Pub Date : 2023-01-01DOI: 10.1016/j.crneur.2023.100116
Shahriar SheikhBahaei , Marissa Millwater , Gerald A. Maguire
Childhood-onset fluency disorder, commonly referred to as stuttering, affects over 70 million adults worldwide. While stuttering predominantly initiates during childhood and is more prevalent in males, it presents consistent symptoms during conversational speech. Despite these common clinical manifestations, evidence suggests that stuttering, may arise from different etiologies, emphasizing the need for personalized therapy approaches. Current research models often regard the stuttering population as a singular, homogenous group, potentially overlooking the inherent heterogeneity. This perspective consolidates both historical and recent observations to emphasize that stuttering is a heterogeneous condition with diverse causes. As such, it is crucial that both therapeutic research and clinical practices consider the potential for varied etiologies leading to stuttering. Recognizing stuttering as a spectrum disorder embraces its inherent variability, allowing for a more nuanced categorization of individuals based on the underlying causes. This perspective aligns with the principles of precision medicine, advocating for tailored treatments for distinct subgroups of people who stutter, ultimately leading to personalized therapeutic approaches.
{"title":"Stuttering as a spectrum disorder: A hypothesis","authors":"Shahriar SheikhBahaei , Marissa Millwater , Gerald A. Maguire","doi":"10.1016/j.crneur.2023.100116","DOIUrl":"https://doi.org/10.1016/j.crneur.2023.100116","url":null,"abstract":"<div><p>Childhood-onset fluency disorder, commonly referred to as stuttering, affects over 70 million adults worldwide. While stuttering predominantly initiates during childhood and is more prevalent in males, it presents consistent symptoms during conversational speech. Despite these common clinical manifestations, evidence suggests that stuttering, may arise from different etiologies, emphasizing the need for personalized therapy approaches. Current research models often regard the stuttering population as a singular, homogenous group, potentially overlooking the inherent heterogeneity. This perspective consolidates both historical and recent observations to emphasize that stuttering is a heterogeneous condition with diverse causes. As such, it is crucial that both therapeutic research and clinical practices consider the potential for varied etiologies leading to stuttering. Recognizing stuttering as a spectrum disorder embraces its inherent variability, allowing for a more nuanced categorization of individuals based on the underlying causes. This perspective aligns with the principles of precision medicine, advocating for tailored treatments for distinct subgroups of people who stutter, ultimately leading to personalized therapeutic approaches.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"5 ","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X2300044X/pdfft?md5=e8883614b16b4280c536d3e0f0345e8b&pid=1-s2.0-S2665945X2300044X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91989990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.crneur.2022.100068
Camila Saggioro de Figueiredo , Ícaro Raony , Simone Vidal Medina , Eliezer de Mello Silva , Aline Araujo dos Santos , Elizabeth Giestal-de-Araujo
Insulin-like growth factor-1 (IGF-1) plays critical roles in the development of the central nervous system (CNS), including the retina, regulating cell proliferation, differentiation, and survival. Here, we investigated the role of IGF-1 on retinal cell proliferation using primary cultures from rat neural retina. Our data show that IGF-1 stimulates retinal cell proliferation and regulates the expression of neurotrophic factors, such as interleukin-4 and brain-derived neurotrophic factor. In addition, our results indicates that IGF-1-induced retinal cell proliferation requires activation of multiple signaling pathways, including phosphatidylinositol 3-kinase, protein kinase Src, phospholipase-C, protein kinase C delta, and mitogen-activated protein kinase pathways. We further show that activation of matrix metalloproteinases and epidermal growth factor receptor is also necessary for IGF-1 enhancing retinal cell proliferation. Overall, these results unveil potential mechanisms by which IGF-1 ensures retinal cell proliferation and support the notion that manipulation of IGF-1 signaling may be beneficial in CNS disorders associated with abnormal cell proliferation.
{"title":"Insulin-like growth factor-1 stimulates retinal cell proliferation via activation of multiple signaling pathways","authors":"Camila Saggioro de Figueiredo , Ícaro Raony , Simone Vidal Medina , Eliezer de Mello Silva , Aline Araujo dos Santos , Elizabeth Giestal-de-Araujo","doi":"10.1016/j.crneur.2022.100068","DOIUrl":"10.1016/j.crneur.2022.100068","url":null,"abstract":"<div><p>Insulin-like growth factor-1 (IGF-1) plays critical roles in the development of the central nervous system (CNS), including the retina, regulating cell proliferation, differentiation, and survival. Here, we investigated the role of IGF-1 on retinal cell proliferation using primary cultures from rat neural retina. Our data show that IGF-1 stimulates retinal cell proliferation and regulates the expression of neurotrophic factors, such as interleukin-4 and brain-derived neurotrophic factor. In addition, our results indicates that IGF-1-induced retinal cell proliferation requires activation of multiple signaling pathways, including phosphatidylinositol 3-kinase, protein kinase Src, phospholipase-C, protein kinase C delta, and mitogen-activated protein kinase pathways. We further show that activation of matrix metalloproteinases and epidermal growth factor receptor is also necessary for IGF-1 enhancing retinal cell proliferation. Overall, these results unveil potential mechanisms by which IGF-1 ensures retinal cell proliferation and support the notion that manipulation of IGF-1 signaling may be beneficial in CNS disorders associated with abnormal cell proliferation.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"4 ","pages":"Article 100068"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/ee/main.PMC9800307.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10458332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.crneur.2022.100072
Adriana K. Cushnie , Daniel N. Bullock , Ana M.G. Manea , Wei Tang , Jan Zimmermann , Sarah R. Heilbronner
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are engineered receptors that allow for genetically targeted, reversible manipulation of cellular activity via systemic drug administration. DREADD induced manipulations are initiated via the binding of an actuator ligand. Therefore, the use of DREADDs is contingent on the availability of actuator ligands. Actuator ligands low-dose clozapine (CLZ) and deschloroclozapine (DCZ) are highly selective for DREADDs, and, upon binding, induce physiological and behavioral changes in rodents and nonhuman primates (NHPs). Despite this reported specificity, both CLZ and DCZ have partial affinity for a variety of endogenous receptors and can induce dose-specific changes even in naïve animals. As such, this study aimed to examine the effects of CLZ and DCZ on resting-state functional connectivity (rs-FC) and intrinsic neural timescales (INTs) in naïve NHPs. In doing so, we evaluated whether CLZ and DCZ – in the absence of DREADDs – are inert by examining these ligands’ effects on the intrinsic functional properties of the brain. Low-dose DCZ did not induce consistent changes in rs-FC or INTs prior to the expression of DREADDs; however, a high dose resulted in subject-specific changes in rs-FC and INTs. In contrast, CLZ administration induced consistent changes in rs-FC and INTs prior to DREADD expression in our subjects. Our results caution against the use of CLZ by explicitly demonstrating the impact of off-target effects that can confound experimental results. Altogether, these data endorse the use of low dose DCZ for future DREADD-based experiments.
{"title":"The use of chemogenetic actuator ligands in nonhuman primate DREADDs-fMRI","authors":"Adriana K. Cushnie , Daniel N. Bullock , Ana M.G. Manea , Wei Tang , Jan Zimmermann , Sarah R. Heilbronner","doi":"10.1016/j.crneur.2022.100072","DOIUrl":"10.1016/j.crneur.2022.100072","url":null,"abstract":"<div><p>Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are engineered receptors that allow for genetically targeted, reversible manipulation of cellular activity via systemic drug administration. DREADD induced manipulations are initiated via the binding of an actuator ligand. Therefore, the use of DREADDs is contingent on the availability of actuator ligands. Actuator ligands low-dose clozapine (CLZ) and deschloroclozapine (DCZ) are highly selective for DREADDs, and, upon binding, induce physiological and behavioral changes in rodents and nonhuman primates (NHPs). Despite this reported specificity, both CLZ and DCZ have partial affinity for a variety of endogenous receptors and can induce dose-specific changes even in naïve animals. As such, this study aimed to examine the effects of CLZ and DCZ on resting-state functional connectivity (rs-FC) and intrinsic neural timescales (INTs) in naïve NHPs. In doing so, we evaluated whether CLZ and DCZ – in the absence of DREADDs – are inert by examining these ligands’ effects on the intrinsic functional properties of the brain. Low-dose DCZ did not induce consistent changes in rs-FC or INTs prior to the expression of DREADDs; however, a high dose resulted in subject-specific changes in rs-FC and INTs. In contrast, CLZ administration induced consistent changes in rs-FC and INTs prior to DREADD expression in our subjects. Our results caution against the use of CLZ by explicitly demonstrating the impact of off-target effects that can confound experimental results. Altogether, these data endorse the use of low dose DCZ for future DREADD-based experiments.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"4 ","pages":"Article 100072"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/ee/main.PMC9860110.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9546923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.crneur.2022.100071
Yuri B. Saalmann , Sima Mofakham , Charles B. Mikell , Petar M. Djuric
Neurological and psychiatric disorders typically result from dysfunction across multiple neural circuits. Most of these disorders lack a satisfactory neuromodulation treatment. However, deep brain stimulation (DBS) has been successful in a limited number of disorders; DBS typically targets one or two brain areas with single contacts on relatively large electrodes, allowing for only coarse modulation of circuit function. Because of the dysfunction in distributed neural circuits – each requiring fine, tailored modulation – that characterizes most neuropsychiatric disorders, this approach holds limited promise. To develop the next generation of neuromodulation therapies, we will have to achieve fine-grained, closed-loop control over multiple neural circuits. Recent work has demonstrated spatial and frequency selectivity using microstimulation with many small, closely-spaced contacts, mimicking endogenous neural dynamics. Using custom electrode design and stimulation parameters, it should be possible to achieve bidirectional control over behavioral outcomes, such as increasing or decreasing arousal during central thalamic stimulation. Here, we discuss one possible approach, which we term microscale multicircuit brain stimulation (MMBS). We discuss how machine learning leverages behavioral and neural data to find optimal stimulation parameters across multiple contacts, to drive the brain towards desired states associated with behavioral goals. We expound a mathematical framework for MMBS, where behavioral and neural responses adjust the model in real-time, allowing us to adjust stimulation in real-time. These technologies will be critical to the development of the next generation of neurostimulation therapies, which will allow us to treat problems like disorders of consciousness and cognition.
{"title":"Microscale multicircuit brain stimulation: Achieving real-time brain state control for novel applications","authors":"Yuri B. Saalmann , Sima Mofakham , Charles B. Mikell , Petar M. Djuric","doi":"10.1016/j.crneur.2022.100071","DOIUrl":"10.1016/j.crneur.2022.100071","url":null,"abstract":"<div><p>Neurological and psychiatric disorders typically result from dysfunction across multiple neural circuits. Most of these disorders lack a satisfactory neuromodulation treatment. However, deep brain stimulation (DBS) has been successful in a limited number of disorders; DBS typically targets one or two brain areas with single contacts on relatively large electrodes, allowing for only coarse modulation of circuit function. Because of the dysfunction in distributed neural circuits – each requiring fine, tailored modulation – that characterizes most neuropsychiatric disorders, this approach holds limited promise. To develop the next generation of neuromodulation therapies, we will have to achieve fine-grained, closed-loop control over multiple neural circuits. Recent work has demonstrated spatial and frequency selectivity using microstimulation with many small, closely-spaced contacts, mimicking endogenous neural dynamics. Using custom electrode design and stimulation parameters, it should be possible to achieve bidirectional control over behavioral outcomes, such as increasing or decreasing arousal during central thalamic stimulation. Here, we discuss one possible approach, which we term microscale multicircuit brain stimulation (MMBS). We discuss how machine learning leverages behavioral and neural data to find optimal stimulation parameters across multiple contacts, to drive the brain towards desired states associated with behavioral goals. We expound a mathematical framework for MMBS, where behavioral and neural responses adjust the model in real-time, allowing us to adjust stimulation in real-time. These technologies will be critical to the development of the next generation of neurostimulation therapies, which will allow us to treat problems like disorders of consciousness and cognition.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"4 ","pages":"Article 100071"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10564607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.crneur.2023.100075
Miriam Heynckes , Agustin Lage-Castellanos , Peter De Weerd , Elia Formisano , Federico De Martino
In everyday life, the processing of acoustic information allows us to react to subtle changes in the auditory scene. Yet even when closely attending to sounds in the context of a task, we occasionally miss task-relevant features. The neural computations that underlie our ability to detect behavioral relevant sound changes are thought to be grounded in both feedforward and feedback processes within the auditory hierarchy. Here, we assessed the role of feedforward and feedback contributions in primary and non-primary auditory areas during behavioral detection of target sounds using submillimeter spatial resolution functional magnetic resonance imaging (fMRI) at high-fields (7 T) in humans. We demonstrate that the successful detection of subtle temporal shifts in target sounds leads to a selective increase of activation in superficial layers of primary auditory cortex (PAC). These results indicate that feedback signals reaching as far back as PAC may be relevant to the detection of targets in the auditory scene.
{"title":"Layer-specific correlates of detected and undetected auditory targets during attention","authors":"Miriam Heynckes , Agustin Lage-Castellanos , Peter De Weerd , Elia Formisano , Federico De Martino","doi":"10.1016/j.crneur.2023.100075","DOIUrl":"10.1016/j.crneur.2023.100075","url":null,"abstract":"<div><p>In everyday life, the processing of acoustic information allows us to react to subtle changes in the auditory scene. Yet even when closely attending to sounds in the context of a task, we occasionally miss task-relevant features. The neural computations that underlie our ability to detect behavioral relevant sound changes are thought to be grounded in both feedforward and feedback processes within the auditory hierarchy. Here, we assessed the role of feedforward and feedback contributions in primary and non-primary auditory areas during behavioral detection of target sounds using submillimeter spatial resolution functional magnetic resonance imaging (fMRI) at high-fields (7 T) in humans. We demonstrate that the successful detection of subtle temporal shifts in target sounds leads to a selective increase of activation in superficial layers of primary auditory cortex (PAC). These results indicate that feedback signals reaching as far back as PAC may be relevant to the detection of targets in the auditory scene.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"4 ","pages":"Article 100075"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9a/ba/main.PMC9900365.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10742047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.crneur.2023.100108
Jessalyn Pla-Tenorio , Angela M. Roig , Paulina A. García-Cesaní , Luis A. Santiago , Marian T. Sepulveda-Orengo , Richard J. Noel Jr.
The roles of astrocytes as reservoirs and producers of a subset of viral proteins in the HIV infected brain have been studied extensively as a key to understanding HIV-associated neurocognitive disorders (HAND). However, their comprehensive role in the context of intersecting substance use and neurocircuitry of the reward pathway and HAND has yet to be fully explained. Use of methamphetamines, cocaine, or opioids in the context of HIV infection have been shown to lead to a faster progression of HAND. Glutamatergic, dopaminergic, and GABAergic systems are implicated in the development of HAND-induced cognitive impairments. A thorough review of scientific literature exploring the variety of mechanisms in which these drugs exert their effects on the HIV brain and astrocytes has revealed marked areas of convergence in overexcitation leading to increased drug-seeking behavior, inflammation, apoptosis, and irreversible neurotoxicity. The present review investigates astrocytes, the neural pathways, and mechanisms of drug disruption that ultimately play a larger holistic role in terms of HIV progression and drug use. There are opportunities for future research, therapeutic intervention, and preventive strategies to diminish HAND in the subset population of patients with HIV and substance use disorder.
{"title":"Astrocytes: Role in pathogenesis and effect of commonly misused drugs in the HIV infected brain","authors":"Jessalyn Pla-Tenorio , Angela M. Roig , Paulina A. García-Cesaní , Luis A. Santiago , Marian T. Sepulveda-Orengo , Richard J. Noel Jr.","doi":"10.1016/j.crneur.2023.100108","DOIUrl":"https://doi.org/10.1016/j.crneur.2023.100108","url":null,"abstract":"<div><p>The roles of astrocytes as reservoirs and producers of a subset of viral proteins in the HIV infected brain have been studied extensively as a key to understanding HIV-associated neurocognitive disorders (HAND). However, their comprehensive role in the context of intersecting substance use and neurocircuitry of the reward pathway and HAND has yet to be fully explained. Use of methamphetamines, cocaine, or opioids in the context of HIV infection have been shown to lead to a faster progression of HAND. Glutamatergic, dopaminergic, and GABAergic systems are implicated in the development of HAND-induced cognitive impairments. A thorough review of scientific literature exploring the variety of mechanisms in which these drugs exert their effects on the HIV brain and astrocytes has revealed marked areas of convergence in overexcitation leading to increased drug-seeking behavior, inflammation, apoptosis, and irreversible neurotoxicity. The present review investigates astrocytes, the neural pathways, and mechanisms of drug disruption that ultimately play a larger holistic role in terms of HIV progression and drug use. There are opportunities for future research, therapeutic intervention, and preventive strategies to diminish HAND in the subset population of patients with HIV and substance use disorder.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"5 ","pages":"Article 100108"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49774771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.crneur.2023.100112
Chantal A. Pileggi , Gaganvir Parmar , Hussein Elkhatib , Corina M. Stewart , Irina Alecu , Marceline Côté , Steffany A.L. Bennett , Jagdeep K. Sandhu , Miroslava Cuperlovic-Culf , Mary-Ellen Harper
SARS-CoV-2 infection is associated with both acute and post-acute neurological symptoms. Emerging evidence suggests that SARS-CoV-2 can alter mitochondrial metabolism, suggesting that changes in brain metabolism may contribute to the development of acute and post-acute neurological complications. Monoamine oxidase B (MAO-B) is a flavoenzyme located on the outer mitochondrial membrane that catalyzes the oxidative deamination of monoamine neurotransmitters. Computational analyses have revealed high similarity between the SARS-CoV-2 spike glycoprotein receptor binding domain on the ACE2 receptor and MAO-B, leading to the hypothesis that SARS-CoV-2 spike glycoprotein may alter neurotransmitter metabolism by interacting with MAO-B. Our results empirically establish that the SARS-CoV-2 spike glycoprotein interacts with MAO-B, leading to increased MAO-B activity in SH-SY5Y neuron-like cells. Common to neurodegenerative disease pathophysiological mechanisms, we also demonstrate that the spike glycoprotein impairs mitochondrial bioenergetics, induces oxidative stress, and perturbs the degradation of depolarized aberrant mitochondria through mitophagy. Our findings also demonstrate that SH-SY5Y neuron-like cells expressing the SARS-CoV-2 spike protein were more susceptible to MPTP-induced necrosis, likely necroptosis. Together, these results reveal novel mechanisms that may contribute to SARS-CoV-2-induced neurodegeneration.
{"title":"The SARS-CoV-2 spike glycoprotein interacts with MAO-B and impairs mitochondrial energetics","authors":"Chantal A. Pileggi , Gaganvir Parmar , Hussein Elkhatib , Corina M. Stewart , Irina Alecu , Marceline Côté , Steffany A.L. Bennett , Jagdeep K. Sandhu , Miroslava Cuperlovic-Culf , Mary-Ellen Harper","doi":"10.1016/j.crneur.2023.100112","DOIUrl":"https://doi.org/10.1016/j.crneur.2023.100112","url":null,"abstract":"<div><p>SARS-CoV-2 infection is associated with both acute and post-acute neurological symptoms. Emerging evidence suggests that SARS-CoV-2 can alter mitochondrial metabolism, suggesting that changes in brain metabolism may contribute to the development of acute and post-acute neurological complications. Monoamine oxidase B (MAO-B) is a flavoenzyme located on the outer mitochondrial membrane that catalyzes the oxidative deamination of monoamine neurotransmitters. Computational analyses have revealed high similarity between the SARS-CoV-2 spike glycoprotein receptor binding domain on the ACE2 receptor and MAO-B, leading to the hypothesis that SARS-CoV-2 spike glycoprotein may alter neurotransmitter metabolism by interacting with MAO-B. Our results empirically establish that the SARS-CoV-2 spike glycoprotein interacts with MAO-B, leading to increased MAO-B activity in SH-SY5Y neuron-like cells. Common to neurodegenerative disease pathophysiological mechanisms, we also demonstrate that the spike glycoprotein impairs mitochondrial bioenergetics, induces oxidative stress, and perturbs the degradation of depolarized aberrant mitochondria through mitophagy. Our findings also demonstrate that SH-SY5Y neuron-like cells expressing the SARS-CoV-2 spike protein were more susceptible to MPTP-induced necrosis, likely necroptosis. Together, these results reveal novel mechanisms that may contribute to SARS-CoV-2-induced neurodegeneration.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"5 ","pages":"Article 100112"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49780847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.crneur.2023.100089
Manzar Ashtari , Philip Cook , Mikhail Lipin , Yinxi Yu , Gui-Shuang Ying , Albert Maguire , Jean Bennett , James Gee , Hui Zhang
The impact of changes in visual input on neuronal circuitry is complex and much of our knowledge on human brain plasticity of the visual systems comes from animal studies. Reinstating vision in a group of patients with low vision through retinal gene therapy creates a unique opportunity to dynamically study the underlying process responsible for brain plasticity. Historically, increases in the axonal myelination of the visual pathway has been the biomarker for brain plasticity. Here, we demonstrate that to reach the long-term effects of myelination increase, the human brain may undergo demyelination as part of a plasticity process. The maximum change in dendritic arborization of the primary visual cortex and the neurite density along the geniculostriate tracks occurred at three months (3MO) post intervention, in line with timing for the peak changes in postnatal synaptogenesis within the visual cortex reported in animal studies. The maximum change at 3MO for both the gray and white matter significantly correlated with patients’ clinical responses to light stimulations called full field sensitivity threshold (FST). Our results shed a new light on the underlying process of brain plasticity by challenging the concept of increase myelination being the hallmark of brain plasticity and instead reinforcing the idea of signal speed optimization as a dynamic process for brain plasticity.
视觉输入的变化对神经回路的影响是复杂的,我们对人类大脑视觉系统可塑性的了解大多来自动物研究。通过视网膜基因治疗恢复一组低视力患者的视力,为动态研究大脑可塑性的潜在过程创造了一个独特的机会。历史上,视觉通路轴突髓鞘形成的增加一直是大脑可塑性的生物标志物。在这里,我们证明,为了达到髓鞘形成增加的长期影响,人类大脑可能经历脱髓鞘作为可塑性过程的一部分。干预后3个月,初级视觉皮层树突树突和沿genullostriate轨迹的神经突密度发生最大变化,与动物研究中报道的出生后视觉皮层突触发生峰值变化的时间一致。3MO时灰质和白质的最大变化与患者对光刺激的临床反应显著相关,称为全场敏感阈值(full field sensitivity threshold, FST)。我们的研究结果通过挑战髓鞘形成增加是大脑可塑性标志的概念,而不是强化信号速度优化是大脑可塑性动态过程的想法,为大脑可塑性的潜在过程提供了新的视角。
{"title":"Dynamic structural remodeling of the human visual system prompted by bilateral retinal gene therapy","authors":"Manzar Ashtari , Philip Cook , Mikhail Lipin , Yinxi Yu , Gui-Shuang Ying , Albert Maguire , Jean Bennett , James Gee , Hui Zhang","doi":"10.1016/j.crneur.2023.100089","DOIUrl":"10.1016/j.crneur.2023.100089","url":null,"abstract":"<div><p>The impact of changes in visual input on neuronal circuitry is complex and much of our knowledge on human brain plasticity of the visual systems comes from animal studies. Reinstating vision in a group of patients with low vision through retinal gene therapy creates a unique opportunity to dynamically study the underlying process responsible for brain plasticity. Historically, increases in the axonal myelination of the visual pathway has been the biomarker for brain plasticity. Here, we demonstrate that to reach the long-term effects of myelination increase, the human brain may undergo demyelination as part of a plasticity process. The maximum change in dendritic arborization of the primary visual cortex and the neurite density along the geniculostriate tracks occurred at three months (3MO) post intervention, in line with timing for the peak changes in postnatal synaptogenesis within the visual cortex reported in animal studies. The maximum change at 3MO for both the gray and white matter significantly correlated with patients’ clinical responses to light stimulations called full field sensitivity threshold (FST). Our results shed a new light on the underlying process of brain plasticity by challenging the concept of increase myelination being the hallmark of brain plasticity and instead reinforcing the idea of signal speed optimization as a dynamic process for brain plasticity.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"4 ","pages":"Article 100089"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/27/b3/main.PMC10313860.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9745786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.crneur.2023.100110
Chi Chen , Hugo Cruces-Solís , Alexandra Ertman , Livia de Hoz
Our environment is made of a myriad of stimuli present in combinations often patterned in predictable ways. For example, there is a strong association between where we are and the sounds we hear. Like many environmental patterns, sound-context associations are learned implicitly, in an unsupervised manner, and are highly informative and predictive of normality. Yet, we know little about where and how unsupervised sound-context associations are coded in the brain. Here we measured plasticity in the auditory midbrain of mice living over days in an enriched task-less environment in which entering a context triggered sound with different degrees of predictability. Plasticity in the auditory midbrain, a hub of auditory input and multimodal feedback, developed over days and reflected learning of contextual information in a manner that depended on the predictability of the sound-context association and not on reinforcement. Plasticity manifested as an increase in response gain and tuning shift that correlated with a general increase in neuronal frequency discrimination. Thus, the auditory midbrain is sensitive to unsupervised predictable sound-context associations, revealing a subcortical engagement in the detection of contextual sounds. By increasing frequency resolution, this detection might facilitate the processing of behaviorally relevant foreground information described to occur in cortical auditory structures.
{"title":"Subcortical coding of predictable and unsupervised sound-context associations","authors":"Chi Chen , Hugo Cruces-Solís , Alexandra Ertman , Livia de Hoz","doi":"10.1016/j.crneur.2023.100110","DOIUrl":"https://doi.org/10.1016/j.crneur.2023.100110","url":null,"abstract":"<div><p>Our environment is made of a myriad of stimuli present in combinations often patterned in predictable ways. For example, there is a strong association between where we are and the sounds we hear. Like many environmental patterns, sound-context associations are learned implicitly, in an unsupervised manner, and are highly informative and predictive of normality. Yet, we know little about where and how unsupervised sound-context associations are coded in the brain. Here we measured plasticity in the auditory midbrain of mice living over days in an enriched task-less environment in which entering a context triggered sound with different degrees of predictability. Plasticity in the auditory midbrain, a hub of auditory input and multimodal feedback, developed over days and reflected learning of contextual information in a manner that depended on the predictability of the sound-context association and not on reinforcement. Plasticity manifested as an increase in response gain and tuning shift that correlated with a general increase in neuronal frequency discrimination. Thus, the auditory midbrain is sensitive to unsupervised predictable sound-context associations, revealing a subcortical engagement in the detection of contextual sounds. By increasing frequency resolution, this detection might facilitate the processing of behaviorally relevant foreground information described to occur in cortical auditory structures.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"5 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49899182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.crneur.2023.100115
Roberta Bianco , Edward T.R. Hall , Marcus T. Pearce , Maria Chait
Any listening task, from sound recognition to sound-based communication, rests on auditory memory which is known to decline in healthy ageing. However, how this decline maps onto multiple components and stages of auditory memory remains poorly characterised. In an online unsupervised longitudinal study, we tested ageing effects on implicit auditory memory for rapid tone patterns. The test required participants (younger, aged 20–30, and older adults aged 60–70) to quickly respond to rapid regularly repeating patterns emerging from random sequences. Patterns were novel in most trials (REGn), but unbeknownst to the participants, a few distinct patterns reoccurred identically throughout the sessions (REGr). After correcting for processing speed, the response times (RT) to REGn should reflect the information held in echoic and short-term memory before detecting the pattern; long-term memory formation and retention should be reflected by the RT advantage (RTA) to REGr vs REGn which is expected to grow with exposure. Older participants were slower than younger adults in detecting REGn and exhibited a smaller RTA to REGr. Computational simulations using a model of auditory sequence memory indicated that these effects reflect age-related limitations both in early and long-term memory stages. In contrast to ageing-related accelerated forgetting of verbal material, here older adults maintained stable memory traces for REGr patterns up to 6 months after the first exposure. The results demonstrate that ageing is associated with reduced short-term memory and long-term memory formation for tone patterns, but not with forgetting, even over surprisingly long timescales.
{"title":"Implicit auditory memory in older listeners: From encoding to 6-month retention","authors":"Roberta Bianco , Edward T.R. Hall , Marcus T. Pearce , Maria Chait","doi":"10.1016/j.crneur.2023.100115","DOIUrl":"https://doi.org/10.1016/j.crneur.2023.100115","url":null,"abstract":"<div><p>Any listening task, from sound recognition to sound-based communication, rests on auditory memory which is known to decline in healthy ageing. However, how this decline maps onto multiple components and stages of auditory memory remains poorly characterised. In an online unsupervised longitudinal study, we tested ageing effects on implicit auditory memory for rapid tone patterns. The test required participants (younger, aged 20–30, and older adults aged 60–70) to quickly respond to rapid regularly repeating patterns emerging from random sequences. Patterns were novel in most trials (REGn), but unbeknownst to the participants, a few distinct patterns reoccurred identically throughout the sessions (REGr). After correcting for processing speed, the response times (RT) to REGn should reflect the information held in echoic and short-term memory before detecting the pattern; long-term memory formation and retention should be reflected by the RT advantage (RTA) to REGr vs REGn which is expected to grow with exposure. Older participants were slower than younger adults in detecting REGn and exhibited a smaller RTA to REGr. Computational simulations using a model of auditory sequence memory indicated that these effects reflect age-related limitations both in early and long-term memory stages. In contrast to ageing-related accelerated forgetting of verbal material, here older adults maintained stable memory traces for REGr patterns up to 6 months after the first exposure. The results demonstrate that ageing is associated with reduced short-term memory and long-term memory formation for tone patterns, but not with forgetting, even over surprisingly long timescales.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"5 ","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665945X23000438/pdfft?md5=53fdf11172fa5e518c3696cf7a910c0b&pid=1-s2.0-S2665945X23000438-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134654036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}