The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
{"title":"Mesenchymal Stem Cells in Cancer Therapy.","authors":"Züleyha Baran, Melisa Çetinkaya, Yusuf Baran","doi":"10.1007/5584_2024_824","DOIUrl":"https://doi.org/10.1007/5584_2024_824","url":null,"abstract":"<p><p>The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
{"title":"Lipid Metabolism as a Target Site in Pest Control.","authors":"Umut Toprak, Emre İnak, Ralf Nauen","doi":"10.1007/5584_2024_822","DOIUrl":"https://doi.org/10.1007/5584_2024_822","url":null,"abstract":"<p><p>Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of \"lipid biosynthesis inhibitors\", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Disorders of lipid metabolism such as obesity have become some of the most significant diseases of the twenty-first century. Despite these metabolic diseases affecting more than a third of the population in highly industrialized nations, the mechanisms underlying disease development remain poorly understood. Insect models, such as Drosophila melanogaster, offer a means of systematically examining conserved lipid metabolism and its pathology. Over the past several decades, Drosophila melanogaster has been used to greatly expand on our knowledge of metabolic disease, often taking advantage of the extensive genetic tools available to researchers. Additionally, Drosophila melanogaster has served and will continue to serve as a powerful tool for validating the results of genome-wide approaches to the study of diseases. This chapter explores the advancements of insect models in the study of lipid metabolism disorders as well as highlight opportunities for future areas of research.
{"title":"Insect Models to Study Human Lipid Metabolism Disorders.","authors":"Thomas B Rundell, Thomas J Baranski","doi":"10.1007/5584_2024_827","DOIUrl":"10.1007/5584_2024_827","url":null,"abstract":"<p><p>Disorders of lipid metabolism such as obesity have become some of the most significant diseases of the twenty-first century. Despite these metabolic diseases affecting more than a third of the population in highly industrialized nations, the mechanisms underlying disease development remain poorly understood. Insect models, such as Drosophila melanogaster, offer a means of systematically examining conserved lipid metabolism and its pathology. Over the past several decades, Drosophila melanogaster has been used to greatly expand on our knowledge of metabolic disease, often taking advantage of the extensive genetic tools available to researchers. Additionally, Drosophila melanogaster has served and will continue to serve as a powerful tool for validating the results of genome-wide approaches to the study of diseases. This chapter explores the advancements of insect models in the study of lipid metabolism disorders as well as highlight opportunities for future areas of research.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyanka Hilage, Mrunal N Damle, Rakesh Kumar Sharma, Meghnad G Joshi
The human endometrium, the innermost lining of the uterus, is the anatomic prerequisite for pregnancy. It is the only dynamic tissue that undergoes more than 400 cycles of regeneration throughout the reproductive life of women. Key to this function are endometrial stem cells as well as cell adhesion molecules. Melanoma cell adhesion molecule (MCAM/CD146/MUC18) is a membrane glycoprotein of the mucin family and a key cell adhesion protein, highly expressed by endometrial cells. CD146 is a significant molecule pivotal in endometrial physiology, assisting tissue regeneration and angiogenesis. Endometrium also acts as a culprit in causing several endometrial dysfunctions, such as endometriosis, endometrial hyperplasia, and endometrial carcinoma, due to interrupted molecular and functional mechanisms. Though most of the endometrial dysfunctions arise as a result of endocrine disturbance, it has a major pathological role associated with angiogenesis. It has already been proven that CD146 is a potential marker for the diagnosis of angiogenic dysfunctions and malignancy, including endometrial cancer. However, its mechanistic role in causing the pathology is a mystery. This chapter explores the role of CD146 in normal and pathological endometrial conditions and the therapeutic implications of CD146.
{"title":"Melanoma Cell Adhesion Molecule (CD 146) in Endometrial Physiology and Disorder.","authors":"Priyanka Hilage, Mrunal N Damle, Rakesh Kumar Sharma, Meghnad G Joshi","doi":"10.1007/5584_2024_826","DOIUrl":"https://doi.org/10.1007/5584_2024_826","url":null,"abstract":"<p><p>The human endometrium, the innermost lining of the uterus, is the anatomic prerequisite for pregnancy. It is the only dynamic tissue that undergoes more than 400 cycles of regeneration throughout the reproductive life of women. Key to this function are endometrial stem cells as well as cell adhesion molecules. Melanoma cell adhesion molecule (MCAM/CD146/MUC18) is a membrane glycoprotein of the mucin family and a key cell adhesion protein, highly expressed by endometrial cells. CD146 is a significant molecule pivotal in endometrial physiology, assisting tissue regeneration and angiogenesis. Endometrium also acts as a culprit in causing several endometrial dysfunctions, such as endometriosis, endometrial hyperplasia, and endometrial carcinoma, due to interrupted molecular and functional mechanisms. Though most of the endometrial dysfunctions arise as a result of endocrine disturbance, it has a major pathological role associated with angiogenesis. It has already been proven that CD146 is a potential marker for the diagnosis of angiogenic dysfunctions and malignancy, including endometrial cancer. However, its mechanistic role in causing the pathology is a mystery. This chapter explores the role of CD146 in normal and pathological endometrial conditions and the therapeutic implications of CD146.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.
{"title":"Insect Sterols and Steroids.","authors":"René Lafont, Laurence Dinan","doi":"10.1007/5584_2024_823","DOIUrl":"https://doi.org/10.1007/5584_2024_823","url":null,"abstract":"<p><p>Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA methylation is a dynamic and ubiquitous post-transcriptional modification that plays a pivotal role in regulating gene expression in various conditions like cancer, neurological disorders, cardiovascular diseases, viral infections, metabolic disorders, and autoimmune diseases. RNA methylation manifests across diverse RNA species including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), exerting pivotal roles in gene expression regulation and various biological phenomena. Aberrant activity of writer, eraser, and reader proteins enables dysregulated methylation landscape across diverse malignancy transcriptomes, frequently promoting cancer pathogenesis. Numerous oncogenic drivers, tumour suppressors, invasion/metastasis factors, and signalling cascade components undergo methylation changes that modulate respective mRNA stability, translation, splicing, transport, and protein-RNA interactions accordingly. Functional studies confirm methylation-dependent alterations drive proliferation, survival, motility, angiogenesis, stemness, metabolism, and therapeutic evasion programs systemically. Methyltransferase overexpression typifies certain breast, liver, gastric, and other carcinomas correlating with adverse clinical outcomes like diminished overall survival. Mapping efforts uncover nodal transcripts for targeted drug development against hyperactivated regulators including METTL3. Some erasers and readers also suitable lead candidates based on apparent synthetic lethality. Proteomic screens additionally highlight relevant methylation-sensitive effector pathways amenable to combinatorial blockade, reversing compensatory signalling mechanisms that facilitate solid tumour progression. Quantifying global methylation burdens and responsible enzymes clinically predicts patient prognosis, risk stratification for adjuvant therapy, and overall therapeutic responsiveness.
{"title":"Influence of RNA Methylation on Cancerous Cells: A Prospective Approach for Alteration of In Vivo Cellular Composition.","authors":"Manali Rupareliya, Pravin Shende","doi":"10.1007/5584_2024_820","DOIUrl":"https://doi.org/10.1007/5584_2024_820","url":null,"abstract":"<p><p>RNA methylation is a dynamic and ubiquitous post-transcriptional modification that plays a pivotal role in regulating gene expression in various conditions like cancer, neurological disorders, cardiovascular diseases, viral infections, metabolic disorders, and autoimmune diseases. RNA methylation manifests across diverse RNA species including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), exerting pivotal roles in gene expression regulation and various biological phenomena. Aberrant activity of writer, eraser, and reader proteins enables dysregulated methylation landscape across diverse malignancy transcriptomes, frequently promoting cancer pathogenesis. Numerous oncogenic drivers, tumour suppressors, invasion/metastasis factors, and signalling cascade components undergo methylation changes that modulate respective mRNA stability, translation, splicing, transport, and protein-RNA interactions accordingly. Functional studies confirm methylation-dependent alterations drive proliferation, survival, motility, angiogenesis, stemness, metabolism, and therapeutic evasion programs systemically. Methyltransferase overexpression typifies certain breast, liver, gastric, and other carcinomas correlating with adverse clinical outcomes like diminished overall survival. Mapping efforts uncover nodal transcripts for targeted drug development against hyperactivated regulators including METTL3. Some erasers and readers also suitable lead candidates based on apparent synthetic lethality. Proteomic screens additionally highlight relevant methylation-sensitive effector pathways amenable to combinatorial blockade, reversing compensatory signalling mechanisms that facilitate solid tumour progression. Quantifying global methylation burdens and responsible enzymes clinically predicts patient prognosis, risk stratification for adjuvant therapy, and overall therapeutic responsiveness.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvia Babighian, Maria Sole Zanella, Irene Gattazzo, Alessandro Galan, Caterina Gagliano, Fabiana D'Esposito, Marco Zeppieri
Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.
{"title":"Atrophic Macular Degeneration and Stem Cell Therapy: A Clinical Review.","authors":"Silvia Babighian, Maria Sole Zanella, Irene Gattazzo, Alessandro Galan, Caterina Gagliano, Fabiana D'Esposito, Marco Zeppieri","doi":"10.1007/5584_2024_819","DOIUrl":"https://doi.org/10.1007/5584_2024_819","url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbohydrates and lipids integrate into a complex metabolic network that is essential to maintain homeostasis. In insects, as in most metazoans, dietary carbohydrates are taken up as monosaccharides whose excess is toxic, even at relatively low concentrations. To cope with this toxicity, monosaccharides are stored either as glycogen or neutral lipids, the latter constituting a quasi-unlimited energy store. Breakdown of these stores in response to energy demand depends on insect species and on several physiological parameters. In this chapter, we review the multiple metabolic pathways and strategies linking carbohydrates and lipids that insects utilize to respond to nutrient availability, food scarcity or physiological activities.
{"title":"Lipid Metabolism in Relation to Carbohydrate Metabolism.","authors":"Perla Akiki, Pierre Delamotte, Jacques Montagne","doi":"10.1007/5584_2024_821","DOIUrl":"https://doi.org/10.1007/5584_2024_821","url":null,"abstract":"<p><p>Carbohydrates and lipids integrate into a complex metabolic network that is essential to maintain homeostasis. In insects, as in most metazoans, dietary carbohydrates are taken up as monosaccharides whose excess is toxic, even at relatively low concentrations. To cope with this toxicity, monosaccharides are stored either as glycogen or neutral lipids, the latter constituting a quasi-unlimited energy store. Breakdown of these stores in response to energy demand depends on insect species and on several physiological parameters. In this chapter, we review the multiple metabolic pathways and strategies linking carbohydrates and lipids that insects utilize to respond to nutrient availability, food scarcity or physiological activities.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco De Francesco, Andrea Sbarbati, Lindsey Alejandra Quintero Sierra, Nicola Zingaretti, Zahra Sarmadian, Pier Camillo Parodi, Giulia Ricci, Michele Riccio, Ali Mobasheri
Preadipocytes are formed during the 14th and 16th weeks of gestation. White adipose tissue, in particular, is generated in specific areas and thereby assembles after birth, rapidly increasing following the propagation of adipoblasts, which are considered the preadipocyte cell precursors. The second trimester of gestation is a fundamental phase of adipogenesis, and in the third trimester, adipocytes, albeit small may be present within the main deposition areas. In the course of late gestation, adipose tissue develops in the foetus and promotes the synthesis of large amounts of uncoupling protein 1, in similar quantities relative to differentiated brown adipose tissue. In mammals, differentiation occurs in two functionally different types of adipose cells: white adipose cells resulting from lipid storage and brown adipose cells from increased metabolic energy consumption. During skeletogenesis, synovial joints develop through the condensation of mesenchymal cells, which forms an insertional layer of flattened cells that umlaut skeletal elements, by sharing the same origin in the development of synovium. Peri-articular fat pads possess structural similarity with body subcutaneous white adipose tissue; however, they exhibit a distinct metabolic function due to the micro-environmental cues in which they are embedded. Fat pads are an important component of the synovial joint and play a key role in the maintenance of joint homeostasis. They are also implicated in pathological states such as osteoarthritis.In this paper we explore the therapeutic potential of adipocyte tissue mesenchymal precursor-based stem cell therapy linking it back to the anatomic origin of adipose tissue.
{"title":"Anatomy, Histology, and Embryonic Origin of Adipose Tissue: Insights to Understand Adipose Tissue Homofunctionality in Regeneration and Therapies.","authors":"Francesco De Francesco, Andrea Sbarbati, Lindsey Alejandra Quintero Sierra, Nicola Zingaretti, Zahra Sarmadian, Pier Camillo Parodi, Giulia Ricci, Michele Riccio, Ali Mobasheri","doi":"10.1007/5584_2024_801","DOIUrl":"https://doi.org/10.1007/5584_2024_801","url":null,"abstract":"<p><p>Preadipocytes are formed during the 14th and 16th weeks of gestation. White adipose tissue, in particular, is generated in specific areas and thereby assembles after birth, rapidly increasing following the propagation of adipoblasts, which are considered the preadipocyte cell precursors. The second trimester of gestation is a fundamental phase of adipogenesis, and in the third trimester, adipocytes, albeit small may be present within the main deposition areas. In the course of late gestation, adipose tissue develops in the foetus and promotes the synthesis of large amounts of uncoupling protein 1, in similar quantities relative to differentiated brown adipose tissue. In mammals, differentiation occurs in two functionally different types of adipose cells: white adipose cells resulting from lipid storage and brown adipose cells from increased metabolic energy consumption. During skeletogenesis, synovial joints develop through the condensation of mesenchymal cells, which forms an insertional layer of flattened cells that umlaut skeletal elements, by sharing the same origin in the development of synovium. Peri-articular fat pads possess structural similarity with body subcutaneous white adipose tissue; however, they exhibit a distinct metabolic function due to the micro-environmental cues in which they are embedded. Fat pads are an important component of the synovial joint and play a key role in the maintenance of joint homeostasis. They are also implicated in pathological states such as osteoarthritis.In this paper we explore the therapeutic potential of adipocyte tissue mesenchymal precursor-based stem cell therapy linking it back to the anatomic origin of adipose tissue.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferit Bayram, Sabire Senem Kilic, Volkan Aydin, Ahmet Akici, Korkut Ulucan, Tunc Akkoc
Medication-related osteonecrosis of the jaw (MRONJ) is a serious condition associated with the use of antiresorptive and antiangiogenic medications. Despite extensive research, the pathophysiology of MRONJ remains poorly understood. Bibliometric analysis provides insights into the academic impact of research, helping identify influential works and emerging trends in this field. This study employed a bibliometric analysis of MRONJ publications indexed in Web of Science from 2003 to 2023. The analysis included English-language articles and utilized the VOSviewer, R Studio Bibliometrix package, and Graphpad to evaluate citation counts, publication trends, and collaboration patterns. This study unveils the current situation of the MRONJ research, addressing well-recognized safety issues of antiresorptive and antiangiogenic agents. Our findings may suggest that the overall trend of the MRONJ research continues to evolve and is not likely to reach its peak or plateau yet. We believe that our work will help to identify gaps in the literature and future research directions, contributing to a better understanding of MRONJ management.
药物相关性颌骨坏死(MRONJ)是一种与使用抗骨质吸收和抗血管生成药物相关的严重疾病。尽管进行了大量研究,但人们对 MRONJ 的病理生理学仍然知之甚少。文献计量学分析可深入了解研究的学术影响力,有助于识别该领域有影响力的著作和新兴趋势。本研究采用文献计量学分析方法,对2003年至2023年Web of Science收录的MRONJ出版物进行了分析。分析包括英文文章,并利用 VOSviewer、R Studio Bibliometrix 软件包和 Graphpad 评估了引文数量、出版趋势和合作模式。本研究揭示了MRONJ研究的现状,探讨了公认的抗骨吸收剂和抗血管生成剂的安全性问题。我们的研究结果可能表明,MRONJ 研究的总体趋势仍在继续发展,还不可能达到顶峰或高原。我们相信,我们的工作将有助于找出文献中的空白和未来的研究方向,从而有助于更好地理解 MRONJ 的治疗。
{"title":"Medication-Related Osteonecrosis of the Jaw: Bibliometric Analysis from 2003 to 2023.","authors":"Ferit Bayram, Sabire Senem Kilic, Volkan Aydin, Ahmet Akici, Korkut Ulucan, Tunc Akkoc","doi":"10.1007/5584_2024_818","DOIUrl":"https://doi.org/10.1007/5584_2024_818","url":null,"abstract":"<p><p>Medication-related osteonecrosis of the jaw (MRONJ) is a serious condition associated with the use of antiresorptive and antiangiogenic medications. Despite extensive research, the pathophysiology of MRONJ remains poorly understood. Bibliometric analysis provides insights into the academic impact of research, helping identify influential works and emerging trends in this field. This study employed a bibliometric analysis of MRONJ publications indexed in Web of Science from 2003 to 2023. The analysis included English-language articles and utilized the VOSviewer, R Studio Bibliometrix package, and Graphpad to evaluate citation counts, publication trends, and collaboration patterns. This study unveils the current situation of the MRONJ research, addressing well-recognized safety issues of antiresorptive and antiangiogenic agents. Our findings may suggest that the overall trend of the MRONJ research continues to evolve and is not likely to reach its peak or plateau yet. We believe that our work will help to identify gaps in the literature and future research directions, contributing to a better understanding of MRONJ management.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}