We explore unsupervised, hypothesis-free methods for fMRI analysis in two different types of experiments. First, we employ clustering to identify large-scale functionally homogeneous systems. We formulate a generative mixture model, derive the EM algorithm and apply it to delineate functional systems. We also investigate spectral clustering in application to this problem and demonstrate that both methods give rise to similar partitions of the brain based on resting state fMRI data. Second, we demonstrate how to extend this approach to include information about the experimental protocol. Specifically, we formulate a mixture model in the space of possible profiles of brain response to stimuli. In both applications, our methods confirm previously known results in brain mapping and point to new research directions for exploratory analysis of fMRI data.
{"title":"Spatial Patterns and Functional Profiles for Discovering Structure in fMRI Data.","authors":"Polina Golland, Danial Lashkari, Archana Venkataraman","doi":"10.1109/ACSSC.2008.5074650","DOIUrl":"https://doi.org/10.1109/ACSSC.2008.5074650","url":null,"abstract":"<p><p>We explore unsupervised, hypothesis-free methods for fMRI analysis in two different types of experiments. First, we employ clustering to identify large-scale functionally homogeneous systems. We formulate a generative mixture model, derive the EM algorithm and apply it to delineate functional systems. We also investigate spectral clustering in application to this problem and demonstrate that both methods give rise to similar partitions of the brain based on resting state fMRI data. Second, we demonstrate how to extend this approach to include information about the experimental protocol. Specifically, we formulate a mixture model in the space of possible profiles of brain response to stimuli. In both applications, our methods confirm previously known results in brain mapping and point to new research directions for exploratory analysis of fMRI data.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2008 ","pages":"1402-1409"},"PeriodicalIF":0.0,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACSSC.2008.5074650","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33395856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-10-01DOI: 10.1109/ACSSC.2008.5074488
Noah Lee, R Theodore Smith, Andrew F Laine
Fundus auto-fluorescence (FAF) imaging is a non-invasive technique for in vivo ophthalmoscopic inspection of age-related macular degeneration (AMD), the most common cause of blindness in developed countries. Geographic atrophy (GA) is an advanced form of AMD and accounts for 12-21% of severe visual loss in this disorder [3]. Automatic quantification of GA is important for determining disease progression and facilitating clinical diagnosis of AMD. The problem of automatic segmentation of pathological images still remains an unsolved problem. In this paper we leverage the watershed transform and generalized non-linear gradient operators for interactive segmentation and present an intuitive and simple approach for geographic atrophy segmentation. We compare our approach with the state of the art random walker [5] algorithm for interactive segmentation using ROC statistics. Quantitative evaluation experiments on 100 FAF images show a mean sensitivity/specificity of 98.3/97.7% for our approach and a mean sensitivity/specificity of 88.2/96.6% for the random walker algorithm.
{"title":"Interactive segmentation for geographic atrophy in retinal fundus images.","authors":"Noah Lee, R Theodore Smith, Andrew F Laine","doi":"10.1109/ACSSC.2008.5074488","DOIUrl":"https://doi.org/10.1109/ACSSC.2008.5074488","url":null,"abstract":"<p><p>Fundus auto-fluorescence (FAF) imaging is a non-invasive technique for in vivo ophthalmoscopic inspection of age-related macular degeneration (AMD), the most common cause of blindness in developed countries. Geographic atrophy (GA) is an advanced form of AMD and accounts for 12-21% of severe visual loss in this disorder [3]. Automatic quantification of GA is important for determining disease progression and facilitating clinical diagnosis of AMD. The problem of automatic segmentation of pathological images still remains an unsolved problem. In this paper we leverage the watershed transform and generalized non-linear gradient operators for interactive segmentation and present an intuitive and simple approach for geographic atrophy segmentation. We compare our approach with the state of the art random walker [5] algorithm for interactive segmentation using ROC statistics. Quantitative evaluation experiments on 100 FAF images show a mean sensitivity/specificity of 98.3/97.7% for our approach and a mean sensitivity/specificity of 88.2/96.6% for the random walker algorithm.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2008 42","pages":"655-658"},"PeriodicalIF":0.0,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACSSC.2008.5074488","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30098314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}