Yanbo Ding, Qiankun Li, Ruizhi Jia, Lei Chen, Baochang Liu
In this article, a method for preparing surface texture of polycrystalline diamond compact (PDC) cutter based on nanosecond laser direct is reported. The relationship between the structure of the surface texture with the laser power, scanning speed, and processing cycle of the nanosecond laser is systematically investigated. By changing the laser power, scanning speed, and the number of processing cycle, different nanosecond laser energies are obtained for processing PDC cutter, and the nanosecond laser parameters are precisely changed to achieve the purpose of laser modification and ablation. By controlling the parameters of nanosecond laser processing, micrometer-scale surface texture on PDC cutter are realized. The surface morphology of the resulting preparation is analyzed. This study provids an experimental basis for the utilization of laser surface texturing technology to improve the performance of PDC cutter, and promotes the further research and development of drilling and machining tools.
{"title":"Surface Texturing on Polycrystalline Diamond Compact Cutter by Nanosecond Laser Processing","authors":"Yanbo Ding, Qiankun Li, Ruizhi Jia, Lei Chen, Baochang Liu","doi":"10.1002/adem.202402204","DOIUrl":"https://doi.org/10.1002/adem.202402204","url":null,"abstract":"<p>In this article, a method for preparing surface texture of polycrystalline diamond compact (PDC) cutter based on nanosecond laser direct is reported. The relationship between the structure of the surface texture with the laser power, scanning speed, and processing cycle of the nanosecond laser is systematically investigated. By changing the laser power, scanning speed, and the number of processing cycle, different nanosecond laser energies are obtained for processing PDC cutter, and the nanosecond laser parameters are precisely changed to achieve the purpose of laser modification and ablation. By controlling the parameters of nanosecond laser processing, micrometer-scale surface texture on PDC cutter are realized. The surface morphology of the resulting preparation is analyzed. This study provids an experimental basis for the utilization of laser surface texturing technology to improve the performance of PDC cutter, and promotes the further research and development of drilling and machining tools.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, there has been a significant increase in research studies that include the fabrication and characterization of metal matrix composites (MMCs) with unique features. This comprehensive review delves into the evolution and current status of copper MMCs (Cu-MMCs) across various industrial sectors. Cu-MMCs have garnered attention due to their remarkable properties, which include excellent thermal and electrical conductivity, corrosion resistance, and wear resistance. This study explores the fabrication processes, and intricate connections between microstructure and properties of Cu-MMCs, which encompass ceramic and solid lubricants (SLs) reinforcements. The various types of reinforcement and fabrication methods are examined and highlighted advancements in designing compositions and optimizing microstructures during fabrication. Additionally, this study evaluates the friction and wear characteristics of self-lubricating hybrid composites, providing insights into effective lubrication ranges and overall tribological behavior patterns. This review highlights that Cu-MMCs demonstrate superior mechanical strength, wear resistance, and self-lubricating properties due to ceramics and SLs reinforcements. The mechanisms underlying this behavior involve the formation of a protective transfer layer during sliding and effective lubrication provided by SLs, which reduces direct contact and facilitates smoother interactions between the mating surfaces. The review culminates in an outlook on the prospects of Cu-MMCs, emphasizing the advantages conferred by their utilization.
{"title":"Recent Progress in Particulate Reinforced Copper-Based Composites: Fabrication, Microstructure, Mechanical, and Tribological Properties—A Review","authors":"Chandra Shekhar, Mohmmad Farooq Wani, Rakesh Sehgal, Sheikh Shahid Saleem, Umida Ziyamukhamedova, Nodirjon Tursunov","doi":"10.1002/adem.202401748","DOIUrl":"https://doi.org/10.1002/adem.202401748","url":null,"abstract":"<p>In recent years, there has been a significant increase in research studies that include the fabrication and characterization of metal matrix composites (MMCs) with unique features. This comprehensive review delves into the evolution and current status of copper MMCs (Cu-MMCs) across various industrial sectors. Cu-MMCs have garnered attention due to their remarkable properties, which include excellent thermal and electrical conductivity, corrosion resistance, and wear resistance. This study explores the fabrication processes, and intricate connections between microstructure and properties of Cu-MMCs, which encompass ceramic and solid lubricants (SLs) reinforcements. The various types of reinforcement and fabrication methods are examined and highlighted advancements in designing compositions and optimizing microstructures during fabrication. Additionally, this study evaluates the friction and wear characteristics of self-lubricating hybrid composites, providing insights into effective lubrication ranges and overall tribological behavior patterns. This review highlights that Cu-MMCs demonstrate superior mechanical strength, wear resistance, and self-lubricating properties due to ceramics and SLs reinforcements. The mechanisms underlying this behavior involve the formation of a protective transfer layer during sliding and effective lubrication provided by SLs, which reduces direct contact and facilitates smoother interactions between the mating surfaces. The review culminates in an outlook on the prospects of Cu-MMCs, emphasizing the advantages conferred by their utilization.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Pagan, Styler Goring, HuChun Yi, Aaron P. Stebner
Cold spray additive manufacturing (CSAM) is an attractive solid-state bonding technique due to its rapid manufacturing rate and the ability to avoid deleterious effects found in solidification-based additive manufacturing. Unfortunately, CSAM of steel components has been difficult to date to the high strength of the steel particles which resists deformation and creates interparticle porosity. Herein, it is found adding softer Cu powder particles to steel (SS316) powder and utilizing a heat treatment can decrease the porosity of the as-sprayed structure while increasing the mechanical properties. The mixture results in an increased sprayability of the structure, as the Cu particles preferentially fill the pores, increasing the density. The microstructural evolution of the SS316 and Cu particles at the particle interfaces and interiors is investigated and reveals that the materials undergo a heterogeneous deformation route which facilitates the densification of the CSAM structure. Through annealing these components, the tensile strength increases and the density increases further. Both materials undergo microstructural recovery along with selected interdiffusion of elements which improves the metallurgical bonding. It is demonstrated that the heterogeneous deposition and microstructural evolution between the dissimilar materials can improve the overall component properties.
{"title":"Porosity Reduction and Strength Increase of SS316&Cu Produced through Cold Spray Additive Manufacturing","authors":"Michael Pagan, Styler Goring, HuChun Yi, Aaron P. Stebner","doi":"10.1002/adem.202402181","DOIUrl":"https://doi.org/10.1002/adem.202402181","url":null,"abstract":"<p>Cold spray additive manufacturing (CSAM) is an attractive solid-state bonding technique due to its rapid manufacturing rate and the ability to avoid deleterious effects found in solidification-based additive manufacturing. Unfortunately, CSAM of steel components has been difficult to date to the high strength of the steel particles which resists deformation and creates interparticle porosity. Herein, it is found adding softer Cu powder particles to steel (SS316) powder and utilizing a heat treatment can decrease the porosity of the as-sprayed structure while increasing the mechanical properties. The mixture results in an increased sprayability of the structure, as the Cu particles preferentially fill the pores, increasing the density. The microstructural evolution of the SS316 and Cu particles at the particle interfaces and interiors is investigated and reveals that the materials undergo a heterogeneous deformation route which facilitates the densification of the CSAM structure. Through annealing these components, the tensile strength increases and the density increases further. Both materials undergo microstructural recovery along with selected interdiffusion of elements which improves the metallurgical bonding. It is demonstrated that the heterogeneous deposition and microstructural evolution between the dissimilar materials can improve the overall component properties.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202402181","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}