zebrafish hearts leads to a significant reduction in I<sub>Ca,L</sub> density and a slowly progressive dilated cardiomyopathy in mice. Rare sequence variants of LRRC10 have been identified in dilated cardiomyopathy and sudden unexplained nocturnal cardiac death syndrome, but these variants have not been clearly linked to disease. Nevertheless, the DCM-associated variant, I195T, converted LRRC10 from a I<sub>Ca,L</sub> potentiator to a I<sub>Ca,L</sub> suppressor, thus illustrating the wide dynamic range of LRRC10-mediated I<sub>Ca,L</sub> regulation. This review focuses on the contemporary knowledge of LTCC modulation by LRRC10 and discusses potential directions for future investigations.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2355121"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110685/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing agents facilitate membrane patch seal integrity and longevity. 还原剂可提高膜片密封的完整性和使用寿命。
Pub Date : 2024-12-01 Epub Date: 2023-12-28 DOI: 10.1080/19336950.2023.2297621
Damayantee Das, Anson Wong, Timothy N Friedman, Bradley J Kerr, Harley T Kurata, Shawn M Lamothe

The patch clamp method is a widely applied electrophysiological technique used to understand ion channel activity and cellular excitation. The formation of a high resistance giga-ohm seal is required to obtain high-quality recordings but can be challenging due to variables including operator experience and cell preparation. Therefore, the identification of methods to promote the formation and longevity of giga-ohm seals may be beneficial. In this report, we describe our observation that the application of reducing agents (DTT and TCEP) to the external bath solution during whole-cell patch clamp recordings of heterologous cells (HEK and LM) and cultured primary cells (DRG neurons) enhanced the success of giga-ohm seal formation. Reducing agents also maintained the integrity of the seal for longer periods of time at strong hyperpolarizing voltages, whereas an oxidizing agent (H2O2) appeared to have the opposite effect. In summary, we report a useful tool to improve the quality of patch clamp recordings that may be helpful in certain experimental contexts.

膜片钳法是一种广泛应用的电生理技术,用于了解离子通道活动和细胞兴奋。要获得高质量的记录,需要形成高电阻千欧密封,但由于操作者的经验和细胞制备等变量,形成千欧密封可能具有挑战性。因此,找出促进千欧密封的形成和延长其寿命的方法可能是有益的。在本报告中,我们描述了对异源细胞(HEK 和 LM)和培养的原代细胞(DRG 神经元)进行全细胞膜片钳记录时,在外部浴液中加入还原剂(DTT 和 TCEP)可提高千欧密封形成的成功率的观察结果。在强超极化电压下,还原剂还能在更长的时间内保持密封的完整性,而氧化剂(H2O2)似乎有相反的效果。总之,我们报告了一种提高膜片钳记录质量的有用工具,在某些实验环境中可能会有所帮助。
{"title":"Reducing agents facilitate membrane patch seal integrity and longevity.","authors":"Damayantee Das, Anson Wong, Timothy N Friedman, Bradley J Kerr, Harley T Kurata, Shawn M Lamothe","doi":"10.1080/19336950.2023.2297621","DOIUrl":"10.1080/19336950.2023.2297621","url":null,"abstract":"<p><p>The patch clamp method is a widely applied electrophysiological technique used to understand ion channel activity and cellular excitation. The formation of a high resistance giga-ohm seal is required to obtain high-quality recordings but can be challenging due to variables including operator experience and cell preparation. Therefore, the identification of methods to promote the formation and longevity of giga-ohm seals may be beneficial. In this report, we describe our observation that the application of reducing agents (DTT and TCEP) to the external bath solution during whole-cell patch clamp recordings of heterologous cells (HEK and LM) and cultured primary cells (DRG neurons) enhanced the success of giga-ohm seal formation. Reducing agents also maintained the integrity of the seal for longer periods of time at strong hyperpolarizing voltages, whereas an oxidizing agent (H<sub>2</sub>O<sub>2</sub>) appeared to have the opposite effect. In summary, we report a useful tool to improve the quality of patch clamp recordings that may be helpful in certain experimental contexts.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2297621"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binding kinetics of quaternary ammonium ions in Kcv potassium channels. 季铵盐离子在 Kcv 钾通道中的结合动力学。
Pub Date : 2024-12-01 Epub Date: 2024-10-09 DOI: 10.1080/19336950.2024.2402749
Tobias Korn, Ulf-Peter Hansen, Tobias Sebastian Gabriel, Oliver Rauh, Nils Drexler, Indra Schroeder

Kcv channels from plant viruses represent the autonomous pore module of potassium channels, devoid of any regulatory domains. These small proteins show very reproducible single-channel behavior in planar lipid bilayers. Thus, they are an optimum system for the study of the biophysics of ion transport and gating. Structural models based on homology modeling have been used successfully, but experimental structural data are currently not available. Here we determine the size of the cytosolic pore entrance by studying the blocker kinetics. Blocker binding and dissociation rate constants ranging from 0.01 to 1000 ms-1 were determined for different quaternary ammonium ions. We found that the cytosolic pore entrance of KcvNTS must be at least 11 Å wide. The results further indicate that the residues controlling a cytosolic gate in one of the Kcv isoforms influence blocker binding/dissociation as well as a second gate even when the cytosolic gate is in the open state. The voltage dependence of the rate constant of blocker release is used to test, which blockers bind to the same binding site.

来自植物病毒的 Kcv 通道代表了钾通道的自主孔模块,没有任何调节结构域。这些小蛋白在平面脂质双分子层中显示出非常可重现的单通道行为。因此,它们是研究离子转运和门控生物物理学的最佳系统。基于同源建模的结构模型已被成功应用,但目前还没有实验结构数据。在这里,我们通过研究阻断剂动力学来确定细胞膜孔入口的大小。我们测定了不同季铵盐离子的阻断剂结合和解离速率常数,范围从 0.01 到 1000 ms-1。我们发现,KcvNTS 的胞浆孔入口必须至少有 11 Å 宽。结果进一步表明,在 Kcv 的一种异构体中,控制胞吐门的残基会影响阻断剂的结合/解离以及第二个门,即使胞吐门处于打开状态。阻滞剂释放速率常数的电压依赖性被用来测试哪些阻滞剂与相同的结合位点结合。
{"title":"Binding kinetics of quaternary ammonium ions in Kcv potassium channels.","authors":"Tobias Korn, Ulf-Peter Hansen, Tobias Sebastian Gabriel, Oliver Rauh, Nils Drexler, Indra Schroeder","doi":"10.1080/19336950.2024.2402749","DOIUrl":"10.1080/19336950.2024.2402749","url":null,"abstract":"<p><p>Kcv channels from plant viruses represent the autonomous pore module of potassium channels, devoid of any regulatory domains. These small proteins show very reproducible single-channel behavior in planar lipid bilayers. Thus, they are an optimum system for the study of the biophysics of ion transport and gating. Structural models based on homology modeling have been used successfully, but experimental structural data are currently not available. Here we determine the size of the cytosolic pore entrance by studying the blocker kinetics. Blocker binding and dissociation rate constants ranging from 0.01 to 1000 ms<sup>-1</sup> were determined for different quaternary ammonium ions. We found that the cytosolic pore entrance of Kcv<sub>NTS</sub> must be at least 11 Å wide. The results further indicate that the residues controlling a cytosolic gate in one of the Kcv isoforms influence blocker binding/dissociation as well as a second gate even when the cytosolic gate is in the open state. The voltage dependence of the rate constant of blocker release is used to test, which blockers bind to the same binding site.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2402749"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion channel-mediated mitochondrial volume regulation and its relationship with mitochondrial dynamics. 离子通道介导的线粒体容积调节及其与线粒体动力学的关系
Pub Date : 2024-12-01 Epub Date: 2024-03-28 DOI: 10.1080/19336950.2024.2335467
Yujia Zhuang, Wenting Jiang, Zhe Zhao, Wencui Li, Zhiqin Deng, Jianquan Liu

The mitochondrion, one of the important cellular organelles, has the major function of generating adenosine triphosphate and plays an important role in maintaining cellular homeostasis, governing signal transduction, regulating membrane potential, controlling programmed cell death and modulating cell proliferation. The dynamic balance of mitochondrial volume is an important factor required for maintaining the structural integrity of the organelle and exerting corresponding functions. Changes in the mitochondrial volume are closely reflected in a series of biological functions and pathological changes. The mitochondrial volume is controlled by the osmotic balance between the cytoplasm and the mitochondrial matrix. Thus, any disruption in the influx of the main ion, potassium, into the cells can disturb the osmotic balance between the cytoplasm and the matrix, leading to water movement between these compartments and subsequent alterations in mitochondrial volume. Recent studies have shown that mitochondrial volume homeostasis is closely implicated in a variety of diseases. In this review, we provide an overview of the main influencing factors and research progress in the field of mitochondrial volume homeostasis.

线粒体是重要的细胞器之一,主要功能是产生三磷酸腺苷,在维持细胞平衡、管理信号转导、调节膜电位、控制细胞程序性死亡和调节细胞增殖等方面发挥着重要作用。线粒体体积的动态平衡是维持细胞器结构完整性和发挥相应功能的重要因素。线粒体体积的变化与一系列生物功能和病理变化密切相关。线粒体的体积由细胞质和线粒体基质之间的渗透平衡控制。因此,主要离子钾流入细胞的任何中断都会破坏细胞质和基质之间的渗透平衡,导致水分在这些区室之间移动,进而改变线粒体的体积。最近的研究表明,线粒体体积平衡与多种疾病密切相关。在这篇综述中,我们将概述线粒体体积平衡领域的主要影响因素和研究进展。
{"title":"Ion channel-mediated mitochondrial volume regulation and its relationship with mitochondrial dynamics.","authors":"Yujia Zhuang, Wenting Jiang, Zhe Zhao, Wencui Li, Zhiqin Deng, Jianquan Liu","doi":"10.1080/19336950.2024.2335467","DOIUrl":"10.1080/19336950.2024.2335467","url":null,"abstract":"<p><p>The mitochondrion, one of the important cellular organelles, has the major function of generating adenosine triphosphate and plays an important role in maintaining cellular homeostasis, governing signal transduction, regulating membrane potential, controlling programmed cell death and modulating cell proliferation. The dynamic balance of mitochondrial volume is an important factor required for maintaining the structural integrity of the organelle and exerting corresponding functions. Changes in the mitochondrial volume are closely reflected in a series of biological functions and pathological changes. The mitochondrial volume is controlled by the osmotic balance between the cytoplasm and the mitochondrial matrix. Thus, any disruption in the influx of the main ion, potassium, into the cells can disturb the osmotic balance between the cytoplasm and the matrix, leading to water movement between these compartments and subsequent alterations in mitochondrial volume. Recent studies have shown that mitochondrial volume homeostasis is closely implicated in a variety of diseases. In this review, we provide an overview of the main influencing factors and research progress in the field of mitochondrial volume homeostasis.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2335467"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140308160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural modeling of ion channels using AlphaFold2, RoseTTAFold2, and ESMFold. 使用 AlphaFold2、RoseTTAFold2 和 ESMFold 对离子通道进行结构建模。
Pub Date : 2024-12-01 Epub Date: 2024-03-06 DOI: 10.1080/19336950.2024.2325032
Phuong Tran Nguyen, Brandon John Harris, Diego Lopez Mateos, Adriana Hernández González, Adam Michael Murray, Vladimir Yarov-Yarovoy

Ion channels play key roles in human physiology and are important targets in drug discovery. The atomic-scale structures of ion channels provide invaluable insights into a fundamental understanding of the molecular mechanisms of channel gating and modulation. Recent breakthroughs in deep learning-based computational methods, such as AlphaFold, RoseTTAFold, and ESMFold have transformed research in protein structure prediction and design. We review the application of AlphaFold, RoseTTAFold, and ESMFold to structural modeling of ion channels using representative voltage-gated ion channels, including human voltage-gated sodium (NaV) channel - NaV1.8, human voltage-gated calcium (CaV) channel - CaV1.1, and human voltage-gated potassium (KV) channel - KV1.3. We compared AlphaFold, RoseTTAFold, and ESMFold structural models of NaV1.8, CaV1.1, and KV1.3 with corresponding cryo-EM structures to assess details of their similarities and differences. Our findings shed light on the strengths and limitations of the current state-of-the-art deep learning-based computational methods for modeling ion channel structures, offering valuable insights to guide their future applications for ion channel research.

离子通道在人体生理中起着关键作用,也是药物发现的重要目标。离子通道的原子尺度结构为从根本上了解通道门控和调控的分子机制提供了宝贵的见解。最近,基于深度学习的计算方法(如 AlphaFold、RoseTTAFold 和 ESMFold)取得了突破性进展,改变了蛋白质结构预测和设计研究。我们回顾了 AlphaFold、RoseTTAFold 和 ESMFold 在离子通道结构建模中的应用,使用的是具有代表性的电压门控离子通道,包括人类电压门控钠(NaV)通道--NaV1.8、人类电压门控钙(CaV)通道--CaV1.1 和人类电压门控钾(KV)通道--KV1.3。我们将 NaV1.8、CaV1.1 和 KV1.3 的 AlphaFold、RoseTTAFold 和 ESMFold 结构模型与相应的冷冻电子显微镜结构进行了比较,以评估它们之间的异同细节。我们的研究结果揭示了当前基于深度学习的离子通道结构建模计算方法的优势和局限性,为指导离子通道研究的未来应用提供了宝贵的见解。
{"title":"Structural modeling of ion channels using AlphaFold2, RoseTTAFold2, and ESMFold.","authors":"Phuong Tran Nguyen, Brandon John Harris, Diego Lopez Mateos, Adriana Hernández González, Adam Michael Murray, Vladimir Yarov-Yarovoy","doi":"10.1080/19336950.2024.2325032","DOIUrl":"10.1080/19336950.2024.2325032","url":null,"abstract":"<p><p>Ion channels play key roles in human physiology and are important targets in drug discovery. The atomic-scale structures of ion channels provide invaluable insights into a fundamental understanding of the molecular mechanisms of channel gating and modulation. Recent breakthroughs in deep learning-based computational methods, such as AlphaFold, RoseTTAFold, and ESMFold have transformed research in protein structure prediction and design. We review the application of AlphaFold, RoseTTAFold, and ESMFold to structural modeling of ion channels using representative voltage-gated ion channels, including human voltage-gated sodium (Na<sub>V</sub>) channel - Na<sub>V</sub>1.8, human voltage-gated calcium (Ca<sub>V</sub>) channel - Ca<sub>V</sub>1.1, and human voltage-gated potassium (K<sub>V</sub>) channel - K<sub>V</sub>1.3. We compared AlphaFold, RoseTTAFold, and ESMFold structural models of Na<sub>V</sub>1.8, Ca<sub>V</sub>1.1, and K<sub>V</sub>1.3 with corresponding cryo-EM structures to assess details of their similarities and differences. Our findings shed light on the strengths and limitations of the current state-of-the-art deep learning-based computational methods for modeling ion channel structures, offering valuable insights to guide their future applications for ion channel research.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2325032"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of mechanosensitive ion channel Piezo1 in knee osteoarthritis inflammation. 机械敏感性离子通道 Piezo1 在膝关节骨关节炎炎症中的作用
Pub Date : 2024-12-01 Epub Date: 2024-08-22 DOI: 10.1080/19336950.2024.2393088
Dingchang He, Xin Liu, Wenhao Yang, Taiyuan Guan, Guoyou Wang

Mechanosensitive ion channel Piezo1 is known to mediate a variety of inflammatory pathways and is also involved in the occurrence and development of many orthopedic diseases. Although its role in the inflammatory mechanism of knee osteoarthritis (KOA) has been reported, a systematic explanation is yet to be seen. This article aims to summarize the role of inflammatory responses in the pathogenesis of KOA and elucidate the mechanism by which the Piezo1-mediated inflammatory response contributes to the pathogenesis of KOA, providing a theoretical basis for the prevention and treatment of knee osteoarthritis. The results indicate that in the mechanism leading to knee osteoarthritis, Piezo1 can mediate the inflammatory response through chondrocytes and synovial cells, participating in the pathological progression of KOA. Piezo1 has the potential to become a new target for the prevention and treatment of this disease. Additionally, as pain is one of the most severe manifestations in KOA patients, the inflammatory response mediated by Piezo1, which causes the release of inflammatory mediators and pro-inflammatory factors leading to pain, can be further explored.

众所周知,机械敏感性离子通道 Piezo1 可介导多种炎症途径,也参与了许多骨科疾病的发生和发展。虽然有报道称它在膝关节骨性关节炎(KOA)的炎症机制中发挥作用,但尚未看到系统的解释。本文旨在总结炎症反应在KOA发病机制中的作用,阐明Piezo1介导的炎症反应在KOA发病机制中的作用机制,为膝骨关节炎的预防和治疗提供理论依据。研究结果表明,在导致膝骨关节炎的机制中,Piezo1 可通过软骨细胞和滑膜细胞介导炎症反应,参与 KOA 的病理进展。Piezo1 有可能成为预防和治疗这种疾病的新靶点。此外,由于疼痛是 KOA 患者最严重的表现之一,Piezo1 介导的炎症反应会引起炎症介质和促炎因子的释放,从而导致疼痛,因此可以对其进行进一步的研究。
{"title":"The role of mechanosensitive ion channel Piezo1 in knee osteoarthritis inflammation.","authors":"Dingchang He, Xin Liu, Wenhao Yang, Taiyuan Guan, Guoyou Wang","doi":"10.1080/19336950.2024.2393088","DOIUrl":"10.1080/19336950.2024.2393088","url":null,"abstract":"<p><p>Mechanosensitive ion channel Piezo1 is known to mediate a variety of inflammatory pathways and is also involved in the occurrence and development of many orthopedic diseases. Although its role in the inflammatory mechanism of knee osteoarthritis (KOA) has been reported, a systematic explanation is yet to be seen. This article aims to summarize the role of inflammatory responses in the pathogenesis of KOA and elucidate the mechanism by which the Piezo1-mediated inflammatory response contributes to the pathogenesis of KOA, providing a theoretical basis for the prevention and treatment of knee osteoarthritis. The results indicate that in the mechanism leading to knee osteoarthritis, Piezo1 can mediate the inflammatory response through chondrocytes and synovial cells, participating in the pathological progression of KOA. Piezo1 has the potential to become a new target for the prevention and treatment of this disease. Additionally, as pain is one of the most severe manifestations in KOA patients, the inflammatory response mediated by Piezo1, which causes the release of inflammatory mediators and pro-inflammatory factors leading to pain, can be further explored.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2393088"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical and genetic characteristics of myotonia congenita in Chinese population. 中国人群先天性肌张力障碍的临床和遗传特征
Pub Date : 2024-12-01 Epub Date: 2024-05-08 DOI: 10.1080/19336950.2024.2349823
Yuting He, Yusen Qiu, Ying Xiong, Yu Shen, Kaiyan Jiang, Hancun Yi, Pengcheng Huang, Yu Zhu, Min Zhu, Meihong Zhou, Daojun Hong, Dandan Tan

Myotonia congenita (MC) is a rare hereditary muscle disease caused by variants in the CLCN1 gene. Currently, the correlation of phenotype-genotype is still uncertain between dominant-type Thomsen (TMC) and recessive-type Becker (BMC). The clinical data and auxiliary examinations of MC patients in our clinic were retrospectively collected. Electromyography was performed in 11 patients and available family members. Whole exome sequencing was conducted in all patients. The clinical and laboratory data of Chinese MC patients reported from June 2004 to December 2022 were reviewed. A total of 11 MC patients were included in the study, with a mean onset age of 12.64 ± 2.73 years. The main symptom was muscle stiffness of limbs. Warm-up phenomenon and percussion myotonia were found in all patients. Electromyogram revealed significant myotonic charges in all patients and two asymptomatic carriers, while muscle MRI and biopsy showed normal or nonspecific changes. Fourteen genetic variants including 6 novel variants were found in CLCN1. Ninety-eight Chinese patients were re-analyzed and re-summarized in this study. There were no significant differences in the demographic data, clinical characteristics, and laboratory findings between 52 TMC and 46 BMC patients. Among the 145 variants in CLCN1, some variants, including the most common variant c.892 G>A, could cause TMC in some families and BMC in others. This study expanded the clinical and genetic spectrum of Chinese patients with MC. It was difficult to distinguish between TMC and BMC only based on the clinical, laboratory, and genetic characteristics.

先天性肌营养不良症(MC)是一种罕见的遗传性肌肉疾病,由 CLCN1 基因变异引起。目前,显性型Thomsen(TMC)和隐性型Becker(BMC)之间的表型-基因型相关性仍不确定。我们回顾性地收集了本诊所 MC 患者的临床资料和辅助检查。对11名患者和可用的家庭成员进行了肌电图检查。对所有患者进行了全外显子组测序。回顾性分析了2004年6月至2022年12月期间报告的中国MC患者的临床和实验室数据。研究共纳入11名MC患者,平均发病年龄为(12.64±2.73)岁。主要症状为四肢肌肉僵硬。所有患者均有热身现象和叩击性肌张力障碍。肌电图显示,所有患者和两名无症状携带者都有明显的肌强直症状,而肌肉磁共振成像和活检则显示正常或无特异性变化。在CLCN1中发现了14个基因变异,包括6个新型变异。本研究对98名中国患者进行了重新分析和总结。52名TMC患者和46名BMC患者在人口统计学数据、临床特征和实验室检查结果方面无明显差异。在CLCN1的145个变异中,包括最常见的c.892 G>A变异在内的一些变异在某些家族中可能导致TMC,而在另一些家族中则可能导致BMC。这项研究扩大了中国 MC 患者的临床和遗传谱。仅凭临床、实验室和遗传学特征很难区分TMC和BMC。
{"title":"Clinical and genetic characteristics of myotonia congenita in Chinese population.","authors":"Yuting He, Yusen Qiu, Ying Xiong, Yu Shen, Kaiyan Jiang, Hancun Yi, Pengcheng Huang, Yu Zhu, Min Zhu, Meihong Zhou, Daojun Hong, Dandan Tan","doi":"10.1080/19336950.2024.2349823","DOIUrl":"10.1080/19336950.2024.2349823","url":null,"abstract":"<p><p>Myotonia congenita (MC) is a rare hereditary muscle disease caused by variants in the CLCN1 gene. Currently, the correlation of phenotype-genotype is still uncertain between dominant-type Thomsen (TMC) and recessive-type Becker (BMC). The clinical data and auxiliary examinations of MC patients in our clinic were retrospectively collected. Electromyography was performed in 11 patients and available family members. Whole exome sequencing was conducted in all patients. The clinical and laboratory data of Chinese MC patients reported from June 2004 to December 2022 were reviewed. A total of 11 MC patients were included in the study, with a mean onset age of 12.64 ± 2.73 years. The main symptom was muscle stiffness of limbs. Warm-up phenomenon and percussion myotonia were found in all patients. Electromyogram revealed significant myotonic charges in all patients and two asymptomatic carriers, while muscle MRI and biopsy showed normal or nonspecific changes. Fourteen genetic variants including 6 novel variants were found in CLCN1. Ninety-eight Chinese patients were re-analyzed and re-summarized in this study. There were no significant differences in the demographic data, clinical characteristics, and laboratory findings between 52 TMC and 46 BMC patients. Among the 145 variants in CLCN1, some variants, including the most common variant c.892 G>A, could cause TMC in some families and BMC in others. This study expanded the clinical and genetic spectrum of Chinese patients with MC. It was difficult to distinguish between TMC and BMC only based on the clinical, laboratory, and genetic characteristics.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2349823"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. 离子型嘌呤能受体 7(P2X7)通道结构和药理学提供了有关非核苷酸激动作用的见解。
Pub Date : 2024-12-01 Epub Date: 2024-05-19 DOI: 10.1080/19336950.2024.2355150
Rua'a Al-Aqtash, Daniel M Collier

P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.

P2X7 是离子嘌呤能受体(P2X)家族的成员。P2X 受体家族由七个(P2X1-7)配体门控的非选择性阳离子通道组成。多种疾病模型中都有 P2X 表达变化的报道。P2X 具有大型复杂的胞外结构域,可作为多种配体的受体,包括内源性和合成的激动剂和拮抗剂。ATP 是典型的激动剂。大多数 P2XR 的 ATP 亲和力在纳摩尔到微摩尔之间,但 P2X7 的 ATP 亲和力独特地低。在许多生理环境中,可能很难达到 P2X7 通道激活所需的毫摩尔细胞外 ATP 浓度;然而,通道功能与痛觉、免疫细胞功能、心血管疾病、癌症和骨质疏松症有关。目前已经解决了多种高分辨率的 P2X7 结构问题,这些结构分别处于载脂蛋白、ATP 和拮抗剂结合状态。P2X7 结构数据揭示了不同的异位和正位拮抗剂结合位点。异位和正位 P2X7 拮抗剂都能抑制 ATP 诱导的通道电流,这一点已得到充分证实。然而,越来越多的证据表明,P2X7 可被非核苷酸激动剂激活,包括细胞外组蛋白和人类鞘氨醇衍生肽(LL-37)。有趣的是,P2X7 非核苷酸激动作用不会受到异位拮抗剂的抑制,但会受到正位拮抗剂的抑制。鉴于 P2X7 选择性拮抗剂和不完全基因敲除小鼠模型的局限性,我们将在此回顾 P2X7 的功能,重点关注现有药理学对非核苷酸激动剂激活 P2X7 通道电流的功效,以了解激动剂/拮抗剂的功效,并考虑这些数据对目前了解 P2X7 在生理学和疾病中的作用的影响。
{"title":"Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism.","authors":"Rua'a Al-Aqtash, Daniel M Collier","doi":"10.1080/19336950.2024.2355150","DOIUrl":"10.1080/19336950.2024.2355150","url":null,"abstract":"<p><p>P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2355150"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances on the structure and the function relationships of the TRPV4 ion channel. TRPV4 离子通道结构与功能关系的最新进展。
Pub Date : 2024-12-01 Epub Date: 2024-02-14 DOI: 10.1080/19336950.2024.2313323
Raúl Sánchez-Hernández, Miguel Benítez-Angeles, Ana M Hernández-Vega, Tamara Rosenbaum

The members of the superfamily of Transient Receptor Potential (TRP) ion channels are physiologically important molecules that have been studied for many years and are still being intensively researched. Among the vanilloid TRP subfamily, the TRPV4 ion channel is an interesting protein due to its involvement in several essential physiological processes and in the development of various diseases. As in other proteins, changes in its function that lead to the development of pathological states, have been closely associated with modification of its regulation by different molecules, but also by the appearance of mutations which affect the structure and gating of the channel. In the last few years, some structures for the TRPV4 channel have been solved. Due to the importance of this protein in physiology, here we discuss the recent progress in determining the structure of the TRPV4 channel, which has been achieved in three species of animals (Xenopus tropicalis, Mus musculus, and Homo sapiens), highlighting conserved features as well as key differences among them and emphasizing the binding sites for some ligands that play crucial roles in its regulation.

瞬态受体电位(TRP)离子通道超家族的成员是重要的生理分子,已被研究多年,目前仍在进行深入研究。在类香兰素 TRP 亚家族中,TRPV4 离子通道是一种有趣的蛋白质,因为它参与了几个重要的生理过程和各种疾病的发展。与其他蛋白质一样,导致病理状态发生的功能变化与不同分子对其调节的改变密切相关,也与影响通道结构和门控的突变的出现密切相关。在过去几年中,人们已经解决了 TRPV4 通道的一些结构问题。鉴于该蛋白在生理学中的重要性,我们在此讨论最近在确定 TRPV4 通道结构方面取得的进展,这些进展是在三种动物(热带爪蟾蜍、麝和智人)中实现的,突出了它们之间的保守特征和关键差异,并强调了在其调控中起关键作用的一些配体的结合位点。
{"title":"Recent advances on the structure and the function relationships of the TRPV4 ion channel.","authors":"Raúl Sánchez-Hernández, Miguel Benítez-Angeles, Ana M Hernández-Vega, Tamara Rosenbaum","doi":"10.1080/19336950.2024.2313323","DOIUrl":"10.1080/19336950.2024.2313323","url":null,"abstract":"<p><p>The members of the superfamily of Transient Receptor Potential (TRP) ion channels are physiologically important molecules that have been studied for many years and are still being intensively researched. Among the vanilloid TRP subfamily, the TRPV4 ion channel is an interesting protein due to its involvement in several essential physiological processes and in the development of various diseases. As in other proteins, changes in its function that lead to the development of pathological states, have been closely associated with modification of its regulation by different molecules, but also by the appearance of mutations which affect the structure and gating of the channel. In the last few years, some structures for the TRPV4 channel have been solved. Due to the importance of this protein in physiology, here we discuss the recent progress in determining the structure of the TRPV4 channel, which has been achieved in three species of animals (<i>Xenopus tropicalis</i>, <i>Mus musculus</i>, and <i>Homo sapiens</i>), highlighting conserved features as well as key differences among them and emphasizing the binding sites for some ligands that play crucial roles in its regulation.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2313323"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868539/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of four structurally diverse inhibitors of SUR2-containing KATP channels. 含 SUR2 的 KATP 通道的四种结构不同的抑制剂的特性。
Pub Date : 2024-12-01 Epub Date: 2024-09-20 DOI: 10.1080/19336950.2024.2398565
Kangjun Li, Vaishali Satpute Janve, Jerod Denton

Vascular smooth muscle ATP-sensitive potassium (KATP) channels play critical roles in modulating vascular tone and thus represent important drug targets for diverse cardiovascular pathologies. Despite extensive research efforts spanning several decades, the search for selective inhibitors that can discriminate between vascular KATP (i.e. Kir6.1/SUR2B) and pancreatic and brain KATP (i.e. Kir6.2/SUR1) channels has, until recently, been unsuccessful. Our group therefore carried out a high-throughput screen of chemically diverse compounds with the goal of discovering specific Kir6.1/SUR2B inhibitors. This screen identified several novel classes of Kir6.1/SUR2B inhibitors, including the first potent (IC50 ~100 nM) and selective inhibitor published to date, termed VU0542270. Here, we expand on this work by disclosing the identity and pharmacological properties of four additional Kir6.1/SUR2B inhibitors that are structurally unrelated to Kir to VU0542270. These inhibitors, named VU0212387, VU0543336, VU0605768, and VU0544086, inhibit Kir6.1/SUR2B with IC50 values ranging from approximately 100 nM to 1 µM and exhibit no apparent inhibitory activity toward Kir6.2/SUR1. Functional analysis of heterologously expressed subunit combinations of Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B and demonstrated that all four inhibitors act on SUR2 to induce channel inhibition. Interestingly, VU0543336 and VU0212387 exhibit paradoxical stimulatory effects on Kir6.2/SUR1 at higher doses. This study broadens our understanding of KATP channel pharmacology, generally, and reveals novel chemical matter for the development of Kir6.1/SUR2-selective drugs, specifically.

血管平滑肌 ATP 敏感钾(KATP)通道在调节血管张力方面起着关键作用,因此是治疗各种心血管疾病的重要药物靶点。尽管数十年来进行了广泛的研究,但直到最近,寻找能区分血管 KATP(即 Kir6.1/SUR2B)与胰腺和脑 KATP(即 Kir6.2/SUR1)通道的选择性抑制剂的努力仍未取得成功。因此,我们的研究小组对化学性质不同的化合物进行了高通量筛选,目的是发现特异性的 Kir6.1/SUR2B 抑制剂。这一筛选发现了几类新型 Kir6.1/SUR2B 抑制剂,包括迄今为止发表的首个强效(IC50 ~100 nM)选择性抑制剂 VU0542270。在此,我们在这项工作的基础上,披露了另外四种 Kir6.1/SUR2B 抑制剂的身份和药理特性,它们在结构上与 Kir 和 VU0542270 无关。这些抑制剂分别被命名为 VU0212387、VU0543336、VU0605768 和 VU0544086,它们抑制 Kir6.1/SUR2B 的 IC50 值约为 100 nM 到 1 µM,对 Kir6.1/SUR1 没有明显的抑制活性。对异源表达的 Kir6.1、Kir6.2、SUR1、SUR2A 和 SUR2B 亚基组合进行的功能分析表明,所有四种抑制剂都作用于 SUR2,诱导通道抑制。有趣的是,VU0543336 和 VU0212387 在较高剂量下对 Kir6.2/SUR1 具有矛盾的刺激作用。这项研究拓宽了我们对 KATP 通道药理学的总体认识,特别是为开发 Kir6.1/SUR2 选择性药物揭示了新的化学物质。
{"title":"Characterization of four structurally diverse inhibitors of SUR2-containing K<sub>ATP</sub> channels.","authors":"Kangjun Li, Vaishali Satpute Janve, Jerod Denton","doi":"10.1080/19336950.2024.2398565","DOIUrl":"10.1080/19336950.2024.2398565","url":null,"abstract":"<p><p>Vascular smooth muscle ATP-sensitive potassium (K<sub>ATP</sub>) channels play critical roles in modulating vascular tone and thus represent important drug targets for diverse cardiovascular pathologies. Despite extensive research efforts spanning several decades, the search for selective inhibitors that can discriminate between vascular K<sub>ATP</sub> (i.e. Kir6.1/SUR2B) and pancreatic and brain K<sub>ATP</sub> (i.e. Kir6.2/SUR1) channels has, until recently, been unsuccessful. Our group therefore carried out a high-throughput screen of chemically diverse compounds with the goal of discovering specific Kir6.1/SUR2B inhibitors. This screen identified several novel classes of Kir6.1/SUR2B inhibitors, including the first potent (IC<sub>50</sub> ~100 nM) and selective inhibitor published to date, termed VU0542270. Here, we expand on this work by disclosing the identity and pharmacological properties of four additional Kir6.1/SUR2B inhibitors that are structurally unrelated to Kir to VU0542270. These inhibitors, named VU0212387, VU0543336, VU0605768, and VU0544086, inhibit Kir6.1/SUR2B with IC<sub>50</sub> values ranging from approximately 100 nM to 1 µM and exhibit no apparent inhibitory activity toward Kir6.2/SUR1. Functional analysis of heterologously expressed subunit combinations of Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B and demonstrated that all four inhibitors act on SUR2 to induce channel inhibition. Interestingly, VU0543336 and VU0212387 exhibit paradoxical stimulatory effects on Kir6.2/SUR1 at higher doses. This study broadens our understanding of K<sub>ATP</sub> channel pharmacology, generally, and reveals novel chemical matter for the development of Kir6.1/SUR2-selective drugs, specifically.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2398565"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Channels (Austin, Tex.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1