Dr. Nina S. Genz, Antti-Jussi Kallio, Dr. Florian Meirer, Prof. Dr. Simo Huotari, Prof. Dr. Bert M. Weckhuysen
The new possibility to perform operando X-ray absorption spectroscopy (XAS) in the laboratory expands the potential field of applications towards a broad research community. These applications are multidisciplinary at heart and benefit from joint expertise from different fields, most importantly chemistry, physics, geology, and instrumentation. Hence, a development of collaboration networks that combine skills and knowhow from different fields is highly beneficial in this endeavor. As operando laboratory-based XAS constitutes a highly interesting, advanced, and powerful characterization technique, we provide in this article practical guidelines for newcomers in the field, who would like to employ it. Here, we will describe ten important steps towards a successful operando laboratory-based XAS experiment, which are not only useful for the catalysis community, but for a much wider audience from other research fields, such as environmental chemistry as well as battery and fuel cell research.
{"title":"Operando Laboratory-based X-ray Absorption Spectroscopy: Guidelines for Newcomers in the Field","authors":"Dr. Nina S. Genz, Antti-Jussi Kallio, Dr. Florian Meirer, Prof. Dr. Simo Huotari, Prof. Dr. Bert M. Weckhuysen","doi":"10.1002/cmtd.202300027","DOIUrl":"10.1002/cmtd.202300027","url":null,"abstract":"<p>The new possibility to perform operando X-ray absorption spectroscopy (XAS) in the laboratory expands the potential field of applications towards a broad research community. These applications are multidisciplinary at heart and benefit from joint expertise from different fields, most importantly chemistry, physics, geology, and instrumentation. Hence, a development of collaboration networks that combine skills and knowhow from different fields is highly beneficial in this endeavor. As operando laboratory-based XAS constitutes a highly interesting, advanced, and powerful characterization technique, we provide in this article practical guidelines for newcomers in the field, who would like to employ it. Here, we will describe ten important steps towards a successful operando laboratory-based XAS experiment, which are not only useful for the catalysis community, but for a much wider audience from other research fields, such as environmental chemistry as well as battery and fuel cell research.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45832794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The reduction of CO2 in water can yield a variety of volatile products mixed with the starting material and often dinitrogen as an inert gas. While mass spectrometry is ideally suited to the quantitative analysis of gases in low concentrations, the simultaneous detection is usually performed with a preliminary chromatographic separation. In its absence, the mass spectrometric signal at m/z=28 can be due to CO, CO2, and N2. Here, we demonstrate that ionizing the mixture of reaction products under 16 eV results in the selective detection of CO at m/z=28, at the complete exclusion of CO2 and N2. This method is applicable to headspace analysis after a bulk electrolysis and delivers product compositions as they depend on catalyst and applied potential. Furthermore, its immediate nature also enables the experimentalist to perform, in real time, a direct monitoring of the reaction products generated during cyclic voltammetry.
{"title":"Quantification of CO and Further CO2 Reduction Products by On-line Mass Spectrometry","authors":"Jonas Englhard, Prof. Julien Bachmann","doi":"10.1002/cmtd.202300019","DOIUrl":"10.1002/cmtd.202300019","url":null,"abstract":"<p>The reduction of CO<sub>2</sub> in water can yield a variety of volatile products mixed with the starting material and often dinitrogen as an inert gas. While mass spectrometry is ideally suited to the quantitative analysis of gases in low concentrations, the simultaneous detection is usually performed with a preliminary chromatographic separation. In its absence, the mass spectrometric signal at <i>m/z</i>=28 can be due to CO, CO<sub>2</sub>, and N<sub>2</sub>. Here, we demonstrate that ionizing the mixture of reaction products under 16 eV results in the selective detection of CO at <i>m/z</i>=28, at the complete exclusion of CO<sub>2</sub> and N<sub>2</sub>. This method is applicable to headspace analysis after a bulk electrolysis and delivers product compositions as they depend on catalyst and applied potential. Furthermore, its immediate nature also enables the experimentalist to perform, in real time, a direct monitoring of the reaction products generated during cyclic voltammetry.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"3 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202300019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44468635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}