首页 > 最新文献

Chemistry methods : new approaches to solving problems in chemistry最新文献

英文 中文
Cover Picture: (Chem. Methods 3/2024) 封面图片:(化学方法 3/2024)
Pub Date : 2024-03-08 DOI: 10.1002/cmtd.202480301

{"title":"Cover Picture: (Chem. Methods 3/2024)","authors":"","doi":"10.1002/cmtd.202480301","DOIUrl":"https://doi.org/10.1002/cmtd.202480301","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202480301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Conventional Methodologies for the Synthesis of N-Nitrosamines 合成 N-亚硝胺的非常规方法
Pub Date : 2024-03-04 DOI: 10.1002/cmtd.202300053
Rojan Ali, Campbell S. Wolfe, Prof. Thomas Wirth

N-Nitrosamines acting as contaminants in our environment is a topic of increasing concern. Detection methods are required, necessitating analytical standards. Herein, we discuss some conventional methodologies to prepare N-nitrosamines and compare them with unconventional pathways towards their synthesis. These methods are often more environmentally benign and safer.

亚硝胺作为我们环境中的污染物,是一个日益受到关注的话题。检测方法需要分析标准。在此,我们将讨论制备 N-亚硝胺的一些传统方法,并将其与合成 N-亚硝胺的非常规途径进行比较。这些方法通常更环保、更安全。
{"title":"Non-Conventional Methodologies for the Synthesis of N-Nitrosamines","authors":"Rojan Ali,&nbsp;Campbell S. Wolfe,&nbsp;Prof. Thomas Wirth","doi":"10.1002/cmtd.202300053","DOIUrl":"10.1002/cmtd.202300053","url":null,"abstract":"<p><i>N</i>-Nitrosamines acting as contaminants in our environment is a topic of increasing concern. Detection methods are required, necessitating analytical standards. Herein, we discuss some conventional methodologies to prepare <i>N</i>-nitrosamines and compare them with unconventional pathways towards their synthesis. These methods are often more environmentally benign and safer.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140266892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Elimination of Pyridine from a Uranium Trichloride Precursor 热消除三氯化铀前体中的吡啶
Pub Date : 2024-03-01 DOI: 10.1002/cmtd.202300052
Dr. Karla A. Erickson, Dr. Stephen S. Parker, Dr. Marisa J. Monreal

Renewed interest in advanced nuclear reactors, such as Molten Salt Reactors (MSRs), has spurred studies in actinide halide chemistry and property measurements. Several proposed research-scale and commercial MSR designs incorporate uranium trichloride (UCl3) fuel. There are relatively few preparations for isolated actinide halides reported in the literature, therefore novel methods for the isolation of pure material are desired. This communication describes the thermal elimination of pyridine (py) from the coordination complex UCl3py2 to yield gram-scale quantities of UCl3. The purity of the UCl3 product was determined through powder X-ray Diffractometry (pXRD) and Elemental Analysis (EA).

人们对熔盐反应堆(MSR)等先进核反应堆的兴趣重新燃起,从而推动了对卤化锕系元素化学和特性测量的研究。一些拟议的研究规模和商业 MSR 设计采用了三氯化铀(UCl3)燃料。文献中报道的分离卤化锕系元素的制备方法相对较少,因此需要新的方法来分离纯材料。这篇通讯描述了从配位复合物 UCl3py2 中热消除吡啶(py)以获得克级数量的 UCl3 的过程。通过粉末 X 射线衍射仪 (pXRD) 和元素分析 (EA) 测定了 UCl3 产物的纯度。
{"title":"Thermal Elimination of Pyridine from a Uranium Trichloride Precursor","authors":"Dr. Karla A. Erickson,&nbsp;Dr. Stephen S. Parker,&nbsp;Dr. Marisa J. Monreal","doi":"10.1002/cmtd.202300052","DOIUrl":"10.1002/cmtd.202300052","url":null,"abstract":"<p>Renewed interest in advanced nuclear reactors, such as Molten Salt Reactors (MSRs), has spurred studies in actinide halide chemistry and property measurements. Several proposed research-scale and commercial MSR designs incorporate uranium trichloride (UCl<sub>3</sub>) fuel. There are relatively few preparations for isolated actinide halides reported in the literature, therefore novel methods for the isolation of pure material are desired. This communication describes the thermal elimination of pyridine (py) from the coordination complex UCl<sub>3</sub>py<sub>2</sub> to yield gram-scale quantities of UCl<sub>3</sub>. The purity of the UCl<sub>3</sub> product was determined through powder X-ray Diffractometry (pXRD) and Elemental Analysis (EA).</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140091135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemogenetic Tools in Focus: Proximity, Conformation, and Sterics 聚焦化学遗传工具:邻近性、构象和立体性
IF 6.1 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-29 DOI: 10.1002/cmtd.202300051
Dr. Jiaqi Shen, Guanwei Zhou, Prof. Dr. Wenjing Wang

Chemogenetic tools are genetically encoded systems regulated by user-defined chemicals. Their ability to temporally modulate protein functions in specific cell populations has facilitated in-depth understanding of dynamic biological systems. Many chemogenetic domains have been developed for regulating a wide range of biological processes, ranging from cellular events to animal behaviors. These tools share some common mechanisms, including proximity regulation, conformational change and allosteric control, as well as steric hinderance control. Here in this review, we aim to provide an overview of different chemogenetic tool designs that utilize the above three common mechanisms to control cellular events.

化学遗传工具是由用户定义的化学物质调控的基因编码系统。它们能够在特定细胞群中对蛋白质功能进行时间调节,这有助于深入了解动态生物系统。目前已开发出许多化学遗传领域,用于调控从细胞事件到动物行为等各种生物过程。这些工具有一些共同的机制,包括接近调控、构象变化和异构调控以及立体阻碍调控。在本综述中,我们旨在概述利用上述三种共同机制控制细胞事件的不同化学遗传工具设计。
{"title":"Chemogenetic Tools in Focus: Proximity, Conformation, and Sterics","authors":"Dr. Jiaqi Shen,&nbsp;Guanwei Zhou,&nbsp;Prof. Dr. Wenjing Wang","doi":"10.1002/cmtd.202300051","DOIUrl":"10.1002/cmtd.202300051","url":null,"abstract":"<p>Chemogenetic tools are genetically encoded systems regulated by user-defined chemicals. Their ability to temporally modulate protein functions in specific cell populations has facilitated in-depth understanding of dynamic biological systems. Many chemogenetic domains have been developed for regulating a wide range of biological processes, ranging from cellular events to animal behaviors. These tools share some common mechanisms, including proximity regulation, conformational change and allosteric control, as well as steric hinderance control. Here in this review, we aim to provide an overview of different chemogenetic tool designs that utilize the above three common mechanisms to control cellular events.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140417031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: (Chem. Methods 2/2024) 封面图片:(化学方法 2/2024)
Pub Date : 2024-02-08 DOI: 10.1002/cmtd.202480201

{"title":"Cover Picture: (Chem. Methods 2/2024)","authors":"","doi":"10.1002/cmtd.202480201","DOIUrl":"https://doi.org/10.1002/cmtd.202480201","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202480201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Versatile Spectroscopic Cell for Operando Studies in Heterogeneous Catalysis Using Tender X-ray Spectroscopy in Fluorescence Mode 利用荧光模式下的嫩 X 射线光谱进行异相催化操作研究的多功能光谱池
Pub Date : 2024-01-16 DOI: 10.1002/cmtd.202300044
H. A. Suarez Orduz, S.-L. Heck, Dr. P. Dolcet, Dr. Y. Watier, Dr. M. Casapu, Prof. Dr. J.-D. Grunwaldt, Dr. P. Glatzel

The design and commissioning of a cell suitable for operando studies using high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD-XANES) spectroscopy in the tender X-ray regime is reported. The cell is optimized for measurements within the energy range of 1.5 keV to 4.5 keV. It has a plug-flow geometry and can be used for sieved powder samples, analogous to reactors employed for laboratory tests. The functionality of the spectroscopic cell is demonstrated in the area of emission control using CO oxidation as target reaction over 1 wt.% Rh/γ-Al2O3 as catalyst. We show how HERFD-XANES at the Rh L3-edge captures variations in the noble metal structure resulting from the interaction with the support material and reactant molecules. Moreover, distinct structural changes were identified along the catalyst bed as a function of temperature and local gas mixture.

本研究报告介绍了一种适合在嫩 X 射线系统中使用高能量分辨荧光检测 X 射线吸收近边结构(HERFD-XANES)光谱进行操作研究的样品池的设计和调试情况。该样品池针对 1.5 keV 至 4.5 keV 能量范围内的测量进行了优化。它具有塞流几何形状,可用于筛分粉末样品,类似于实验室测试中使用的反应器。在以 1 wt.% Rh/γ-Al2O3 为催化剂、以 CO 氧化为目标反应的排放控制领域,演示了光谱池的功能。我们展示了 Rh L3 边沿的 HERFD-XANES 如何捕捉贵金属结构因与支撑材料和反应物分子相互作用而产生的变化。此外,我们还发现了催化剂床层在温度和局部气体混合物作用下的明显结构变化。
{"title":"Versatile Spectroscopic Cell for Operando Studies in Heterogeneous Catalysis Using Tender X-ray Spectroscopy in Fluorescence Mode","authors":"H. A. Suarez Orduz,&nbsp;S.-L. Heck,&nbsp;Dr. P. Dolcet,&nbsp;Dr. Y. Watier,&nbsp;Dr. M. Casapu,&nbsp;Prof. Dr. J.-D. Grunwaldt,&nbsp;Dr. P. Glatzel","doi":"10.1002/cmtd.202300044","DOIUrl":"10.1002/cmtd.202300044","url":null,"abstract":"<p>The design and commissioning of a cell suitable for <i>operando</i> studies using high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD-XANES) spectroscopy in the tender X-ray regime is reported. The cell is optimized for measurements within the energy range of 1.5 keV to 4.5 keV. It has a plug-flow geometry and can be used for sieved powder samples, analogous to reactors employed for laboratory tests. The functionality of the spectroscopic cell is demonstrated in the area of emission control using CO oxidation as target reaction over 1 wt.% Rh/γ-Al<sub>2</sub>O<sub>3</sub> as catalyst. We show how HERFD-XANES at the Rh L<sub>3</sub>-edge captures variations in the noble metal structure resulting from the interaction with the support material and reactant molecules. Moreover, distinct structural changes were identified along the catalyst bed as a function of temperature and local gas mixture.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139618687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impedance Response Analysis of Anion Exchange Membrane Electrolyzers for Determination of the Electrochemically Active Catalyst Surface Area 用于确定电化学活性催化剂表面积的阴离子交换膜电解器阻抗响应分析
Pub Date : 2024-01-12 DOI: 10.1002/cmtd.202300035
Dr. Sebastian A. Watzele, Dr. Regina M. Kluge, Dr. Artjom Maljusch, Patrick Borowski, Prof. Dr. Aliaksandr S. Bandarenka

Polymer membrane electrolyzers benefit from high-pressure operation conditions and low gas cross-over and can either conduct protons (H+) or hydroxide ions (OH). Both types of electrolyzers have a similar design, but differ in power density and the choice of catalysts. Despite the significant endeavor of their optimization, to date, there is no well-established impedance model for detailed analysis for either type of these devices. This complicates the in-situ characterization of electrolyzers, hindering the investigation of degradation mechanisms and electrocatalytic processes as a function of applied current density or time. Nevertheless, a detailed understanding of such individual processes and distinguishing the performance-limiting factors are the keystones for sophisticated device optimization. In this work, an impedance model based on electrode processes has been developed for an anion exchange membrane electrolyzer utilizing iridium oxide anode and platinum cathode electrocatalysts. This model allows to deconvolute the measured impedances into constituents related to the individual electrode processes and to estimate actual physico-chemical quantities such as the reaction kinetic parameters and double-layer capacitances. We discuss the meaning of the fitting parameters and show that this model enables, for the first time, the estimation of the electrochemically active surface area of the anode electrocatalysts under reaction conditions.

聚合物膜电解槽得益于高压运行条件和低气体交叉,可以传导质子 (H+) 或氢氧根离子 (OH-)。这两种类型的电解槽设计相似,但在功率密度和催化剂的选择上有所不同。尽管对它们进行了大量的优化工作,但迄今为止,还没有一个完善的阻抗模型可用于对这两类设备进行详细分析。这使得电解槽的现场表征变得复杂,阻碍了对降解机制和电催化过程与应用电流密度或时间的函数关系的研究。尽管如此,详细了解这些单个过程并区分性能限制因素是进行复杂设备优化的关键。在这项工作中,我们为使用氧化铱阳极和铂阴极电催化剂的阴离子交换膜电解槽开发了一个基于电极过程的阻抗模型。通过该模型,可以将测量到的阻抗分解为与各个电极过程相关的成分,并估算出实际的物理化学量,如反应动力学参数和双层电容。我们讨论了拟合参数的含义,并表明该模型首次能够估算反应条件下阳极电催化剂的电化学活性表面积。
{"title":"Impedance Response Analysis of Anion Exchange Membrane Electrolyzers for Determination of the Electrochemically Active Catalyst Surface Area","authors":"Dr. Sebastian A. Watzele,&nbsp;Dr. Regina M. Kluge,&nbsp;Dr. Artjom Maljusch,&nbsp;Patrick Borowski,&nbsp;Prof. Dr. Aliaksandr S. Bandarenka","doi":"10.1002/cmtd.202300035","DOIUrl":"10.1002/cmtd.202300035","url":null,"abstract":"<p>Polymer membrane electrolyzers benefit from high-pressure operation conditions and low gas cross-over and can either conduct protons (H<sup>+</sup>) or hydroxide ions (OH<sup>−</sup>). Both types of electrolyzers have a similar design, but differ in power density and the choice of catalysts. Despite the significant endeavor of their optimization, to date, there is no well-established impedance model for detailed analysis for either type of these devices. This complicates the <i>in-situ</i> characterization of electrolyzers, hindering the investigation of degradation mechanisms and electrocatalytic processes as a function of applied current density or time. Nevertheless, a detailed understanding of such individual processes and distinguishing the performance-limiting factors are the keystones for sophisticated device optimization. In this work, an impedance model based on electrode processes has been developed for an anion exchange membrane electrolyzer utilizing iridium oxide anode and platinum cathode electrocatalysts. This model allows to deconvolute the measured impedances into constituents related to the individual electrode processes and to estimate actual physico-chemical quantities such as the reaction kinetic parameters and double-layer capacitances. We discuss the meaning of the fitting parameters and show that this model enables, for the first time, the estimation of the electrochemically active surface area of the anode electrocatalysts under reaction conditions.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139623695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: (Chem. Methods 1/2024) 封面图片:(化学方法 1/2024)
Pub Date : 2024-01-08 DOI: 10.1002/cmtd.202480101
{"title":"Cover Picture: (Chem. Methods 1/2024)","authors":"","doi":"10.1002/cmtd.202480101","DOIUrl":"https://doi.org/10.1002/cmtd.202480101","url":null,"abstract":"","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202480101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139400052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pHbot: Self-Driven Robot for pH Adjustment of Viscous Formulations via Physics-informed-ML** pHbot:通过物理信息ML**实现粘性配方 pH 值调节的自驱动机器人
Pub Date : 2023-12-13 DOI: 10.1002/cmtd.202300043
Aniket Chitre, Dr. Jayce Cheng, Sarfaraz Ahamed, Robert C. M. Querimit, Dr. Benchuan Zhu, Dr. Ke Wang, Dr. Long Wang, Prof. Kedar Hippalgaonkar, Prof. Alexei A. Lapkin

pH adjustment is crucial for many industrial products, yet this step is typically performed by manual trial-and-error. A particularly industrially relevant yet challenging titration is that of adjusting viscous liquid formulations using weak, polyprotic titrants (usually citric acid). Handling of viscous, non-Newtonian formulations, with such polyprotic acids preferred for their chelation and buffering effects make a robotic solution challenging. We present a self-driving pH robot integrated with physics-informed learning; this hybrid physical-ML model enables automated titration with weak-strong acid/base pairs. To deal with the high viscosities of these formulations, we developed specific automated mixing and cleaning protocols. We hit the target pH within two to five iterations over 250 distinct formulations in lab-scale small-batch (~10 mL and 12 samples) titrations. In the interest of scaling up to match industrial processes, we also demonstrate that our hybrid algorithm works at ~25× scale-up. The method is general, and we open-source our algorithm and designs.

pH 值调节对许多工业产品都至关重要,但这一步骤通常都是通过人工试错来完成的。与工业相关但又极具挑战性的一种滴定是使用弱聚丙烯酸滴定剂(通常是柠檬酸)调节粘性液体配方。处理粘性、非牛顿流体配方时,这类聚丙酸因其螯合和缓冲作用而备受青睐,因此机器人解决方案具有挑战性。我们介绍了一种集成了物理信息学习的自驱动 pH 值机器人;这种混合物理-化学模型可实现弱-强酸/碱对的自动滴定。为了应对这些配方的高粘度,我们开发了特定的自动混合和清洁方案。在实验室小批量(约 10 mL 和 12 个样品)滴定中,我们对 250 种不同的配方进行了两到五次迭代,最终达到了目标 pH 值。为了扩大规模以适应工业流程,我们还证明了我们的混合算法在扩大约 25 倍的规模时也能发挥作用。该方法具有通用性,我们对算法和设计进行了开源。
{"title":"pHbot: Self-Driven Robot for pH Adjustment of Viscous Formulations via Physics-informed-ML**","authors":"Aniket Chitre,&nbsp;Dr. Jayce Cheng,&nbsp;Sarfaraz Ahamed,&nbsp;Robert C. M. Querimit,&nbsp;Dr. Benchuan Zhu,&nbsp;Dr. Ke Wang,&nbsp;Dr. Long Wang,&nbsp;Prof. Kedar Hippalgaonkar,&nbsp;Prof. Alexei A. Lapkin","doi":"10.1002/cmtd.202300043","DOIUrl":"10.1002/cmtd.202300043","url":null,"abstract":"<p>pH adjustment is crucial for many industrial products, yet this step is typically performed by manual trial-and-error. A particularly industrially relevant yet challenging titration is that of adjusting viscous liquid formulations using weak, polyprotic titrants (usually citric acid). Handling of viscous, non-Newtonian formulations, with such polyprotic acids preferred for their chelation and buffering effects make a robotic solution challenging. We present a self-driving pH robot integrated with physics-informed learning; this hybrid physical-ML model enables automated titration with weak-strong acid/base pairs. To deal with the high viscosities of these formulations, we developed specific automated mixing and cleaning protocols. We hit the target pH within two to five iterations over 250 distinct formulations in lab-scale small-batch (~10 mL and 12 samples) titrations. In the interest of scaling up to match industrial processes, we also demonstrate that our hybrid algorithm works at ~25× scale-up. The method is general, and we open-source our algorithm and designs.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139181006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: (Chem. Methods 12/2023) 封面图片:(化学)方法12/2023)
Pub Date : 2023-12-06 DOI: 10.1002/cmtd.202381201

{"title":"Cover Picture: (Chem. Methods 12/2023)","authors":"","doi":"10.1002/cmtd.202381201","DOIUrl":"https://doi.org/10.1002/cmtd.202381201","url":null,"abstract":"<p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202381201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138502379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemistry methods : new approaches to solving problems in chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1