Pub Date : 2024-12-01Epub Date: 2024-05-19DOI: 10.1080/19336950.2024.2355150
Rua'a Al-Aqtash, Daniel M Collier
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
P2X7 是离子嘌呤能受体(P2X)家族的成员。P2X 受体家族由七个(P2X1-7)配体门控的非选择性阳离子通道组成。多种疾病模型中都有 P2X 表达变化的报道。P2X 具有大型复杂的胞外结构域,可作为多种配体的受体,包括内源性和合成的激动剂和拮抗剂。ATP 是典型的激动剂。大多数 P2XR 的 ATP 亲和力在纳摩尔到微摩尔之间,但 P2X7 的 ATP 亲和力独特地低。在许多生理环境中,可能很难达到 P2X7 通道激活所需的毫摩尔细胞外 ATP 浓度;然而,通道功能与痛觉、免疫细胞功能、心血管疾病、癌症和骨质疏松症有关。目前已经解决了多种高分辨率的 P2X7 结构问题,这些结构分别处于载脂蛋白、ATP 和拮抗剂结合状态。P2X7 结构数据揭示了不同的异位和正位拮抗剂结合位点。异位和正位 P2X7 拮抗剂都能抑制 ATP 诱导的通道电流,这一点已得到充分证实。然而,越来越多的证据表明,P2X7 可被非核苷酸激动剂激活,包括细胞外组蛋白和人类鞘氨醇衍生肽(LL-37)。有趣的是,P2X7 非核苷酸激动作用不会受到异位拮抗剂的抑制,但会受到正位拮抗剂的抑制。鉴于 P2X7 选择性拮抗剂和不完全基因敲除小鼠模型的局限性,我们将在此回顾 P2X7 的功能,重点关注现有药理学对非核苷酸激动剂激活 P2X7 通道电流的功效,以了解激动剂/拮抗剂的功效,并考虑这些数据对目前了解 P2X7 在生理学和疾病中的作用的影响。
{"title":"Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism.","authors":"Rua'a Al-Aqtash, Daniel M Collier","doi":"10.1080/19336950.2024.2355150","DOIUrl":"10.1080/19336950.2024.2355150","url":null,"abstract":"<p><p>P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2355150"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-22DOI: 10.1080/19336950.2024.2393088
Dingchang He, Xin Liu, Wenhao Yang, Taiyuan Guan, Guoyou Wang
Mechanosensitive ion channel Piezo1 is known to mediate a variety of inflammatory pathways and is also involved in the occurrence and development of many orthopedic diseases. Although its role in the inflammatory mechanism of knee osteoarthritis (KOA) has been reported, a systematic explanation is yet to be seen. This article aims to summarize the role of inflammatory responses in the pathogenesis of KOA and elucidate the mechanism by which the Piezo1-mediated inflammatory response contributes to the pathogenesis of KOA, providing a theoretical basis for the prevention and treatment of knee osteoarthritis. The results indicate that in the mechanism leading to knee osteoarthritis, Piezo1 can mediate the inflammatory response through chondrocytes and synovial cells, participating in the pathological progression of KOA. Piezo1 has the potential to become a new target for the prevention and treatment of this disease. Additionally, as pain is one of the most severe manifestations in KOA patients, the inflammatory response mediated by Piezo1, which causes the release of inflammatory mediators and pro-inflammatory factors leading to pain, can be further explored.
{"title":"The role of mechanosensitive ion channel Piezo1 in knee osteoarthritis inflammation.","authors":"Dingchang He, Xin Liu, Wenhao Yang, Taiyuan Guan, Guoyou Wang","doi":"10.1080/19336950.2024.2393088","DOIUrl":"10.1080/19336950.2024.2393088","url":null,"abstract":"<p><p>Mechanosensitive ion channel Piezo1 is known to mediate a variety of inflammatory pathways and is also involved in the occurrence and development of many orthopedic diseases. Although its role in the inflammatory mechanism of knee osteoarthritis (KOA) has been reported, a systematic explanation is yet to be seen. This article aims to summarize the role of inflammatory responses in the pathogenesis of KOA and elucidate the mechanism by which the Piezo1-mediated inflammatory response contributes to the pathogenesis of KOA, providing a theoretical basis for the prevention and treatment of knee osteoarthritis. The results indicate that in the mechanism leading to knee osteoarthritis, Piezo1 can mediate the inflammatory response through chondrocytes and synovial cells, participating in the pathological progression of KOA. Piezo1 has the potential to become a new target for the prevention and treatment of this disease. Additionally, as pain is one of the most severe manifestations in KOA patients, the inflammatory response mediated by Piezo1, which causes the release of inflammatory mediators and pro-inflammatory factors leading to pain, can be further explored.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2393088"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-03-15DOI: 10.1080/19336950.2024.2327708
Bruce L Patton, Phillip Zhu, Assmaa ElSheikh, Camden M Driggers, Show-Ling Shyng
KATP channels are ligand-gated potassium channels that couple cellular energetics with membrane potential to regulate cell activity. Each channel is an eight subunit complex comprising four central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four regulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic control of KATP gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks membrane transport activity but is essential for KATP expression and function. For more than four decades, understanding the structure-function relationship of Kir6 and SUR has remained a central objective of clinical significance. Here, we review progress in correlating the wealth of functional data in the literature with recent KATP cryoEM structures.
KATP 通道是配体门控钾通道,可将细胞能量与膜电位结合起来,从而调节细胞活动。每个通道都是一个由八个亚基组成的复合物,其中包括四个中心孔形成的 Kir6 内向整流钾通道亚基,周围有四个称为磺酰脲受体(SUR)的调节亚基,它们赋予 KATP 门控的同态代谢控制。SUR 是 ATP 结合盒(ABC)蛋白家族的同源物,缺乏膜运输活性,但对 KATP 的表达和功能至关重要。四十多年来,了解 Kir6 和 SUR 的结构-功能关系一直是具有临床意义的核心目标。在此,我们回顾了文献中大量功能数据与最新 KATP CryoEM 结构之间的关联进展。
{"title":"Dynamic duo: Kir6 and SUR in K<sub>ATP</sub> channel structure and function.","authors":"Bruce L Patton, Phillip Zhu, Assmaa ElSheikh, Camden M Driggers, Show-Ling Shyng","doi":"10.1080/19336950.2024.2327708","DOIUrl":"10.1080/19336950.2024.2327708","url":null,"abstract":"<p><p>K<sub>ATP</sub> channels are ligand-gated potassium channels that couple cellular energetics with membrane potential to regulate cell activity. Each channel is an eight subunit complex comprising four central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four regulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic control of K<sub>ATP</sub> gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks membrane transport activity but is essential for K<sub>ATP</sub> expression and function. For more than four decades, understanding the structure-function relationship of Kir6 and SUR has remained a central objective of clinical significance. Here, we review progress in correlating the wealth of functional data in the literature with recent K<sub>ATP</sub> cryoEM structures.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2327708"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-12-06DOI: 10.1080/19336950.2023.2289256
Mohammad-Reza Ghovanloo, Sidharth Tyagi, Peng Zhao, Philip R Effraim, Sulayman D Dib-Hajj, Stephen G Waxman
Sexual dimorphism has been reported in multiple pre-clinical and clinical studies on pain. Previous investigations have suggested that in at least some states, rodent dorsal root ganglion (DRG) neurons display differential sex-dependent regulation and expression patterns of various proteins involved in the pain pathway. Our goal in this study was to determine whether sexual dimorphism in the biophysical properties of voltage-gated sodium (Nav) currents contributes to these observations in rodents. We recently developed a novel method that enables high-throughput, unbiased, and automated functional analysis of native rodent sensory neurons from naïve WT mice profiled simultaneously under uniform experimental conditions. In our previous study, we performed all experiments in neurons that were obtained from mixed populations of adult males or females, which were combined into single (combined male/female) data sets. Here, we have re-analyzed the same previously published data and segregated the cells based on sex. Although the number of cells in our previously published data sets were uneven for some comparisons, our results do not show sex-dependent differences in the biophysical properties of Nav currents in these native DRG neurons.
{"title":"Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes.","authors":"Mohammad-Reza Ghovanloo, Sidharth Tyagi, Peng Zhao, Philip R Effraim, Sulayman D Dib-Hajj, Stephen G Waxman","doi":"10.1080/19336950.2023.2289256","DOIUrl":"10.1080/19336950.2023.2289256","url":null,"abstract":"<p><p>Sexual dimorphism has been reported in multiple pre-clinical and clinical studies on pain. Previous investigations have suggested that in at least some states, rodent dorsal root ganglion (DRG) neurons display differential sex-dependent regulation and expression patterns of various proteins involved in the pain pathway. Our goal in this study was to determine whether sexual dimorphism in the biophysical properties of voltage-gated sodium (Nav) currents contributes to these observations in rodents. We recently developed a novel method that enables high-throughput, unbiased, and automated functional analysis of native rodent sensory neurons from naïve WT mice profiled simultaneously under uniform experimental conditions. In our previous study, we performed all experiments in neurons that were obtained from mixed populations of adult males or females, which were combined into single (combined male/female) data sets. Here, we have re-analyzed the same previously published data and segregated the cells based on sex. Although the number of cells in our previously published data sets were uneven for some comparisons, our results do not show sex-dependent differences in the biophysical properties of Nav currents in these native DRG neurons.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2289256"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-20DOI: 10.1080/19336950.2024.2398565
Kangjun Li, Vaishali Satpute Janve, Jerod Denton
Vascular smooth muscle ATP-sensitive potassium (KATP) channels play critical roles in modulating vascular tone and thus represent important drug targets for diverse cardiovascular pathologies. Despite extensive research efforts spanning several decades, the search for selective inhibitors that can discriminate between vascular KATP (i.e. Kir6.1/SUR2B) and pancreatic and brain KATP (i.e. Kir6.2/SUR1) channels has, until recently, been unsuccessful. Our group therefore carried out a high-throughput screen of chemically diverse compounds with the goal of discovering specific Kir6.1/SUR2B inhibitors. This screen identified several novel classes of Kir6.1/SUR2B inhibitors, including the first potent (IC50 ~100 nM) and selective inhibitor published to date, termed VU0542270. Here, we expand on this work by disclosing the identity and pharmacological properties of four additional Kir6.1/SUR2B inhibitors that are structurally unrelated to Kir to VU0542270. These inhibitors, named VU0212387, VU0543336, VU0605768, and VU0544086, inhibit Kir6.1/SUR2B with IC50 values ranging from approximately 100 nM to 1 µM and exhibit no apparent inhibitory activity toward Kir6.2/SUR1. Functional analysis of heterologously expressed subunit combinations of Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B and demonstrated that all four inhibitors act on SUR2 to induce channel inhibition. Interestingly, VU0543336 and VU0212387 exhibit paradoxical stimulatory effects on Kir6.2/SUR1 at higher doses. This study broadens our understanding of KATP channel pharmacology, generally, and reveals novel chemical matter for the development of Kir6.1/SUR2-selective drugs, specifically.
{"title":"Characterization of four structurally diverse inhibitors of SUR2-containing K<sub>ATP</sub> channels.","authors":"Kangjun Li, Vaishali Satpute Janve, Jerod Denton","doi":"10.1080/19336950.2024.2398565","DOIUrl":"10.1080/19336950.2024.2398565","url":null,"abstract":"<p><p>Vascular smooth muscle ATP-sensitive potassium (K<sub>ATP</sub>) channels play critical roles in modulating vascular tone and thus represent important drug targets for diverse cardiovascular pathologies. Despite extensive research efforts spanning several decades, the search for selective inhibitors that can discriminate between vascular K<sub>ATP</sub> (i.e. Kir6.1/SUR2B) and pancreatic and brain K<sub>ATP</sub> (i.e. Kir6.2/SUR1) channels has, until recently, been unsuccessful. Our group therefore carried out a high-throughput screen of chemically diverse compounds with the goal of discovering specific Kir6.1/SUR2B inhibitors. This screen identified several novel classes of Kir6.1/SUR2B inhibitors, including the first potent (IC<sub>50</sub> ~100 nM) and selective inhibitor published to date, termed VU0542270. Here, we expand on this work by disclosing the identity and pharmacological properties of four additional Kir6.1/SUR2B inhibitors that are structurally unrelated to Kir to VU0542270. These inhibitors, named VU0212387, VU0543336, VU0605768, and VU0544086, inhibit Kir6.1/SUR2B with IC<sub>50</sub> values ranging from approximately 100 nM to 1 µM and exhibit no apparent inhibitory activity toward Kir6.2/SUR1. Functional analysis of heterologously expressed subunit combinations of Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B and demonstrated that all four inhibitors act on SUR2 to induce channel inhibition. Interestingly, VU0543336 and VU0212387 exhibit paradoxical stimulatory effects on Kir6.2/SUR1 at higher doses. This study broadens our understanding of K<sub>ATP</sub> channel pharmacology, generally, and reveals novel chemical matter for the development of Kir6.1/SUR2-selective drugs, specifically.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"18 1","pages":"2398565"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-20DOI: 10.1080/19336950.2023.2281743
Jiaqi Bao, Zhicheng Gao, Yilan Hu, Lifang Ye, Lihong Wang
Cardiovascular disease, especially heart failure (HF) is the leading cause of death in patients with diabetes. Individuals with diabetes are prone to a special type of cardiomyopathy called diabetic cardiomyopathy (DCM), which cannot be explained by heart diseases such as hypertension or coronary artery disease, and can contribute to HF. Unfortunately, the current treatment strategy for diabetes-related cardiovascular complications is mainly to control blood glucose levels; nonetheless, the improvement of cardiac structure and function is not ideal. The transient receptor potential cation channel subfamily V member 1 (TRPV1), a nonselective cation channel, has been shown to be universally expressed in the cardiovascular system. Increasing evidence has shown that the activation of TRPV1 channel has a potential protective influence on the cardiovascular system. Numerous studies show that activating TRPV1 channels can improve the occurrence and progression of diabetes-related complications, including cardiomyopathy; however, the specific mechanisms and effects are unclear. In this review, we summarize that TRPV1 channel activation plays a protective role in the heart of diabetic models from oxidation/nitrification stress, mitochondrial function, endothelial function, inflammation, and cardiac energy metabolism to inhibit the occurrence and progression of DCM. Therefore, TRPV1 may become a latent target for the prevention and treatment of diabetes-induced cardiovascular complications.
{"title":"Transient receptor potential vanilloid type 1: cardioprotective effects in diabetic models.","authors":"Jiaqi Bao, Zhicheng Gao, Yilan Hu, Lifang Ye, Lihong Wang","doi":"10.1080/19336950.2023.2281743","DOIUrl":"10.1080/19336950.2023.2281743","url":null,"abstract":"<p><p>Cardiovascular disease, especially heart failure (HF) is the leading cause of death in patients with diabetes. Individuals with diabetes are prone to a special type of cardiomyopathy called diabetic cardiomyopathy (DCM), which cannot be explained by heart diseases such as hypertension or coronary artery disease, and can contribute to HF. Unfortunately, the current treatment strategy for diabetes-related cardiovascular complications is mainly to control blood glucose levels; nonetheless, the improvement of cardiac structure and function is not ideal. The transient receptor potential cation channel subfamily V member 1 (TRPV1), a nonselective cation channel, has been shown to be universally expressed in the cardiovascular system. Increasing evidence has shown that the activation of TRPV1 channel has a potential protective influence on the cardiovascular system. Numerous studies show that activating TRPV1 channels can improve the occurrence and progression of diabetes-related complications, including cardiomyopathy; however, the specific mechanisms and effects are unclear. In this review, we summarize that TRPV1 channel activation plays a protective role in the heart of diabetic models from oxidation/nitrification stress, mitochondrial function, endothelial function, inflammation, and cardiac energy metabolism to inhibit the occurrence and progression of DCM. Therefore, TRPV1 may become a latent target for the prevention and treatment of diabetes-induced cardiovascular complications.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"17 1","pages":"2281743"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138178171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutation in fibrillin-1 (FBN1). However, the molecular mechanism underlying MFS remains poorly understood. The study aimed to explore how the L-type calcium channel (CaV1.2) modulates disease progression of MFS and to identify a potential effective target for attenuating MFS. KEGG enrichment analysis showed that the calcium signaling pathway gene set was significantly enriched. We demonstrated that FBN1 deficiency exhibited inhibition on both the expression of Cav1.2 and proliferation of vascular smooth muscle cells (VSMCs). Then, we examined whether FBN1 mediates Cav1.2 via regulating TGF-β1. Higher levels of TGF-β1 were observed in the serum and aortic tissues from patients with MFS. TGF-β1 modulated Cav1.2 expression in a concentration-dependent manner. We evaluated the role of Cav1.2 in MFS by small interfering RNA and Cav1.2 agonist Bay K8644. The effect of Cav1.2 on cell proliferation was dependent on c-Fos activity. These results demonstrated FBN1 deficiency decreased the expression levels of Cav1.2 via regulation of TGF-β1, and downregulation of Cav1.2 inhibited cell proliferation of human aortic smooth muscle cells (HASMCs) in MFS patients. These findings suggest that Cav1.2 may be an appealing therapeutic target for MFS.
{"title":"Fibrillin-1 mutation contributes to Marfan syndrome by inhibiting Cav1.2-mediated cell proliferation in vascular smooth muscle cells.","authors":"Wenfeng Lin, Jiaqi Xiong, Yefan Jiang, Hao Liu, Jinhui Bian, Juejin Wang, Yongfeng Shao, Buqing Ni","doi":"10.1080/19336950.2023.2192377","DOIUrl":"10.1080/19336950.2023.2192377","url":null,"abstract":"<p><p>Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutation in fibrillin-1 (FBN1). However, the molecular mechanism underlying MFS remains poorly understood. The study aimed to explore how the L-type calcium channel (Ca<sub>V</sub>1.2) modulates disease progression of MFS and to identify a potential effective target for attenuating MFS. KEGG enrichment analysis showed that the calcium signaling pathway gene set was significantly enriched. We demonstrated that FBN1 deficiency exhibited inhibition on both the expression of Cav1.2 and proliferation of vascular smooth muscle cells (VSMCs). Then, we examined whether FBN1 mediates Cav1.2 via regulating TGF-β1. Higher levels of TGF-β1 were observed in the serum and aortic tissues from patients with MFS. TGF-β1 modulated Cav1.2 expression in a concentration-dependent manner. We evaluated the role of Cav1.2 in MFS by small interfering RNA and Cav1.2 agonist Bay K8644. The effect of Cav1.2 on cell proliferation was dependent on c-Fos activity. These results demonstrated FBN1 deficiency decreased the expression levels of Cav1.2 via regulation of TGF-β1, and downregulation of Cav1.2 inhibited cell proliferation of human aortic smooth muscle cells (HASMCs) in MFS patients. These findings suggest that Cav1.2 may be an appealing therapeutic target for MFS.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"17 1","pages":"2192377"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9567567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Breast cancer is currently the most prevalent form of cancer worldwide. Nevertheless, there remains limited clarity regarding our understanding of the tumor microenvironment and metabolic characteristics associated with it. ATP-binding cassette (ABC) transporters are the predominant transmembrane transporters found in organisms. Therefore, it is essential to investigate the role of ABC transporters in breast cancer. Transcriptome data from breast cancer patients were downloaded from the TCGA database. ABC transporter-related genes were obtained from the Genecards database. By LASSO regression, ABC-associated prognostic signature was constructed in breast cancer. Subsequently, immune microenvironment analysis was performed. Finally, cell experiments were performed to verify the function of ABCB7 in the breast cancer cell lines MDA-MB-231 and MCF-7. Using the ABC transporter-associated signature, we calculated a risk score for each breast cancer patient. Patients with breast cancer were subsequently categorized into high-risk and low-risk groups, utilizing the median risk score as the threshold. Notably, patients in the high-risk group exhibited significantly worse prognosis (P<0.05). Additionally, differences were observed in terms of immune cell infiltration levels, immune correlations, and gene expression of immune checkpoints between the two groups. Functional experiments conducted on breast cancer cell lines MDA-MB-231 and MCF-7 demonstrated that ABCB7 knockdown significantly diminished cell activity, proliferation, invasion, and migration. These findings emphasize the significance of understanding ABC transporter-mediated metabolic and transport characteristics in breast cancer, offering promising directions for further research and potential therapeutic interventions.
{"title":"The role of ATP binding cassette (ABC) transporters in breast cancer: Evaluating prognosis, predicting immunity, and guiding treatment.","authors":"Yuan Yuan, Zhouhong Xiang, Yuhua Xia, Jiaheng Xie, Xiudi Jiang, Zhicheng Lu","doi":"10.1080/19336950.2023.2273247","DOIUrl":"10.1080/19336950.2023.2273247","url":null,"abstract":"<p><p>Breast cancer is currently the most prevalent form of cancer worldwide. Nevertheless, there remains limited clarity regarding our understanding of the tumor microenvironment and metabolic characteristics associated with it. ATP-binding cassette (ABC) transporters are the predominant transmembrane transporters found in organisms. Therefore, it is essential to investigate the role of ABC transporters in breast cancer. Transcriptome data from breast cancer patients were downloaded from the TCGA database. ABC transporter-related genes were obtained from the Genecards database. By LASSO regression, ABC-associated prognostic signature was constructed in breast cancer. Subsequently, immune microenvironment analysis was performed. Finally, cell experiments were performed to verify the function of ABCB7 in the breast cancer cell lines MDA-MB-231 and MCF-7. Using the ABC transporter-associated signature, we calculated a risk score for each breast cancer patient. Patients with breast cancer were subsequently categorized into high-risk and low-risk groups, utilizing the median risk score as the threshold. Notably, patients in the high-risk group exhibited significantly worse prognosis (<i>P</i><0.05). Additionally, differences were observed in terms of immune cell infiltration levels, immune correlations, and gene expression of immune checkpoints between the two groups. Functional experiments conducted on breast cancer cell lines MDA-MB-231 and MCF-7 demonstrated that ABCB7 knockdown significantly diminished cell activity, proliferation, invasion, and migration. These findings emphasize the significance of understanding ABC transporter-mediated metabolic and transport characteristics in breast cancer, offering promising directions for further research and potential therapeutic interventions.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"17 1","pages":"2273247"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-11DOI: 10.1080/19336950.2023.2267416
Lvying Wu, Jin Chen
Cell-fate decisions depend on the precise and strict regulation of multiple signaling molecules and transcription factors, especially intracellular Ca2+ homeostasis and dynamics. Type 3 inositol 1,4,5-triphosphate receptor (IP3R3) is an a tetrameric channel that can mediate the release of Ca2+ from the endoplasmic reticulum (ER) in response to extracellular stimuli. The gating of IP3R3 is regulated not only by ligands but also by other interacting proteins. To date, extensive research conducted on the basic structure of IP3R3, as well as its regulation by ligands and interacting proteins, has provided novel perspectives on its biological functions and pathogenic mechanisms. This review aims to discuss recent advancements in the study of IP3R3 and provides a comprehensive overview of the relevant literature pertaining to its structure, biological functions, and pathogenic mechanisms.
{"title":"Type 3 IP3 receptor: Its structure, functions, and related disease implications.","authors":"Lvying Wu, Jin Chen","doi":"10.1080/19336950.2023.2267416","DOIUrl":"10.1080/19336950.2023.2267416","url":null,"abstract":"<p><p>Cell-fate decisions depend on the precise and strict regulation of multiple signaling molecules and transcription factors, especially intracellular Ca<sup>2+</sup> homeostasis and dynamics. Type 3 inositol 1,4,5-triphosphate receptor (IP3R3) is an a tetrameric channel that can mediate the release of Ca<sup>2+</sup> from the endoplasmic reticulum (ER) in response to extracellular stimuli. The gating of IP3R3 is regulated not only by ligands but also by other interacting proteins. To date, extensive research conducted on the basic structure of IP3R3, as well as its regulation by ligands and interacting proteins, has provided novel perspectives on its biological functions and pathogenic mechanisms. This review aims to discuss recent advancements in the study of IP3R3 and provides a comprehensive overview of the relevant literature pertaining to its structure, biological functions, and pathogenic mechanisms.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"17 1","pages":"2267416"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/70/71/KCHL_17_2267416.PMC10569359.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41221781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1080/19336950.2023.2176984
Madelyn R Baker, Andrew S Lee, Anjali M Rajadhyaksha
Recent human genetic studies have linked a variety of genetic variants in the CACNA1C and CACNA1D genes to neuropsychiatric and neurodevelopmental disorders. This is not surprising given the work from multiple laboratories using cell and animal models that have established that Cav1.2 and Cav1.3 L-type calcium channels (LTCCs), encoded by CACNA1C and CACNA1D, respectively, play a key role in various neuronal processes that are essential for normal brain development, connectivity, and experience-dependent plasticity. Of the multiple genetic aberrations reported, genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) in CACNA1C and CACNA1D that are present within introns, in accordance with the growing body of literature establishing that large numbers of SNPs associated with complex diseases, including neuropsychiatric disorders, are present within non-coding regions. How these intronic SNPs affect gene expression has remained a question. Here, we review recent studies that are beginning to shed light on how neuropsychiatric-linked non-coding genetic variants can impact gene expression via regulation at the genomic and chromatin levels. We additionally review recent studies that are uncovering how altered calcium signaling through LTCCs impact some of the neuronal developmental processes, such as neurogenesis, neuron migration, and neuron differentiation. Together, the described changes in genomic regulation and disruptions in neurodevelopment provide possible mechanisms by which genetic variants of LTCC genes contribute to neuropsychiatric and neurodevelopmental disorders.
{"title":"L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development.","authors":"Madelyn R Baker, Andrew S Lee, Anjali M Rajadhyaksha","doi":"10.1080/19336950.2023.2176984","DOIUrl":"10.1080/19336950.2023.2176984","url":null,"abstract":"<p><p>Recent human genetic studies have linked a variety of genetic variants in the <i>CACNA1C</i> and <i>CACNA1D</i> genes to neuropsychiatric and neurodevelopmental disorders. This is not surprising given the work from multiple laboratories using cell and animal models that have established that Ca<sub>v</sub>1.2 and Ca<sub>v</sub>1.3 L-type calcium channels (LTCCs), encoded by <i>CACNA1C</i> and <i>CACNA1D</i>, respectively, play a key role in various neuronal processes that are essential for normal brain development, connectivity, and experience-dependent plasticity. Of the multiple genetic aberrations reported, genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) in <i>CACNA1C</i> and <i>CACNA1D</i> that are present within introns, in accordance with the growing body of literature establishing that large numbers of SNPs associated with complex diseases, including neuropsychiatric disorders, are present within non-coding regions. How these intronic SNPs affect gene expression has remained a question. Here, we review recent studies that are beginning to shed light on how neuropsychiatric-linked non-coding genetic variants can impact gene expression via regulation at the genomic and chromatin levels. We additionally review recent studies that are uncovering how altered calcium signaling through LTCCs impact some of the neuronal developmental processes, such as neurogenesis, neuron migration, and neuron differentiation. Together, the described changes in genomic regulation and disruptions in neurodevelopment provide possible mechanisms by which genetic variants of LTCC genes contribute to neuropsychiatric and neurodevelopmental disorders.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":"17 1","pages":"2176984"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9598433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}