Pub Date : 2024-01-01DOI: 10.1007/978-981-97-4584-5_12
Takahito Miyake, Yuichi Inoue, Yota Maekawa, Masao Doi
The circadian fluctuation of body temperature is one of the most prominent and stable outputs of the circadian clock and plays an important role in maintaining optimal day-night energy homeostasis. The body temperature of homothermic animals is not strictly constant, but it shows daily oscillation within a range of 1-3 °C, which is sufficient to synchronize the clocks of peripheral tissues throughout the body. The thermal entrainment mechanisms of the clock are partly mediated by the action of the heat shock transcription factor and cold-inducible RNA-binding protein-both have the ability to affect clock gene expression. Body temperature in the poikilotherms is not completely passive to the ambient temperature change; they can travel to the place of preferred temperature in a manner depending on the time of their endogenous clock. Based on this behavior-level thermoregulation, flies exhibit a clear body temperature cycle. Noticeably, flies and mice share the same molecular circuit for the controlled body temperature; in both species, the calcitonin receptors participate in the formation of body temperature rhythms during the active phase and exhibit rather specific expression in subsets of clock neurons in the brain. We summarize knowledge on mutual relationships between body temperature regulation and the circadian clock.
{"title":"Circadian Clock and Body Temperature.","authors":"Takahito Miyake, Yuichi Inoue, Yota Maekawa, Masao Doi","doi":"10.1007/978-981-97-4584-5_12","DOIUrl":"https://doi.org/10.1007/978-981-97-4584-5_12","url":null,"abstract":"<p><p>The circadian fluctuation of body temperature is one of the most prominent and stable outputs of the circadian clock and plays an important role in maintaining optimal day-night energy homeostasis. The body temperature of homothermic animals is not strictly constant, but it shows daily oscillation within a range of 1-3 °C, which is sufficient to synchronize the clocks of peripheral tissues throughout the body. The thermal entrainment mechanisms of the clock are partly mediated by the action of the heat shock transcription factor and cold-inducible RNA-binding protein-both have the ability to affect clock gene expression. Body temperature in the poikilotherms is not completely passive to the ambient temperature change; they can travel to the place of preferred temperature in a manner depending on the time of their endogenous clock. Based on this behavior-level thermoregulation, flies exhibit a clear body temperature cycle. Noticeably, flies and mice share the same molecular circuit for the controlled body temperature; in both species, the calcitonin receptors participate in the formation of body temperature rhythms during the active phase and exhibit rather specific expression in subsets of clock neurons in the brain. We summarize knowledge on mutual relationships between body temperature regulation and the circadian clock.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1461 ","pages":"177-188"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the functions of peroxisomes is the oxidation of fatty acids (FAs). The importance of this function in our lives is evidenced by the presence of peroxisomal disorders caused by the genetic deletion of proteins involved in these processes. Unlike mitochondrial oxidation, peroxisomal oxidation is not directly linked to ATP production. What is the role of FA oxidation in peroxisomes? Recent studies have revealed that peroxisomes supply the building blocks for lipid synthesis in the endoplasmic reticulum and facilitate intracellular carbon recycling for membrane quality control. Accumulation of very long-chain fatty acids (VLCFAs), which are peroxisomal substrates, is a diagnostic marker in many types of peroxisomal disorders. However, the relationship between VLCFA accumulation and various symptoms of these disorders remains unclear. Recently, we developed a method for solubilizing VLCFAs in aqueous media and found that VLCFA toxicity could be mitigated by oleic acid replenishment. In this chapter, we present the physiological role of peroxisomal FA oxidation and the knowledge obtained from VLCFA-accumulating peroxisome-deficient cells.
过氧物酶体的功能之一是氧化脂肪酸(FA)。这一功能在我们生活中的重要性体现在过氧化物酶体疾病的存在上,这种疾病是由于基因中缺失了参与这些过程的蛋白质而引起的。与线粒体氧化不同,过氧物酶体氧化与 ATP 的产生没有直接联系。FA 氧化在过氧物酶体中的作用是什么?最近的研究发现,过氧物酶体为内质网的脂质合成提供了构件,并促进了细胞内碳的循环以控制膜的质量。作为过氧物酶体底物的超长链脂肪酸(VLCFAs)的积累是多种过氧物酶体疾病的诊断标志。然而,VLCFA 的积累与这些疾病的各种症状之间的关系仍不清楚。最近,我们开发了一种在水介质中溶解 VLCFA 的方法,并发现补充油酸可以减轻 VLCFA 的毒性。在本章中,我们将介绍过氧物酶体FA氧化的生理作用以及从VLCFA富集的过氧物酶体缺陷细胞中获得的知识。
{"title":"Fatty Acid Metabolism in Peroxisomes and Related Disorders.","authors":"Katsuya Morito, Hanif Ali, Shigenobu Kishino, Tamotsu Tanaka","doi":"10.1007/5584_2024_802","DOIUrl":"10.1007/5584_2024_802","url":null,"abstract":"<p><p>One of the functions of peroxisomes is the oxidation of fatty acids (FAs). The importance of this function in our lives is evidenced by the presence of peroxisomal disorders caused by the genetic deletion of proteins involved in these processes. Unlike mitochondrial oxidation, peroxisomal oxidation is not directly linked to ATP production. What is the role of FA oxidation in peroxisomes? Recent studies have revealed that peroxisomes supply the building blocks for lipid synthesis in the endoplasmic reticulum and facilitate intracellular carbon recycling for membrane quality control. Accumulation of very long-chain fatty acids (VLCFAs), which are peroxisomal substrates, is a diagnostic marker in many types of peroxisomal disorders. However, the relationship between VLCFA accumulation and various symptoms of these disorders remains unclear. Recently, we developed a method for solubilizing VLCFAs in aqueous media and found that VLCFA toxicity could be mitigated by oleic acid replenishment. In this chapter, we present the physiological role of peroxisomal FA oxidation and the knowledge obtained from VLCFA-accumulating peroxisome-deficient cells.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":"31-55"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hard-to-heal wounds are an important public health issue worldwide, with a significant impact on the quality of life of patients. It is estimated that approximately 1-2% of the global population suffers from difficult wounds, which can be caused by a variety of factors such as trauma, infections, chronic diseases like diabetes or obesity, or poor health conditions. Hard-to-heal wounds are often characterized by a slow and complicated healing process, which can lead to serious complications such as infections, pressure ulcers, scar tissue formation, and even amputations. These complications can have a significant impact on the mobility, autonomy, and quality of life of patients, leading to an increase in healthcare and social costs associated with wound care. The preparation of the wound bed is a key concept in the management of hard-to-heal wounds, with the aim of promoting an optimal environment for healing. The TIME (Tissue, Infection/Inflammation, Moisture, Edge) model is a systematic approach used to assess and manage wounds in a targeted and personalized way. The concept of TIMER, expanding the TIME model, further focuses on regenerative processes, paying particular attention to promoting tissue regeneration and wound healing in a more effective and comprehensive way. The new element introduced in the TIMER model is "Regeneration", which highlights the importance of activating and supporting tissue regeneration processes to promote complete and lasting wound healing. Regenerative therapies can include a wide range of approaches, including cellular therapies, growth factors, bioactive biomaterials, stem cell therapies, and growth factor therapies. These therapies aim to promote the formation of new healthy tissues, reduce inflammation, improve vascularization, and stimulate cellular proliferation to accelerate wound closure and prevent complications. Thanks to continuous progress in research and development of regenerative therapies, more and more patients suffering from difficult wounds can benefit from innovative and promising solutions to promote faster and more effective healing, improve quality of life, and reduce the risk of long-term complications.
难愈合伤口是全球一个重要的公共卫生问题,对患者的生活质量有重大影响。据估计,全球约有 1%-2% 的人口患有难愈合伤口,造成伤口的原因有很多,如外伤、感染、糖尿病或肥胖等慢性疾病或健康状况不良。难愈合伤口的特点通常是愈合过程缓慢而复杂,可能导致感染、压疮、疤痕组织形成甚至截肢等严重并发症。这些并发症会严重影响患者的活动能力、自主性和生活质量,导致与伤口护理相关的医疗和社会成本增加。伤口床的准备是治疗难愈合伤口的一个关键概念,目的是促进伤口愈合的最佳环境。TIME(组织、感染/炎症、湿度、边缘)模型是一种系统方法,用于有针对性地个性化评估和管理伤口。TIMER 概念扩展了 TIME 模型,进一步关注再生过程,尤其注重以更有效、更全面的方式促进组织再生和伤口愈合。TIMER 模式引入的新元素是 "再生",强调激活和支持组织再生过程对促进伤口完全和持久愈合的重要性。再生疗法包括多种方法,包括细胞疗法、生长因子、生物活性生物材料、干细胞疗法和生长因子疗法。这些疗法旨在促进新的健康组织的形成、减少炎症、改善血管生成和刺激细胞增殖,从而加速伤口闭合并预防并发症。得益于再生疗法研究和开发的不断进步,越来越多的疑难伤口患者可以受益于创新和有前景的解决方案,促进伤口更快、更有效地愈合,提高生活质量,并降低长期并发症的风险。
{"title":"From Time to Timer in Wound Healing Through the Regeneration.","authors":"Francesco De Francesco, Rei Ogawa","doi":"10.1007/5584_2024_815","DOIUrl":"10.1007/5584_2024_815","url":null,"abstract":"<p><p>Hard-to-heal wounds are an important public health issue worldwide, with a significant impact on the quality of life of patients. It is estimated that approximately 1-2% of the global population suffers from difficult wounds, which can be caused by a variety of factors such as trauma, infections, chronic diseases like diabetes or obesity, or poor health conditions. Hard-to-heal wounds are often characterized by a slow and complicated healing process, which can lead to serious complications such as infections, pressure ulcers, scar tissue formation, and even amputations. These complications can have a significant impact on the mobility, autonomy, and quality of life of patients, leading to an increase in healthcare and social costs associated with wound care. The preparation of the wound bed is a key concept in the management of hard-to-heal wounds, with the aim of promoting an optimal environment for healing. The TIME (Tissue, Infection/Inflammation, Moisture, Edge) model is a systematic approach used to assess and manage wounds in a targeted and personalized way. The concept of TIMER, expanding the TIME model, further focuses on regenerative processes, paying particular attention to promoting tissue regeneration and wound healing in a more effective and comprehensive way. The new element introduced in the TIMER model is \"Regeneration\", which highlights the importance of activating and supporting tissue regeneration processes to promote complete and lasting wound healing. Regenerative therapies can include a wide range of approaches, including cellular therapies, growth factors, bioactive biomaterials, stem cell therapies, and growth factor therapies. These therapies aim to promote the formation of new healthy tissues, reduce inflammation, improve vascularization, and stimulate cellular proliferation to accelerate wound closure and prevent complications. Thanks to continuous progress in research and development of regenerative therapies, more and more patients suffering from difficult wounds can benefit from innovative and promising solutions to promote faster and more effective healing, improve quality of life, and reduce the risk of long-term complications.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141260750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1007/978-3-031-58572-2_9
Marco Poeta, Margherita Del Bene, Andrea Lo Vecchio, Alfredo Guarino
Acute infectious diarrhea (AID) is one of the most common diseases in pediatric age with relevant burden both in high and in low-income countries. Thanks to their direct action on enterocyte functions and indirect actions on the mucosal and systemic immune system and on intestinal microbiome, probiotics are an ideal intervention to treat AID in childhood. However, their efficacy is strictly related to strains and indications, and practitioners should take this information into account in clinical practice. This chapter summarizes the main mechanisms of action of probiotics in AID, with a focus on proof of efficacy supporting their use in prevention and treatment of childhood AID. The use of selected strains in appropriate doses is strongly recommended by guidelines of AID, based on compelling proofs of efficacy and safety. At present, therapy with probiotics of AID is probably the strongest indication for probiotic use in medicine. Their role in prevention of AID is however questionable in healthy population, whereas it should be considered in at-risk population. Evidence for prevention of diarrhea in day-care centers and communities is lacking, but consistent evidence supports efficacy in prevention of hospital acquired diarrhea. Finally, this chapter presents novelties on this topic, in particular the role of rotavirus immunization on probiotics effectiveness and the effect of probiotics and postbiotics on Covid-associated diarrhea.Overall: AID is the most convincing area for probiotic use in children with gastrointestinal disorders, and effective strains should be used early on after onset of symptoms.
{"title":"Acute Infectious Diarrhea.","authors":"Marco Poeta, Margherita Del Bene, Andrea Lo Vecchio, Alfredo Guarino","doi":"10.1007/978-3-031-58572-2_9","DOIUrl":"10.1007/978-3-031-58572-2_9","url":null,"abstract":"<p><p>Acute infectious diarrhea (AID) is one of the most common diseases in pediatric age with relevant burden both in high and in low-income countries. Thanks to their direct action on enterocyte functions and indirect actions on the mucosal and systemic immune system and on intestinal microbiome, probiotics are an ideal intervention to treat AID in childhood. However, their efficacy is strictly related to strains and indications, and practitioners should take this information into account in clinical practice. This chapter summarizes the main mechanisms of action of probiotics in AID, with a focus on proof of efficacy supporting their use in prevention and treatment of childhood AID. The use of selected strains in appropriate doses is strongly recommended by guidelines of AID, based on compelling proofs of efficacy and safety. At present, therapy with probiotics of AID is probably the strongest indication for probiotic use in medicine. Their role in prevention of AID is however questionable in healthy population, whereas it should be considered in at-risk population. Evidence for prevention of diarrhea in day-care centers and communities is lacking, but consistent evidence supports efficacy in prevention of hospital acquired diarrhea. Finally, this chapter presents novelties on this topic, in particular the role of rotavirus immunization on probiotics effectiveness and the effect of probiotics and postbiotics on Covid-associated diarrhea.Overall: AID is the most convincing area for probiotic use in children with gastrointestinal disorders, and effective strains should be used early on after onset of symptoms.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1449 ","pages":"143-156"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gum chewing is used in orofacial therapy to improve oral functions, such as a patient's chewing ability, bite force, tongue pressure, and lip closure strength. However, its effects on masseter muscle oxygen dynamics and muscle activity may vary with the hardness and features of the gum base. Therefore, when considering gum chewing for therapeutic purposes, it is essential to select gum of an appropriate hardness. This study aimed to elucidate the impact of gum hardness differences on masseter muscle tissue oxygen dynamics and muscle activity. We conducted a 120-s gum chewing study using three types of gum with different hardness levels on 11 healthy adult males. Each patient's masseter muscle tissue oxygen dynamics, muscle activity, and heart rate were measured, and the extent of masseter fatigue was assessed using a visual analogue scale (VAS). Per our findings, as gum hardness increased, significant reductions in oxygen saturation (StO2) and significant increases in deoxyhaemoglobin (Deoxy-Hb) concentrations were observed in masseter muscle tissue oxygen dynamics. Likewise, muscle activity, heart rate, and muscle fatigue (according to VAS) also increased significantly as gum hardness increased. The findings of this study reveal that increasing gum base hardness not only affects masseter muscle tissue oxygen dynamics but also increases muscle activity, masseter fatigue, and heart rate. When selecting gum for orofacial therapy involving gum chewing exercises, it is crucial to choose the appropriate gum.
{"title":"Effects of Different Gum Hardness on Masseter Muscle Activity During Gum Chewing: An NIRS Oximetry Study.","authors":"Takahiro Sakaue, Arata Tsutsui, Shinji Togo, Tomotaka Takeda, Kazunori Nakajima, Kenichi Fukuda","doi":"10.1007/978-3-031-67458-7_55","DOIUrl":"10.1007/978-3-031-67458-7_55","url":null,"abstract":"<p><p>Gum chewing is used in orofacial therapy to improve oral functions, such as a patient's chewing ability, bite force, tongue pressure, and lip closure strength. However, its effects on masseter muscle oxygen dynamics and muscle activity may vary with the hardness and features of the gum base. Therefore, when considering gum chewing for therapeutic purposes, it is essential to select gum of an appropriate hardness. This study aimed to elucidate the impact of gum hardness differences on masseter muscle tissue oxygen dynamics and muscle activity. We conducted a 120-s gum chewing study using three types of gum with different hardness levels on 11 healthy adult males. Each patient's masseter muscle tissue oxygen dynamics, muscle activity, and heart rate were measured, and the extent of masseter fatigue was assessed using a visual analogue scale (VAS). Per our findings, as gum hardness increased, significant reductions in oxygen saturation (StO<sub>2</sub>) and significant increases in deoxyhaemoglobin (Deoxy-Hb) concentrations were observed in masseter muscle tissue oxygen dynamics. Likewise, muscle activity, heart rate, and muscle fatigue (according to VAS) also increased significantly as gum hardness increased. The findings of this study reveal that increasing gum base hardness not only affects masseter muscle tissue oxygen dynamics but also increases muscle activity, masseter fatigue, and heart rate. When selecting gum for orofacial therapy involving gum chewing exercises, it is crucial to choose the appropriate gum.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1463 ","pages":"341-345"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We measured changes in blood flow and oxygenation in the brachioradialis muscle using near-infrared spectroscopy (NIRS) during reversal of rocuronium-induced muscle relaxation with administration of sugammadex in patients (n = 25) under general anaesthesia, to investigate whether reversal of muscle relaxant-induced muscle relaxation increases oxygen metabolism in skeletal muscle under general anaesthesia. NIRS measurements, including oxy-haemoglobin (Hb), deoxyHb, total Hb concentration, tissue oxygen index, and various cardiopulmonary parameters, were recorded at four timepoints: T0 (baseline), 3 min before sugammadex administration; T1, immediately before sugammadex administration; T2, at complete recovery of muscle contractility; and T3, 3 min after T2. All measured values at each timepoint were compared using multiple comparison tests. The median values (quartile deviation; QD) (μmol/L) of oxyHb and deoxyHb at T0, T1, T2, and T3 were 0, -0.01 (0.14), -1.15 (0.54), and -1.52 (0.54), and 0, 0.11 (0.06), 0.86 (0.5), and 1.36 (0.61), respectively. The levels of oxyHb were significantly lower and those of deoxyHb were significantly higher at T2 and T3 when compared to those at T1, respectively (P < 0.01). There were no significant changes in other measurements. These results suggest that reversal of rocuronium-induced muscle relaxation by sugammadex slightly increases oxygen metabolism in the brachioradialis muscle. This study might support the clinical finding that administration of neuromuscular blockers decreases whole body oxygen consumption in patients receiving mechanical ventilation under general anaesthesia.
{"title":"Reversal of Rocuronium-Induced Muscle Relaxation with Sugammadex Enhances Oxygen Metabolism in Skeletal Muscle.","authors":"Noriya Hirose, Akira Doshu-Kajiura, Miho Kijima, Miki Matsui, Yuko Tomita, Takeshi Maeda, Takahiro Suzuki","doi":"10.1007/978-3-031-67458-7_60","DOIUrl":"10.1007/978-3-031-67458-7_60","url":null,"abstract":"<p><p>We measured changes in blood flow and oxygenation in the brachioradialis muscle using near-infrared spectroscopy (NIRS) during reversal of rocuronium-induced muscle relaxation with administration of sugammadex in patients (n = 25) under general anaesthesia, to investigate whether reversal of muscle relaxant-induced muscle relaxation increases oxygen metabolism in skeletal muscle under general anaesthesia. NIRS measurements, including oxy-haemoglobin (Hb), deoxyHb, total Hb concentration, tissue oxygen index, and various cardiopulmonary parameters, were recorded at four timepoints: T0 (baseline), 3 min before sugammadex administration; T1, immediately before sugammadex administration; T2, at complete recovery of muscle contractility; and T3, 3 min after T2. All measured values at each timepoint were compared using multiple comparison tests. The median values (quartile deviation; QD) (μmol/L) of oxyHb and deoxyHb at T0, T1, T2, and T3 were 0, -0.01 (0.14), -1.15 (0.54), and -1.52 (0.54), and 0, 0.11 (0.06), 0.86 (0.5), and 1.36 (0.61), respectively. The levels of oxyHb were significantly lower and those of deoxyHb were significantly higher at T2 and T3 when compared to those at T1, respectively (P < 0.01). There were no significant changes in other measurements. These results suggest that reversal of rocuronium-induced muscle relaxation by sugammadex slightly increases oxygen metabolism in the brachioradialis muscle. This study might support the clinical finding that administration of neuromuscular blockers decreases whole body oxygen consumption in patients receiving mechanical ventilation under general anaesthesia.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1463 ","pages":"371-375"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1007/978-3-031-67458-7_48
A -M Lüchtenborg, H Piazena, A R Thomsen, P Vaupel
Mild hyperthermia at 39-43 °C for 30-60 min is applied locoregionally to improve the oxygenation status of recurrent breast cancers, thus enhancing the efficacy of radio-, chemo-, and immunotherapy. In this context, estimated (or even conflicting) data are often used in computational modelling of tumour oxygenation and simulation of O2 transport. In this chapter, we present information that may help to improve adjuvant thermotherapy delivered immediately prior to radiotherapy of recurrent breast cancers. Data are preferentially derived from clinical investigations; in some cases, measurements in experimental breast cancers are included.The biophysical properties presented for healthy, mostly postmenopausal, human breast (composite glandular-adipose-fibrous tissue) measured under normothermic (NT) conditions and in therapeutically heated breast cancers include tissue water content and tissue density. In general, averaged values of parameters reported for NT conditions are higher in breast cancers than in normal breast tissue, i.e., all ratios breast cancer/normal breast are >1. Mean values observed in breast cancers during mild hyperthermia (mHT) are consistently higher than those in NT tumours. Parameters determining convective transports in healthy breast tissue and breast cancer include blood flow rates, blood volume, exchanging water space, arterio-venous shunt flow, interstitial fluid flow rate, interstitial fluid pressure, microvascular permeability, interstitial hydraulic conductivity, and interstitial flow velocity. In general, averaged values of parameters measured under NT conditions are higher in breast cancers than in healthy breast. Except for interstitial fluid pressure, these values increase upon mHT treatment of cancers. Prime factors determining and describing the oxygenation status of the healthy breast, and in NT- versus mHT-treated breast cancers, include: oxygen (O2) delivery rates, O2- extractions, O2- consumption rates, subepidermal microvascular HbO2, tissue oxygen solubility, oxygen diffusion coefficients, mean O2 partial pressures pO2, hypoxic fractions HF <5 mmHg, oxygen enhancement ratio, and mitochondrial ROS production. With the exception of the mean pO2, O2 extraction rate and tissue O2 saturation all parameters listed are distinctly higher in breast cancers under NT conditions compared to normal breast. Mild hyperthermia results in therapeutically relevant improvements of the oxygenation status of cancers and enhances mitochondrial ROS production, thus improving radiosensitivity. Note: The oxygenation status of the healthy (postmenopausal) breast is very similar to that of the normal human subcutis.
{"title":"Key Biophysical and Physiological Properties Impacting the Oxygenation Status of Breast Cancers During Thermo-radiotherapy.","authors":"A -M Lüchtenborg, H Piazena, A R Thomsen, P Vaupel","doi":"10.1007/978-3-031-67458-7_48","DOIUrl":"10.1007/978-3-031-67458-7_48","url":null,"abstract":"<p><p>Mild hyperthermia at 39-43 °C for 30-60 min is applied locoregionally to improve the oxygenation status of recurrent breast cancers, thus enhancing the efficacy of radio-, chemo-, and immunotherapy. In this context, estimated (or even conflicting) data are often used in computational modelling of tumour oxygenation and simulation of O<sub>2</sub> transport. In this chapter, we present information that may help to improve adjuvant thermotherapy delivered immediately prior to radiotherapy of recurrent breast cancers. Data are preferentially derived from clinical investigations; in some cases, measurements in experimental breast cancers are included.The biophysical properties presented for healthy, mostly postmenopausal, human breast (composite glandular-adipose-fibrous tissue) measured under normothermic (NT) conditions and in therapeutically heated breast cancers include tissue water content and tissue density. In general, averaged values of parameters reported for NT conditions are higher in breast cancers than in normal breast tissue, i.e., all ratios breast cancer/normal breast are >1. Mean values observed in breast cancers during mild hyperthermia (mHT) are consistently higher than those in NT tumours. Parameters determining convective transports in healthy breast tissue and breast cancer include blood flow rates, blood volume, exchanging water space, arterio-venous shunt flow, interstitial fluid flow rate, interstitial fluid pressure, microvascular permeability, interstitial hydraulic conductivity, and interstitial flow velocity. In general, averaged values of parameters measured under NT conditions are higher in breast cancers than in healthy breast. Except for interstitial fluid pressure, these values increase upon mHT treatment of cancers. Prime factors determining and describing the oxygenation status of the healthy breast, and in NT- versus mHT-treated breast cancers, include: oxygen (O<sub>2</sub>) delivery rates, O<sub>2</sub>- extractions, O<sub>2</sub>- consumption rates, subepidermal microvascular HbO<sub>2</sub>, tissue oxygen solubility, oxygen diffusion coefficients, mean O<sub>2</sub> partial pressures pO<sub>2</sub>, hypoxic fractions HF <5 mmHg, oxygen enhancement ratio, and mitochondrial ROS production. With the exception of the mean pO<sub>2</sub>, O<sub>2</sub> extraction rate and tissue O<sub>2</sub> saturation all parameters listed are distinctly higher in breast cancers under NT conditions compared to normal breast. Mild hyperthermia results in therapeutically relevant improvements of the oxygenation status of cancers and enhances mitochondrial ROS production, thus improving radiosensitivity. Note: The oxygenation status of the healthy (postmenopausal) breast is very similar to that of the normal human subcutis.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1463 ","pages":"293-299"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1007/978-3-031-61939-7_20
Pavica Sheldon
This chapter provides an overview of how international students in the United States used media and interpersonal channels to communicate with family, friends, and each other during the COVID-19 pandemic. The chapter starts by discussing the challenges of international students during the health pandemic. It then provides a review of the role of media during a crisis. Factors influencing media use during the COVID-19 crisis include culture, personality, and time spent in a foreign country. Finally, the chapter ends by providing suggestions for how universities can better equip their international offices to deal with international students during challenging times such as the COVID-19 pandemic.
{"title":"Media and Interpersonal Channels Uses and Preferences Among International Students in the U.S. During the COVID-19 Pandemic.","authors":"Pavica Sheldon","doi":"10.1007/978-3-031-61939-7_20","DOIUrl":"10.1007/978-3-031-61939-7_20","url":null,"abstract":"<p><p>This chapter provides an overview of how international students in the United States used media and interpersonal channels to communicate with family, friends, and each other during the COVID-19 pandemic. The chapter starts by discussing the challenges of international students during the health pandemic. It then provides a review of the role of media during a crisis. Factors influencing media use during the COVID-19 crisis include culture, personality, and time spent in a foreign country. Finally, the chapter ends by providing suggestions for how universities can better equip their international offices to deal with international students during challenging times such as the COVID-19 pandemic.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1457 ","pages":"363-371"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent advances in neonatal intensive care have improved the survival rates of extremely low-birth-weight infants (ELBWIs). However, there has been no obvious improvement in the proportion of survivors without sequelae. Therefore, the development of appropriate management methods for ELBWIs in the neonatal intensive care unit is important to improve outcomes. In this study, we utilised time-domain near-infrared spectroscopy (TD-NIRS) for deep brain monitoring in premature infants in the clinical setting and measured the heads of three ELBWIs once weekly using a TD-NIRS system in transmittance mode. We found that optical signals transmitted through the head were detectable in all ELBWIs. We also confirmed that the total haemoglobin concentration and tissue oxygen saturation decreased in the first month after birth, while the reduced scattering coefficient was not correlated with postmenstrual age. We anticipate that this TD-NIRS technique will be useful for clinical assessment of deep brain tissues for appropriate management of cerebral circulation of ELBWIs in the neonatal intensive care unit.
{"title":"Cerebral Oxygen Monitoring in Extremely Low-Birth-Weight Infants Using Time-Domain Near-Infrared Spectroscopy in Transmittance Mode.","authors":"Hiroaki Suzuki, Toshiyuki Imanishi, Norihiro Suzuki, Teruhiro Okuyama, Shu Homma, Kenji Yoshimoto, Tomomi Iida, Tetsuya Mimura, Hiroko Wada, Etsuko Ohmae, Masaki Shimizu, Yukio Ueda","doi":"10.1007/978-3-031-67458-7_37","DOIUrl":"10.1007/978-3-031-67458-7_37","url":null,"abstract":"<p><p>Recent advances in neonatal intensive care have improved the survival rates of extremely low-birth-weight infants (ELBWIs). However, there has been no obvious improvement in the proportion of survivors without sequelae. Therefore, the development of appropriate management methods for ELBWIs in the neonatal intensive care unit is important to improve outcomes. In this study, we utilised time-domain near-infrared spectroscopy (TD-NIRS) for deep brain monitoring in premature infants in the clinical setting and measured the heads of three ELBWIs once weekly using a TD-NIRS system in transmittance mode. We found that optical signals transmitted through the head were detectable in all ELBWIs. We also confirmed that the total haemoglobin concentration and tissue oxygen saturation decreased in the first month after birth, while the reduced scattering coefficient was not correlated with postmenstrual age. We anticipate that this TD-NIRS technique will be useful for clinical assessment of deep brain tissues for appropriate management of cerebral circulation of ELBWIs in the neonatal intensive care unit.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1463 ","pages":"221-226"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1007/978-981-97-7288-9_6
Qingchen Zhu, Yichuan Xiao
The function of immune cells is delicately regulated under a variety of molecular networks. Transcriptional intermediary factor 1 (TIF1) family proteins, consisting of TRIM24, TRIM28 and TRIM33, share a highly conserved RING domain that is essential for the regulation of protein ubiquitination functioning as E3 ubiquitin ligases. TIF1 family proteins are diversely expressed in different types of immune cells, and participate in the regulation of various of cellular functions including chromosome modification, DNA repair, tumor progression, and immunity. In this review, we summarized current studies on TIF1 family proteins' functions in the modulation of immune cell development, anti-infection immunity, cancer immunology, inflammation, and autoimmune diseases.
{"title":"The Immune Modulatory Role of TIF1 Proteins.","authors":"Qingchen Zhu, Yichuan Xiao","doi":"10.1007/978-981-97-7288-9_6","DOIUrl":"10.1007/978-981-97-7288-9_6","url":null,"abstract":"<p><p>The function of immune cells is delicately regulated under a variety of molecular networks. Transcriptional intermediary factor 1 (TIF1) family proteins, consisting of TRIM24, TRIM28 and TRIM33, share a highly conserved RING domain that is essential for the regulation of protein ubiquitination functioning as E3 ubiquitin ligases. TIF1 family proteins are diversely expressed in different types of immune cells, and participate in the regulation of various of cellular functions including chromosome modification, DNA repair, tumor progression, and immunity. In this review, we summarized current studies on TIF1 family proteins' functions in the modulation of immune cell development, anti-infection immunity, cancer immunology, inflammation, and autoimmune diseases.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1466 ","pages":"89-99"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}