首页 > 最新文献

Chemistry methods : new approaches to solving problems in chemistry最新文献

英文 中文
Development and Use of a Real-time In-situ Monitoring Tool for Electrochemical Advanced Oxidation Processes 电化学高级氧化过程实时原位监测工具的开发和使用
Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-03-30 DOI: 10.1002/cmtd.202300014
Chelsea M. Schroeder, Arturo León Sandoval, Kristiane K. Ohlhorst, Dr. Nicholas E. Leadbeater

An apparatus for real-time in-situ monitoring of electrochemical advanced oxidation processes using visible spectrophotometry has been developed. Central to the design is a 3D-printed sleeve that interfaces commercially available electrochemical and spectrophotometry units. Using the anodic oxidation of Acid Orange 7 as a test bed, the apparatus has been used for probing the impact of varying electrode composition, current density, electrolyte concentration, and stirring speed on the rate of decolorization. In addition, the unit was used to prove that decolorization can continue after electrolysis has been stopped, thereby showing the inherent value of real-time monitoring. Given that a significant challenge in the field of advanced oxidation processes is the inability to compare different reported systems, our approach, using commercially available equipment and a printable interface may open avenues for more standardized data collection.

研制了一种利用可见分光光度法实时监测电化学高级氧化过程的装置。该设计的核心是一个3d打印的套筒,它与市售的电化学和分光光度仪相连接。以酸性橙7的阳极氧化为实验平台,研究了不同电极组成、电流密度、电解质浓度和搅拌速度对脱色速率的影响。另外,用该装置证明了电解停止后,脱色仍可继续,显示了实时监测的内在价值。鉴于高级氧化过程领域的一个重大挑战是无法比较不同的报告系统,我们的方法,使用商用设备和可打印接口,可能为更标准化的数据收集开辟道路。
{"title":"Development and Use of a Real-time In-situ Monitoring Tool for Electrochemical Advanced Oxidation Processes","authors":"Chelsea M. Schroeder,&nbsp;Arturo León Sandoval,&nbsp;Kristiane K. Ohlhorst,&nbsp;Dr. Nicholas E. Leadbeater","doi":"10.1002/cmtd.202300014","DOIUrl":"10.1002/cmtd.202300014","url":null,"abstract":"<p>An apparatus for real-time in-situ monitoring of electrochemical advanced oxidation processes using visible spectrophotometry has been developed. Central to the design is a 3D-printed sleeve that interfaces commercially available electrochemical and spectrophotometry units. Using the anodic oxidation of Acid Orange 7 as a test bed, the apparatus has been used for probing the impact of varying electrode composition, current density, electrolyte concentration, and stirring speed on the rate of decolorization. In addition, the unit was used to prove that decolorization can continue after electrolysis has been stopped, thereby showing the inherent value of real-time monitoring. Given that a significant challenge in the field of advanced oxidation processes is the inability to compare different reported systems, our approach, using commercially available equipment and a printable interface may open avenues for more standardized data collection.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49187345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Peroxidase Nanozyme Gears Up for Microplastic Removal and Deconstruction 磁性过氧化物酶纳米酶为微塑料去除和解构做准备
Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-03-30 DOI: 10.1002/cmtd.202300012
Dr. Ansari Palliyarayil, Rajani Kumar Borah, Dr. Amit A. Vernekar

Plastic is an important commodity that is used in several sectors. However, plastic waste generation is a pressing issue and needs attention as it risks the environment. While methods such as landfilling, incineration and recycling are known for handling plastic waste, they have their own limitations like generation of secondary pollutants and the low quality of the recycled plastic. In this scenario, new methods and technologies for efficiently handling plastic waste are the need of the hour as it is aggravating the concern of pollution and its health risks. This highlight article predominantly focuses on the recently reported combinatorial approach (Angew. Chem. Int. Ed. 2022, 61, e202212013), where it has been shown that integrating the magnetic property of bare Fe3O4 nanoparticles and nanozyme technology can be used for microplastic removal and degradation with nearly 100 % efficiency.

塑料是一种重要的商品,在许多部门都有使用。然而,塑料垃圾的产生是一个紧迫的问题,需要关注,因为它危及环境。虽然填埋、焚烧和回收等处理塑料垃圾的方法众所周知,但它们也有自己的局限性,比如产生二次污染物和回收塑料的质量不高。在这种情况下,有效处理塑料废物的新方法和新技术是当务之急,因为它加剧了人们对污染及其健康风险的担忧。这篇重点文章主要集中在最近报道的组合方法上。化学。Int。Ed. 2022, 61, e202212013),研究表明,将Fe3O4裸纳米颗粒的磁性与纳米酶技术相结合,可以以接近100%的效率去除和降解微塑料。
{"title":"Magnetic Peroxidase Nanozyme Gears Up for Microplastic Removal and Deconstruction","authors":"Dr. Ansari Palliyarayil,&nbsp;Rajani Kumar Borah,&nbsp;Dr. Amit A. Vernekar","doi":"10.1002/cmtd.202300012","DOIUrl":"10.1002/cmtd.202300012","url":null,"abstract":"<p>Plastic is an important commodity that is used in several sectors. However, plastic waste generation is a pressing issue and needs attention as it risks the environment. While methods such as landfilling, incineration and recycling are known for handling plastic waste, they have their own limitations like generation of secondary pollutants and the low quality of the recycled plastic. In this scenario, new methods and technologies for efficiently handling plastic waste are the need of the hour as it is aggravating the concern of pollution and its health risks. This highlight article predominantly focuses on the recently reported combinatorial approach (<i>Angew. Chem. Int. Ed</i>. <b>2022</b>, <i>61</i>, e202212013), where it has been shown that integrating the magnetic property of bare Fe<sub>3</sub>O<sub>4</sub> nanoparticles and nanozyme technology can be used for microplastic removal and degradation with nearly 100 % efficiency.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47125378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaction Impurity Prediction using a Data Mining Approach** 用数据挖掘方法预测反应杂质**
Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-03-27 DOI: 10.1002/cmtd.202200062
Adarsh Arun, Dr. Zhen Guo, Dr. Simon Sung, Prof. Alexei A. Lapkin

Automated prediction of reaction impurities is useful in early-stage reaction development, synthesis planning and optimization. Existing reaction predictors are catered towards main product prediction, and are often black-box, making it difficult to troubleshoot erroneous outcomes. This work aims to present an automated, interpretable impurity prediction workflow based on data mining large chemical reaction databases. A 14-step workflow was implemented in Python and RDKit using Reaxys® data. Evaluation of potential chemical reactions between functional groups present in the same reaction environment in the user-supplied query species can be accurately performed by directly mining the Reaxys® database for similar or ‘analogue’ reactions involving these functional groups. Reaction templates can then be extracted from analogue reactions and applied to the relevant species in the original query to return impurities and transformations of interest. Three proof-of-concept case studies (paracetamol, agomelatine and lersivirine) were conducted, with the workflow correctly suggesting impurities within the top two outcomes. At all stages, suggested impurities can be traced back to the originating template and analogue reaction in the literature, allowing for closer inspection and user validation. Ultimately, this work could be useful as a benchmark for more sophisticated algorithms or models since it is interpretable, as opposed to purely black-box solutions.

反应杂质的自动预测在早期反应开发、合成规划和优化中是有用的。现有的反应预测因子是针对主要产品预测的,并且通常是黑匣子,因此很难排除错误结果。这项工作旨在提出一种基于数据挖掘的大型化学反应数据库的自动化、可解释的杂质预测工作流程。使用Reaxys®数据在Python和RDKit中实现了14步工作流程。通过直接挖掘Reaxys®数据库中涉及这些官能团的类似或“类似”反应,可以准确评估用户提供的查询物种中相同反应环境中存在的官能团之间的潜在化学反应。然后可以从类似反应中提取反应模板,并将其应用于原始查询中的相关物种,以返回感兴趣的杂质和转化。进行了三项概念验证案例研究(扑热息痛、阿戈美拉汀和乐西韦林),工作流程正确地表明前两项结果中存在杂质。在所有阶段,建议的杂质都可以追溯到文献中的原始模板和类似物反应,以便进行更仔细的检查和用户验证。最终,这项工作可以作为更复杂算法或模型的基准,因为它是可解释的,而不是纯粹的黑盒解决方案。
{"title":"Reaction Impurity Prediction using a Data Mining Approach**","authors":"Adarsh Arun,&nbsp;Dr. Zhen Guo,&nbsp;Dr. Simon Sung,&nbsp;Prof. Alexei A. Lapkin","doi":"10.1002/cmtd.202200062","DOIUrl":"10.1002/cmtd.202200062","url":null,"abstract":"<p>Automated prediction of reaction impurities is useful in early-stage reaction development, synthesis planning and optimization. Existing reaction predictors are catered towards <i>main</i> product prediction, and are often black-box, making it difficult to troubleshoot erroneous outcomes. This work aims to present an automated, interpretable impurity prediction workflow based on data mining large chemical reaction databases. A 14-step workflow was implemented in Python and RDKit using Reaxys® data. Evaluation of potential chemical reactions between functional groups present in the same reaction environment in the user-supplied query species can be accurately performed by directly mining the Reaxys® database for similar or ‘analogue’ reactions involving these functional groups. Reaction templates can then be extracted from analogue reactions and applied to the relevant species in the original query to return impurities and transformations of interest. Three proof-of-concept case studies (paracetamol, agomelatine and lersivirine) were conducted, with the workflow correctly suggesting impurities within the top two outcomes. At all stages, suggested impurities can be traced back to the originating template and analogue reaction in the literature, allowing for closer inspection and user validation. Ultimately, this work could be useful as a benchmark for more sophisticated algorithms or models since it is interpretable, as opposed to purely black-box solutions.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42101603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Plasmonic Scattering Microscopy for Label-Free Imaging of Molecular Binding Kinetics: From Single Molecules to Single Cells 等离子体散射显微镜用于分子结合动力学的无标记成像:从单个分子到单个细胞
Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-03-27 DOI: 10.1002/cmtd.202200066
Dr. Pengfei Zhang, Xinyu Zhou, Prof. Shaopeng Wang

Measuring molecular binding kinetics represents one of the most important tasks in molecular interaction analysis. Surface plasmon resonance (SPR) is a popular tool for analyzing molecular binding. Plasmonic scattering microscopy (PSM) is a newly developed SPR imaging technology, which detects the out-of-plane scattering of surface plasmons by analytes and has pushed the detection limit of label-free SPR imaging down to a single-protein level. In addition, PSM also allows SPR imaging with high spatiotemporal resolution, making it possible to analyze cellular response to the molecular bindings. In this Mini Review, we present PSM as a method of choice for chemical and biological imaging, introduce its theoretical mechanism, present its experimental schemes, summarize its exciting applications, and discuss its challenges as well as the promising future.

分子结合动力学的测量是分子相互作用分析中最重要的任务之一。表面等离子体共振(SPR)是分析分子结合的常用工具。等离子体散射显微镜(Plasmonic scattering microscopy, PSM)是一种新兴的SPR成像技术,它可以检测被分析物表面等离子体的面外散射,将无标记SPR成像的检测极限提高到单蛋白水平。此外,PSM还允许具有高时空分辨率的SPR成像,使分析细胞对分子结合的反应成为可能。在这篇综述中,我们介绍了PSM作为化学和生物成像的一种选择,介绍了它的理论机制,提出了它的实验方案,总结了它令人兴奋的应用,并讨论了它的挑战和有希望的未来。
{"title":"Plasmonic Scattering Microscopy for Label-Free Imaging of Molecular Binding Kinetics: From Single Molecules to Single Cells","authors":"Dr. Pengfei Zhang,&nbsp;Xinyu Zhou,&nbsp;Prof. Shaopeng Wang","doi":"10.1002/cmtd.202200066","DOIUrl":"10.1002/cmtd.202200066","url":null,"abstract":"<p>Measuring molecular binding kinetics represents one of the most important tasks in molecular interaction analysis. Surface plasmon resonance (SPR) is a popular tool for analyzing molecular binding. Plasmonic scattering microscopy (PSM) is a newly developed SPR imaging technology, which detects the out-of-plane scattering of surface plasmons by analytes and has pushed the detection limit of label-free SPR imaging down to a single-protein level. In addition, PSM also allows SPR imaging with high spatiotemporal resolution, making it possible to analyze cellular response to the molecular bindings. In this Mini Review, we present PSM as a method of choice for chemical and biological imaging, introduce its theoretical mechanism, present its experimental schemes, summarize its exciting applications, and discuss its challenges as well as the promising future.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2a/f6/nihms-1912853.PMC10344632.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9822467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Ionic Liquid Modified Electrocatalysts: a STEM-EDX Approach for Identification of Local Distributions within Ionomer Containing Catalysts Layers 离子液体修饰的电催化剂:用STEM - EDX方法鉴定含离聚体催化剂层内的局部分布
Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-03-27 DOI: 10.1002/cmtd.202200084
Kai Brunnengräber, Katharina Jeschonek, Michael George, Prof. Dr. Gui-Rong Zhang, Prof. Dr. Bastian J. M. Etzold

Driven by the transition to a CO2-neutral energy economy, research on polymer electrolyte fuel cells gained much interest during the last decade, with researchers trying to overcome the sluggish kinetics of the oxygen reduction reaction (ORR) limiting their performance. Modification of existing ORR catalysts with small amounts of ionic liquids (IL) represents an innovative approach to altering the catalytic activity and stability. ILs are supposed to take effect by modifying the local microenvironment at electrochemical interfaces. Nevertheless, a thorough understanding about the local distribution of ILs over solid catalysts is still lacking, hindering the IL modification strategy to be a generic approach to rationally modulating the catalytic performance of a catalyst. In this study we employed STEM-EDS spectral imaging to locate the IL distribution on the catalyst in presence of NafionTM. To overcome the difficulties associated with low energy STEM-EDS we setup a sophisticated data processing routine based on machine learning.

在向二氧化碳中性能源经济转型的推动下,聚合物电解质燃料电池的研究在过去十年中获得了很大的兴趣,研究人员试图克服氧还原反应(ORR)的缓慢动力学限制其性能。用少量离子液体(IL)改性现有的ORR催化剂是一种改变催化活性和稳定性的创新方法。通过改变电化学界面的局部微环境,il被认为是有效的。然而,对于固体催化剂上IL的局部分布仍然缺乏深入的了解,这阻碍了IL修饰策略成为合理调节催化剂催化性能的通用方法。在本研究中,我们使用STEM-EDS光谱成像来定位在NafionTM存在下催化剂上IL的分布。为了克服与低能量STEM-EDS相关的困难,我们建立了一个基于机器学习的复杂数据处理程序。
{"title":"Ionic Liquid Modified Electrocatalysts: a STEM-EDX Approach for Identification of Local Distributions within Ionomer Containing Catalysts Layers","authors":"Kai Brunnengräber,&nbsp;Katharina Jeschonek,&nbsp;Michael George,&nbsp;Prof. Dr. Gui-Rong Zhang,&nbsp;Prof. Dr. Bastian J. M. Etzold","doi":"10.1002/cmtd.202200084","DOIUrl":"10.1002/cmtd.202200084","url":null,"abstract":"<p>Driven by the transition to a CO<sub>2</sub>-neutral energy economy, research on polymer electrolyte fuel cells gained much interest during the last decade, with researchers trying to overcome the sluggish kinetics of the oxygen reduction reaction (ORR) limiting their performance. Modification of existing ORR catalysts with small amounts of ionic liquids (IL) represents an innovative approach to altering the catalytic activity and stability. ILs are supposed to take effect by modifying the local microenvironment at electrochemical interfaces. Nevertheless, a thorough understanding about the local distribution of ILs over solid catalysts is still lacking, hindering the IL modification strategy to be a generic approach to rationally modulating the catalytic performance of a catalyst. In this study we employed STEM-EDS spectral imaging to locate the IL distribution on the catalyst in presence of Nafion<sup>TM</sup>. To overcome the difficulties associated with low energy STEM-EDS we setup a sophisticated data processing routine based on machine learning.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42191618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: (Chem. Methods 3/2023) 封面图片:(化学方法3/2023)
Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-03-01 DOI: 10.1002/cmtd.202300010

{"title":"Cover Picture: (Chem. Methods 3/2023)","authors":"","doi":"10.1002/cmtd.202300010","DOIUrl":"https://doi.org/10.1002/cmtd.202300010","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50116242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Progress in Artificial Structural Colors and their Applications in Fibers and Textiles 人造结构色及其在纤维和纺织品中的应用研究进展
Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-02-13 DOI: 10.1002/cmtd.202200081
Run Li, Shiliang Zhang, Prof. Rufan Zhang

Structural colors have been regarded as an ideal alternative to pigments because of the advantages of environmental friendliness, resistance to fading, especially in the fields of textile dyeing and printing, which is highly polluted in traditional ways and needs to be upgraded. They are generated by the interaction between the micro/nano structure of the material surface and the incident light, which is closely related to the sizes and periods of the structures. Based on different nano arrangements, the structures can be roughly divided into photonic crystals and non-photonic crystals. In this review, we summarized recent research progress in structural coloration of fibers and textiles. Learning from nature, researchers proposed various methods to fabricate biomimetic structural colors, and the applications of structural colored fibers and textiles were extended. The challenges and perspectives were also presented. Hopefully, reference for the design and preparation of structural color-based textiles can be inspired.

结构色因其环保、耐褪色等优点,已被视为颜料的理想替代品,特别是在传统方式污染严重、需要升级的纺织印染领域。它们是由材料表面的微纳结构与入射光相互作用产生的,这与结构的尺寸和周期密切相关。根据纳米排列的不同,结构大致可分为光子晶体和非光子晶体。本文综述了近年来纤维和纺织品结构着色的研究进展。研究人员借鉴自然,提出了多种制备仿生结构色的方法,拓展了结构色纤维和纺织品的应用领域。还提出了挑战和前景。希望能对结构色系纺织品的设计和制备有所启发。
{"title":"Recent Progress in Artificial Structural Colors and their Applications in Fibers and Textiles","authors":"Run Li,&nbsp;Shiliang Zhang,&nbsp;Prof. Rufan Zhang","doi":"10.1002/cmtd.202200081","DOIUrl":"10.1002/cmtd.202200081","url":null,"abstract":"<p>Structural colors have been regarded as an ideal alternative to pigments because of the advantages of environmental friendliness, resistance to fading, especially in the fields of textile dyeing and printing, which is highly polluted in traditional ways and needs to be upgraded. They are generated by the interaction between the micro/nano structure of the material surface and the incident light, which is closely related to the sizes and periods of the structures. Based on different nano arrangements, the structures can be roughly divided into photonic crystals and non-photonic crystals. In this review, we summarized recent research progress in structural coloration of fibers and textiles. Learning from nature, researchers proposed various methods to fabricate biomimetic structural colors, and the applications of structural colored fibers and textiles were extended. The challenges and perspectives were also presented. Hopefully, reference for the design and preparation of structural color-based textiles can be inspired.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46116096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Cover Picture: (Chem. Methods 2/2023) 封面图片:(化学)方法2/2023)
Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-02-07 DOI: 10.1002/cmtd.202300001

{"title":"Cover Picture: (Chem. Methods 2/2023)","authors":"","doi":"10.1002/cmtd.202300001","DOIUrl":"10.1002/cmtd.202300001","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47274791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico Design of Dihydroazulene/Vinylheptafulvene Photoswitches for Solar-Energy Storage Guided by an All-Around Performance Descriptor** 基于全方位性能描述符的太阳能储能用二氢偶氮烯/乙烯基七氟烯光开关的硅设计**
Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-02-01 DOI: 10.1002/cmtd.202200060
Dr. Enrique M. Arpa, Prof. Bo Durbeej

A major challenge in the development of molecular photoswitches capable of storing and releasing solar energy is to simultaneously realize many of the performance criteria required of the switches for such applications. Here, we take on this challenge by introducing an all-around performance descriptor that combines three key criteria (related to energy density, storage time and light-absorption characteristics), and by using density functional theory methods to calculate its values for 52 newly designed dihydroazulene/vinylheptafulvene (DHA/VHF) switches. Thereby, we are able to identify several switches with excellent overall properties that contain a structural motif absent in all DHA/VHF compounds previously considered for solar-energy storage. For some of these switches, we also provide retrosynthetic analyses and demonstrate that they form the energy-storing VHF isomer through a facile DHA→VHF photoisomerization reaction. All in all, we conclude that these switches show great promise for further development towards applications in solar-energy storage.

开发能够储存和释放太阳能的分子光开关的一个主要挑战是同时实现这种应用所需的开关的许多性能标准。在这里,我们通过引入一个综合了三个关键标准(与能量密度、存储时间和光吸收特性相关)的全面性能描述符,并通过密度泛函理论方法计算52个新设计的二氢偶氮烯/乙烯七氟乙烯(DHA/VHF)开关的值,来应对这一挑战。因此,我们能够确定几种具有优异整体性能的开关,这些开关包含以前考虑用于太阳能存储的所有DHA/VHF化合物中所缺乏的结构基序。对于其中一些开关,我们还提供了反合成分析,并证明它们通过简单的DHA形成储能VHF异构体!甚高频光异构反应。总而言之,我们得出结论,这些开关在太阳能储能方面的应用前景广阔。
{"title":"In Silico Design of Dihydroazulene/Vinylheptafulvene Photoswitches for Solar-Energy Storage Guided by an All-Around Performance Descriptor**","authors":"Dr. Enrique M. Arpa,&nbsp;Prof. Bo Durbeej","doi":"10.1002/cmtd.202200060","DOIUrl":"10.1002/cmtd.202200060","url":null,"abstract":"<p>A major challenge in the development of molecular photoswitches capable of storing and releasing solar energy is to simultaneously realize many of the performance criteria required of the switches for such applications. Here, we take on this challenge by introducing an all-around performance descriptor that combines three key criteria (related to energy density, storage time and light-absorption characteristics), and by using density functional theory methods to calculate its values for 52 newly designed dihydroazulene/vinylheptafulvene (DHA/VHF) switches. Thereby, we are able to identify several switches with excellent overall properties that contain a structural motif absent in all DHA/VHF compounds previously considered for solar-energy storage. For some of these switches, we also provide retrosynthetic analyses and demonstrate that they form the energy-storing VHF isomer through a facile DHA→VHF photoisomerization reaction. All in all, we conclude that these switches show great promise for further development towards applications in solar-energy storage.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41858714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Drug Metabolites with Infrared Ion Spectroscopy – Application to Midazolam in vitro Metabolism** 红外离子光谱法鉴定药物代谢产物——在咪唑安定中的应用 体外代谢**
Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-02-01 DOI: 10.1002/cmtd.202200068
Dr. Rianne E. van Outersterp, Dr. Jonathan Martens, Dr. Giel Berden, Arnaud Lubin, Dr. Filip Cuyckens, Prof. Dr. Jos Oomens

The identification of biotransformation products of drug compounds is a crucial step in drug development. Over the last decades, liquid chromatography-mass spectrometry (LC-MS) has become the method of choice for metabolite profiling because of its high sensitivity and selectivity. However, determining the full molecular structure of the detected metabolites, including the exact biotransformation site, remains challenging on the basis of MS alone. Here we explore infrared ion spectroscopy (IRIS) as a novel MS-based method for the elucidation of metabolic pathways in drug metabolism research. Using the drug midazolam as an example, we identify several biotransformation products directly from an in vitro drug incubation sample. We show that IR spectra of the aglycone MS/MS fragment ions of glucuronide metabolites establish a direct link between detected phase I and phase II metabolites. Moreover, using quantum-chemically computed IR spectra of candidate structures, we are able to assign the exact sites of biotransformation in absence of reference standards. Additionally, we demonstrate the utility of IRIS for structural elucidation by identifying several ring-opened midazolam derivatives formed in an acidic environment.

药物化合物生物转化产物的鉴定是药物开发的关键步骤。在过去的几十年里,液相色谱-质谱(LC-MS)因其高灵敏度和选择性而成为代谢物谱分析的首选方法。然而,仅基于质谱,确定检测到的代谢物的完整分子结构,包括确切的生物转化位点,仍然具有挑战性。本文探讨了红外离子光谱(IRIS)作为一种新的基于质谱的方法来阐明药物代谢研究中的代谢途径。以药物咪达唑仑为例,我们直接从体外药物培养样品中鉴定出几种生物转化产物。我们发现葡萄糖醛酸代谢物的苷元MS/MS片段离子的红外光谱在检测到的I相和II相代谢物之间建立了直接联系。此外,使用量子化学计算的候选结构的红外光谱,我们能够在没有参考标准的情况下分配生物转化的确切位置。此外,我们通过识别在酸性环境中形成的几个开环咪达唑仑衍生物,证明了IRIS在结构解析中的效用。
{"title":"Identification of Drug Metabolites with Infrared Ion Spectroscopy – Application to Midazolam in vitro Metabolism**","authors":"Dr. Rianne E. van Outersterp,&nbsp;Dr. Jonathan Martens,&nbsp;Dr. Giel Berden,&nbsp;Arnaud Lubin,&nbsp;Dr. Filip Cuyckens,&nbsp;Prof. Dr. Jos Oomens","doi":"10.1002/cmtd.202200068","DOIUrl":"10.1002/cmtd.202200068","url":null,"abstract":"<p>The identification of biotransformation products of drug compounds is a crucial step in drug development. Over the last decades, liquid chromatography-mass spectrometry (LC-MS) has become the method of choice for metabolite profiling because of its high sensitivity and selectivity. However, determining the full molecular structure of the detected metabolites, including the exact biotransformation site, remains challenging on the basis of MS alone. Here we explore infrared ion spectroscopy (IRIS) as a novel MS-based method for the elucidation of metabolic pathways in drug metabolism research. Using the drug midazolam as an example, we identify several biotransformation products directly from an <i>in vitro</i> drug incubation sample. We show that IR spectra of the aglycone MS/MS fragment ions of glucuronide metabolites establish a direct link between detected phase I and phase II metabolites. Moreover, using quantum-chemically computed IR spectra of candidate structures, we are able to assign the exact sites of biotransformation in absence of reference standards. Additionally, we demonstrate the utility of IRIS for structural elucidation by identifying several ring-opened midazolam derivatives formed in an acidic environment.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43164388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Chemistry methods : new approaches to solving problems in chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1