首页 > 最新文献

Digital discovery最新文献

英文 中文
Solvmate – a hybrid physical/ML approach to solvent recommendation leveraging a rank-based problem framework† Solvmate - 利用基于等级的问题框架进行溶剂推荐的物理/ML 混合方法
IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-30 DOI: 10.1039/D4DD00138A
Jan Wollschläger and Floriane Montanari

The solubility in a given organic solvent is a key parameter in the synthesis, analysis and chemical processing of an active pharmaceutical ingredient. In this work, we introduce a new tool for organic solvent recommendation that ranks possible solvent choices requiring only the SMILES representation of the solvents and solute involved. We report on three additional innovations: first, a differential/relative approach to solubility prediction is employed, in which solubility is modeled using pairs of measurements with the same solute but different solvents. We show that a relative framing of solubility as ranking solvents improves over a corresponding absolute solubility model across a diverse set of selected features. Second, a novel semiempirical featurization based on extended tight-binding (xtb) is applied to both the solvent and the solute, thereby providing physically meaningful representations of the problem at hand. Third, we provide an open-source implementation of this practical and convenient tool for organic solvent recommendation. Taken together, this work could be of benefit to those working in diverse areas, such as chemical engineering, material science, or synthesis planning.

在特定有机溶剂中的溶解度是活性药物成分合成、分析和化学处理的关键参数。在这项工作中,我们介绍了一种用于有机溶剂推荐的新工具,它只需使用溶剂和溶质的 SMILES 表示法就能对可能的溶剂选择进行排序。我们还报告了另外三项创新:首先,我们采用了溶解度预测的差分/相对方法,即使用相同溶质但不同溶剂的成对测量结果来建立溶解度模型。我们的研究表明,溶解度的相对框架是对溶剂进行排序,在一系列不同的选定特征中,其效果优于相应的绝对溶解度模型。其次,一种基于扩展紧密结合(xtb)的新型半经验特征化方法同时适用于溶剂和溶质,从而为当前问题提供了有物理意义的表征。第三,我们为有机溶剂推荐提供了这一实用便捷工具的开源实现。总之,这项工作将使化学工程、材料科学或合成规划等不同领域的工作人员受益匪浅。
{"title":"Solvmate – a hybrid physical/ML approach to solvent recommendation leveraging a rank-based problem framework†","authors":"Jan Wollschläger and Floriane Montanari","doi":"10.1039/D4DD00138A","DOIUrl":"10.1039/D4DD00138A","url":null,"abstract":"<p >The solubility in a given organic solvent is a key parameter in the synthesis, analysis and chemical processing of an active pharmaceutical ingredient. In this work, we introduce a new tool for organic solvent recommendation that ranks possible solvent choices requiring only the SMILES representation of the solvents and solute involved. We report on three additional innovations: first, a differential/relative approach to solubility prediction is employed, in which solubility is modeled using pairs of measurements with the same solute but different solvents. We show that a relative framing of solubility as ranking solvents improves over a corresponding absolute solubility model across a diverse set of selected features. Second, a novel semiempirical featurization based on extended tight-binding (xtb) is applied to both the solvent and the solute, thereby providing physically meaningful representations of the problem at hand. Third, we provide an open-source implementation of this practical and convenient tool for organic solvent recommendation. Taken together, this work could be of benefit to those working in diverse areas, such as chemical engineering, material science, or synthesis planning.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 1749-1760"},"PeriodicalIF":6.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00138a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprocessing 4.0: a pragmatic review and future perspectives 生物处理 4.0:务实回顾与未来展望
IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-30 DOI: 10.1039/D4DD00127C
Kesler Isoko, Joan L. Cordiner, Zoltan Kis and Peyman Z. Moghadam

In the dynamic landscape of industrial evolution, Industry 4.0 (I4.0) presents opportunities to revolutionise products, processes, and production. It is now clear that enabling technologies of this paradigm, such as the industrial internet of things (IIoT), artificial intelligence (AI), and Digital Twins (DTs), have reached an adequate level of technical maturity in the decade that followed the inception of I4.0. These technologies enable more agile, modular, and efficient operations, which are desirable business outcomes for particularly biomanufacturing companies seeking to deliver on a heterogeneous pipeline of treatments and drug product portfolios. Despite the widespread interest in the field, the level of adoption of I4.0 technologies in the biomanufacturing industry is scarce, often reserved to the big pharmaceutical manufacturers that can invest the capital in experimenting with new operating models, even though by now AI and IIoT have been democratised. This shift in approach to digitalisation is hampered by the lack of common standards and know-how describing ways I4.0 technologies should come together. As such, for the first time, this work provides a pragmatic review of the field, key patterns, trends, and potential standard operating models for smart biopharmaceutical manufacturing. This analysis aims to describe how the Quality by Design framework can evolve to become more profitable under I4.0, the recent advancements in digital twin development and how the expansion of the Process Analytical Technology (PAT) toolbox could lead to smart manufacturing. Ultimately, we aim to summarise guiding principles for executing a digital transformation strategy and outline operating models to encourage future adoption of I4.0 technologies in the biopharmaceutical industry.

在工业发展的动态环境中,工业 4.0(I4.0)带来了彻底改变产品、流程和生产的机遇。现在已经很清楚,工业物联网(IIoT)、人工智能(AI)和数字孪生(DT)等这一范式的使能技术,在工业 4.0 诞生后的十年间已经达到了足够的技术成熟度。这些技术能够实现更加敏捷、模块化和高效的运营,这对于寻求提供异构治疗管道和药物产品组合的生物制造公司来说,尤其是理想的业务成果。尽管这一领域受到广泛关注,但生物制造行业对工业 4.0 技术的采用程度却很低,通常只有大型制药商才有能力投入资金尝试新的运营模式,尽管现在人工智能和物联网已经平民化。由于缺乏描述 I4.0 技术组合方式的通用标准和专有技术,这种数字化方式的转变受到了阻碍。因此,这项工作首次对智能生物制造的领域、关键模式、趋势和潜在的标准操作模式进行了务实的回顾。这项分析旨在描述在工业 4.0、数字孪生开发的最新进展以及过程分析技术(PAT)工具箱的扩展如何能够实现智能制造的情况下,质量源于设计(Quality by Design)框架如何能够发展得更加有利可图。最后,我们旨在总结执行数字化转型战略的指导原则,并概述运营模式,以鼓励生物制药行业未来采用工业 4.0 技术。
{"title":"Bioprocessing 4.0: a pragmatic review and future perspectives","authors":"Kesler Isoko, Joan L. Cordiner, Zoltan Kis and Peyman Z. Moghadam","doi":"10.1039/D4DD00127C","DOIUrl":"10.1039/D4DD00127C","url":null,"abstract":"<p >In the dynamic landscape of industrial evolution, Industry 4.0 (I4.0) presents opportunities to revolutionise products, processes, and production. It is now clear that enabling technologies of this paradigm, such as the industrial internet of things (IIoT), artificial intelligence (AI), and Digital Twins (DTs), have reached an adequate level of technical maturity in the decade that followed the inception of I4.0. These technologies enable more agile, modular, and efficient operations, which are desirable business outcomes for particularly biomanufacturing companies seeking to deliver on a heterogeneous pipeline of treatments and drug product portfolios. Despite the widespread interest in the field, the level of adoption of I4.0 technologies in the biomanufacturing industry is scarce, often reserved to the big pharmaceutical manufacturers that can invest the capital in experimenting with new operating models, even though by now AI and IIoT have been democratised. This shift in approach to digitalisation is hampered by the lack of common standards and know-how describing ways I4.0 technologies should come together. As such, for the first time, this work provides a pragmatic review of the field, key patterns, trends, and potential standard operating models for smart biopharmaceutical manufacturing. This analysis aims to describe how the Quality by Design framework can evolve to become more profitable under I4.0, the recent advancements in digital twin development and how the expansion of the Process Analytical Technology (PAT) toolbox could lead to smart manufacturing. Ultimately, we aim to summarise guiding principles for executing a digital transformation strategy and outline operating models to encourage future adoption of I4.0 technologies in the biopharmaceutical industry.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 1662-1681"},"PeriodicalIF":6.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00127c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A methodology to correctly assess the applicability domain of cell membrane permeability predictors for cyclic peptides† 正确评估细胞膜渗透性预测环肽适用范围的方法
IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-30 DOI: 10.1039/D4DD00056K
Gökçe Geylan, Leonardo De Maria, Ola Engkvist, Florian David and Ulf Norinder

Being able to predict the cell permeability of cyclic peptides is essential for unlocking their potential as a drug modality for intracellular targets. With a wide range of studies of cell permeability but a limited number of data points, the reliability of the machine learning (ML) models to predict previously unexplored chemical spaces becomes a challenge. In this work, we systemically investigate the predictive capability of ML models from the perspective of their extrapolation to never-before-seen applicability domains, with a particular focus on the permeability task. Four predictive algorithms, namely Support-Vector Machine, Random Forest, LightGBM and XGBoost, jointly with a conformal prediction framework were employed to characterize and evaluate the applicability through uncertainty quantification. Efficiency and validity of the models' predictions with multiple calibration strategies were assessed with respect to several external datasets from different parts of the chemical space through a set of experiments. The experiments showed that the predictors generalizing well to the applicability domain defined by the training data, can fail to achieve similar model performance on other parts of the chemical spaces. Our study proposes an approach to overcome such limitations by the means of improving the efficiency of models without sacrificing the validity. The trade-off between the reliability and informativeness was balanced when the models were calibrated with a subset of the data from the new targeted domain. This study outlines an approach to enable the extrapolation of predictive power and restore the models' reliability via a recalibration strategy without the need for retraining the underlying model.

要挖掘环肽作为细胞内靶点药物模式的潜力,预测环肽的细胞渗透性至关重要。由于对细胞渗透性的研究范围广泛,但数据点数量有限,因此机器学习(ML)模型预测以前未探索过的化学空间的可靠性就成了一个挑战。在这项工作中,我们从外推法的角度系统地研究了 ML 模型对前所未见的应用领域的预测能力,并特别关注渗透性任务。我们采用了四种预测算法,即支持向量机、随机森林、LightGBM 和 XGBoost,并结合保形预测框架,通过不确定性量化来描述和评估其适用性。通过一系列实验,针对来自化学空间不同部分的多个外部数据集,评估了采用多种校准策略的模型预测的效率和有效性。实验结果表明,对训练数据所定义的适用性领域具有良好普适性的预测器,在化学空间的其他部分可能无法实现类似的模型性能。我们的研究提出了一种在不牺牲有效性的前提下提高模型效率的方法来克服这种局限性。当使用新目标领域的数据子集校准模型时,可靠性和信息量之间的权衡得到了平衡。本研究概述了一种通过重新校准策略实现预测能力外推并恢复模型可靠性的方法,而无需重新训练基础模型。
{"title":"A methodology to correctly assess the applicability domain of cell membrane permeability predictors for cyclic peptides†","authors":"Gökçe Geylan, Leonardo De Maria, Ola Engkvist, Florian David and Ulf Norinder","doi":"10.1039/D4DD00056K","DOIUrl":"10.1039/D4DD00056K","url":null,"abstract":"<p >Being able to predict the cell permeability of cyclic peptides is essential for unlocking their potential as a drug modality for intracellular targets. With a wide range of studies of cell permeability but a limited number of data points, the reliability of the machine learning (ML) models to predict previously unexplored chemical spaces becomes a challenge. In this work, we systemically investigate the predictive capability of ML models from the perspective of their extrapolation to never-before-seen applicability domains, with a particular focus on the permeability task. Four predictive algorithms, namely Support-Vector Machine, Random Forest, LightGBM and XGBoost, jointly with a conformal prediction framework were employed to characterize and evaluate the applicability through uncertainty quantification. Efficiency and validity of the models' predictions with multiple calibration strategies were assessed with respect to several external datasets from different parts of the chemical space through a set of experiments. The experiments showed that the predictors generalizing well to the applicability domain defined by the training data, can fail to achieve similar model performance on other parts of the chemical spaces. Our study proposes an approach to overcome such limitations by the means of improving the efficiency of models without sacrificing the validity. The trade-off between the reliability and informativeness was balanced when the models were calibrated with a subset of the data from the new targeted domain. This study outlines an approach to enable the extrapolation of predictive power and restore the models' reliability <em>via</em> a recalibration strategy without the need for retraining the underlying model.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 1761-1775"},"PeriodicalIF":6.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00056k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph neural networks for identifying protein-reactive compounds† 识别蛋白质活性化合物的图神经网络
IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-25 DOI: 10.1039/D4DD00038B
Victor Hugo Cano Gil and Christopher N. Rowley

The identification of protein-reactive electrophilic compounds is critical to the design of new covalent modifier drugs, screening for toxic compounds, and the exclusion of reactive compounds from high throughput screening. In this work, we employ traditional and graph machine learning (ML) algorithms to classify molecules being reactive towards proteins or nonreactive. For training data, we built a new dataset, ProteinReactiveDB, composed primarily of covalent and noncovalent inhibitors from the DrugBank, BindingDB, and CovalentInDB databases. To assess the transferability of the trained models, we created a custom set of covalent and noncovalent inhibitors, which was constructed from the recent literature. Baseline models were developed using Morgan fingerprints as training inputs, but they performed poorly when applied to compounds outside the training set. We then trained various Graph Neural Networks (GNNs), with the best GNN model achieving an Area Under the Receiver Operator Characteristic (AUROC) curve of 0.80, precision of 0.89, and recall of 0.72. We also explore the interpretability of these GNNs using Gradient Activation Mapping (GradCAM), which shows regions of the molecules GNNs deem most relevant when making a prediction. These maps indicated that our trained models can identify electrophilic functional groups in a molecule and classify molecules as protein-reactive based on their presence. We demonstrate the use of these models by comparing their performance against common chemical filters, identifying covalent modifiers in the ChEMBL database and generating a putative covalent inhibitor based on an established noncovalent inhibitor.

蛋白质反应性亲电化合物的鉴定对于设计新的共价修饰药物、筛选有毒化合物以及将反应性化合物排除在高通量筛选之外至关重要。在这项工作中,我们采用了传统的图式机器学习(ML)算法来分类对蛋白质有反应或无反应的分子。作为训练数据,我们建立了一个新的数据集 ProteinReactiveDB,主要由 DrugBank、BindingDB 和 CovalentInDB 数据库中的共价和非共价抑制剂组成。为了评估训练模型的可移植性,我们创建了一套定制的共价和非共价抑制剂,这套抑制剂是根据最近的文献构建的。我们使用摩根指纹作为训练输入开发了基准模型,但当这些模型应用于训练集之外的化合物时,表现不佳。我们随后训练了各种图神经网络 (GNN),其中最佳的 GNN 模型的接收者运算特性曲线下面积 (AUROC) 为 0.80,精确度为 0.89,召回率为 0.72。我们还使用梯度激活图谱 (GradCAM) 探索了这些 GNN 的可解释性,该图谱显示了 GNN 在进行预测时认为最相关的分子区域。这些图谱表明,我们训练有素的模型可以识别分子中的亲电官能团,并根据它们的存在将分子划分为对蛋白质有反应的分子。我们通过比较这些模型与常见化学过滤器的性能、识别 ChEMBL 数据库中的共价修饰物以及根据已确定的非共价抑制剂生成推定共价抑制剂,展示了这些模型的用途。
{"title":"Graph neural networks for identifying protein-reactive compounds†","authors":"Victor Hugo Cano Gil and Christopher N. Rowley","doi":"10.1039/D4DD00038B","DOIUrl":"10.1039/D4DD00038B","url":null,"abstract":"<p >The identification of protein-reactive electrophilic compounds is critical to the design of new covalent modifier drugs, screening for toxic compounds, and the exclusion of reactive compounds from high throughput screening. In this work, we employ traditional and graph machine learning (ML) algorithms to classify molecules being reactive towards proteins or nonreactive. For training data, we built a new dataset, ProteinReactiveDB, composed primarily of covalent and noncovalent inhibitors from the DrugBank, BindingDB, and CovalentInDB databases. To assess the transferability of the trained models, we created a custom set of covalent and noncovalent inhibitors, which was constructed from the recent literature. Baseline models were developed using Morgan fingerprints as training inputs, but they performed poorly when applied to compounds outside the training set. We then trained various Graph Neural Networks (GNNs), with the best GNN model achieving an Area Under the Receiver Operator Characteristic (AUROC) curve of 0.80, precision of 0.89, and recall of 0.72. We also explore the interpretability of these GNNs using Gradient Activation Mapping (GradCAM), which shows regions of the molecules GNNs deem most relevant when making a prediction. These maps indicated that our trained models can identify electrophilic functional groups in a molecule and classify molecules as protein-reactive based on their presence. We demonstrate the use of these models by comparing their performance against common chemical filters, identifying covalent modifiers in the ChEMBL database and generating a putative covalent inhibitor based on an established noncovalent inhibitor.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 1776-1792"},"PeriodicalIF":6.2,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00038b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemistry in a graph: modern insights into commercial organic synthesis planning† 图表中的化学:商业有机合成规划的现代见解
IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-24 DOI: 10.1039/D4DD00120F
Claudio Avila, Adam West, Anna C. Vicini, William Waddington, Christopher Brearley, James Clarke and Andrew M. Derrick

Across the chemical sciences, synthesis planning is a key aspect for defining synthesis routes, starting from idea generation, combining literature searches and laboratory experimentation, and including scaling-up considerations for large scale manufacturing. This iterative process, which relies heavily on information sharing, is crucial in pharmaceutical development, where drug candidates are transformed into commercially viable Active Pharmaceutical Ingredients (APIs), impacting the access to medicines for billions of people. In this work, we demonstrate that by capturing chemical pathway ideas digitally, at the point of conception, we can systematically merge these ideas with synthetic knowledge derived from predictive algorithms. This serves as a preliminary step for further route evaluation. To achieve this, we introduce a new method for storing, analysing, and displaying chemical information using graph databases and graph representations, illustrated with the commercial synthesis planning of the GLP-1 inhibitor Lotiglipron. Compared to traditional methods, graph databases naturally fit the substrate-arrow-product model traditionally used by chemists, offering a modern alternative to store and access chemical knowledge. This framework facilitates a universal chemistry approach, allowing to share and combine data from many different sources and organisations, and enabling new ways to optimise the complete route selection process.

在整个化学科学领域,合成规划是确定合成路线的一个关键环节,它从想法的产生开始,结合文献检索和实验室实验,并包括对大规模生产的放大考虑。这一迭代过程在很大程度上依赖于信息共享,在医药开发中至关重要,候选药物在此过程中被转化为商业上可行的活性药物成分(API),影响着数十亿人的用药。在这项工作中,我们证明了通过在构思时以数字方式捕捉化学途径的想法,我们可以将这些想法与从预测算法中获得的合成知识系统地融合在一起。这是进一步评估途径的第一步。为此,我们介绍了一种使用图形数据库和图形表示法存储、分析和显示化学信息的新方法,并以 GLP-1 抑制剂 Lotiglipron 的商业合成规划为例进行说明。与传统方法相比,图数据库自然地符合化学家传统使用的底物-箭头-产物模型,为存储和访问化学知识提供了一种现代化的选择。这一框架有助于采用通用化学方法,共享和组合来自不同来源和组织的数据,并以新的方式优化整个路线选择过程。
{"title":"Chemistry in a graph: modern insights into commercial organic synthesis planning†","authors":"Claudio Avila, Adam West, Anna C. Vicini, William Waddington, Christopher Brearley, James Clarke and Andrew M. Derrick","doi":"10.1039/D4DD00120F","DOIUrl":"10.1039/D4DD00120F","url":null,"abstract":"<p >Across the chemical sciences, synthesis planning is a key aspect for defining synthesis routes, starting from idea generation, combining literature searches and laboratory experimentation, and including scaling-up considerations for large scale manufacturing. This iterative process, which relies heavily on information sharing, is crucial in pharmaceutical development, where drug candidates are transformed into commercially viable Active Pharmaceutical Ingredients (APIs), impacting the access to medicines for billions of people. In this work, we demonstrate that by capturing chemical pathway ideas digitally, at the point of conception, we can systematically merge these ideas with synthetic knowledge derived from predictive algorithms. This serves as a preliminary step for further route evaluation. To achieve this, we introduce a new method for storing, analysing, and displaying chemical information using graph databases and graph representations, illustrated with the commercial synthesis planning of the GLP-1 inhibitor Lotiglipron. Compared to traditional methods, graph databases naturally fit the substrate-arrow-product model traditionally used by chemists, offering a modern alternative to store and access chemical knowledge. This framework facilitates a universal chemistry approach, allowing to share and combine data from many different sources and organisations, and enabling new ways to optimise the complete route selection process.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 1682-1694"},"PeriodicalIF":6.2,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00120f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OM-Diff: inverse-design of organometallic catalysts with guided equivariant denoising diffusion† OM-Diff:利用引导等变量去噪扩散反向设计有机金属催化剂
IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-23 DOI: 10.1039/D4DD00099D
François Cornet, Bardi Benediktsson, Bjarke Hastrup, Mikkel N. Schmidt and Arghya Bhowmik

Organometallic complexes are ubiquitous in numerous technological applications, and in particular in homogeneous catalysis. Optimization of such complexes for specific applications is challenging due to the large variety of possible metal–ligand combinations and ligand–ligand interactions. Here we present OM-Diff, an inverse-design framework based on a diffusion generative model for in silico design of such complexes. Due to the importance of the spatial structure of a catalyst, the model operates on all-atom (including H) representations in 3D space. To handle the symmetries inherent to that data representation, OM-Diff combines an equivariant diffusion model with an equivariant property predictor. The diffusion model generates ligands conditioned on a specified metal-center, while the property predictor guides the generation towards novel complexes with desired properties. We demonstrate the potential of OM-Diff by designing optimized catalysts for a family of cross-coupling reactions, and validating a selection of novel proposed compounds with DFT calculations.

有机金属配合物在均相催化和其他技术应用中无处不在。由于可能的金属配体组合和配体与配体之间的相互作用种类繁多,因此针对特定应用优化此类配合物极具挑战性。在此,我们提出了基于扩散生成模型的反向设计框架 OM-Diff,用于从头开始对此类复合物进行室内设计。鉴于催化剂空间结构的重要性,该模型直接在 3$D 空间的全原子(包括氢)表征上运行。为了处理该数据表示固有的对称性,OM-Diff 结合了等变扩散模型和等变性质预测器,以便在推理时驱动采样。该模型可以有条件地生成训练数据集之外的新型配体。我们通过设计一系列交叉耦合反应的催化剂,并通过 DFT 计算验证所提出的新化合物,证明了所提出方法的潜力。
{"title":"OM-Diff: inverse-design of organometallic catalysts with guided equivariant denoising diffusion†","authors":"François Cornet, Bardi Benediktsson, Bjarke Hastrup, Mikkel N. Schmidt and Arghya Bhowmik","doi":"10.1039/D4DD00099D","DOIUrl":"10.1039/D4DD00099D","url":null,"abstract":"<p >Organometallic complexes are ubiquitous in numerous technological applications, and in particular in homogeneous catalysis. Optimization of such complexes for specific applications is challenging due to the large variety of possible metal–ligand combinations and ligand–ligand interactions. Here we present OM-Diff, an inverse-design framework based on a diffusion generative model for <em>in silico</em> design of such complexes. Due to the importance of the spatial structure of a catalyst, the model operates on all-atom (including H) representations in 3D space. To handle the symmetries inherent to that data representation, OM-Diff combines an equivariant diffusion model with an equivariant property predictor. The diffusion model generates ligands conditioned on a specified metal-center, while the property predictor guides the generation towards novel complexes with desired properties. We demonstrate the potential of OM-Diff by designing optimized catalysts for a family of cross-coupling reactions, and validating a selection of novel proposed compounds with DFT calculations.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 1793-1811"},"PeriodicalIF":6.2,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00099d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What can attribution methods show us about chemical language models?†‡ 归因方法能向我们展示哪些化学语言模型?
IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-18 DOI: 10.1039/D4DD00084F
Stefan Hödl, Tal Kachman, Yoram Bachrach, Wilhelm T. S. Huck and William E. Robinson

Language models trained on molecular string representations have shown strong performance in predictive and generative tasks. However, practical applications require not only making accurate predictions, but also explainability – the ability to explain the reasons and rationale behind the predictions. In this work, we explore explainability for a chemical language model by adapting a transformer-specific and a model-agnostic input attribution technique. We fine-tune a pretrained model to predict aqueous solubility, compare training and architecture variants, and evaluate visualizations of attributed relevance. The model-agnostic SHAP technique provides sensible attributions, highlighting the positive influence of individual electronegative atoms, but does not explain the model in terms of functional groups or explain how the model represents molecular strings internally to make predictions. In contrast, the adapted transformer-specific explainability technique produces sparse attributions, which cannot be directly attributed to functional groups relevant to solubility. Instead, the attributions are more characteristic of how the model maps molecular strings to its latent space, which seems to represent features relevant to molecular similarity rather than functional groups. These findings provide insight into the representations underpinning chemical language models, which we propose may be leveraged for the design of informative chemical spaces for training more accurate, advanced and explainable models.

根据分子字符串表征训练的语言模型在预测和生成任务中表现出色。然而,实际应用不仅需要准确的预测,还需要可解释性--能够解释预测背后的原因和原理。在这项工作中,我们通过调整特定于变换器的输入归因技术和与模型无关的输入归因技术,探索了化学语言模型的可解释性。我们对预测水溶性的预训练模型进行了微调,比较了训练和架构变体,并对归因相关性的可视化进行了评估。与模型无关的 SHAP 技术获得了合理的归因,突出了单个电负性原子的积极影响,但没有从官能团的角度解释模型,也没有解释模型如何在内部表示分子串以进行预测。与此相反,经过改良的 Transformer 特定可解释性技术产生了稀疏的归因,无法直接归因于与溶解度相关的官能团。相反,这些归因更能说明模型如何将分子串映射到其潜在空间,而潜在空间似乎代表了与分子相似性相关的特征,而非官能团。这些发现让我们深入了解了化学语言模型的基本表征,我们建议可以利用这些表征来设计信息丰富的化学空间,从而训练出更准确、更先进、更可解释的模型。
{"title":"What can attribution methods show us about chemical language models?†‡","authors":"Stefan Hödl, Tal Kachman, Yoram Bachrach, Wilhelm T. S. Huck and William E. Robinson","doi":"10.1039/D4DD00084F","DOIUrl":"10.1039/D4DD00084F","url":null,"abstract":"<p >Language models trained on molecular string representations have shown strong performance in predictive and generative tasks. However, practical applications require not only making accurate predictions, but also explainability – the ability to explain the reasons and rationale behind the predictions. In this work, we explore explainability for a chemical language model by adapting a transformer-specific and a model-agnostic input attribution technique. We fine-tune a pretrained model to predict aqueous solubility, compare training and architecture variants, and evaluate visualizations of attributed relevance. The model-agnostic SHAP technique provides sensible attributions, highlighting the positive influence of individual electronegative atoms, but does not explain the model in terms of functional groups or explain how the model represents molecular strings internally to make predictions. In contrast, the adapted transformer-specific explainability technique produces sparse attributions, which cannot be directly attributed to functional groups relevant to solubility. Instead, the attributions are more characteristic of how the model maps molecular strings to its latent space, which seems to represent features relevant to molecular similarity rather than functional groups. These findings provide insight into the representations underpinning chemical language models, which we propose may be leveraged for the design of informative chemical spaces for training more accurate, advanced and explainable models.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 1738-1748"},"PeriodicalIF":6.2,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00084f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal neural network potentials as descriptors: towards scalable chemical property prediction using quantum and classical computers 作为描述符的通用神经网络势:利用量子和经典计算机实现可扩展的化学性质预测
IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1039/D4DD00098F
Tomoya Shiota, Kenji Ishihara and Wataru Mizukami

Accurate prediction of diverse chemical properties is crucial for advancing molecular design and materials discovery. Here we present a versatile approach that uses the intermediate information of a universal neural network potential as a general-purpose descriptor for chemical property prediction. Our method is based on the insight that by training a sophisticated neural network architecture for universal force fields, it learns transferable representations of atomic environments. We show that transfer learning with graph neural network potentials such as M3GNet and MACE achieves accuracy comparable to state-of-the-art methods for predicting the NMR chemical shifts by using quantum machine learning as well as a standard classical regression model, despite the compactness of its descriptors. In particular, the MACE descriptor demonstrates the highest accuracy to date on the 13C NMR chemical shift benchmarks for drug molecules. This work provides an efficient way to accurately predict properties, potentially accelerating the discovery of new molecules and materials.

准确预测各种化学特性对于推进分子设计和材料发现至关重要。在这里,我们提出了一种多功能方法,利用通用神经网络势的中间信息作为化学性质预测的通用描述符。我们的方法基于这样一种见解,即通过训练通用力场的复杂神经网络架构,它可以学习原子环境的可迁移表征。我们的研究表明,利用 M3GNet 和 MACE 等图神经网络潜能进行迁移学习,尽管其描述符非常紧凑,但在预测核磁共振化学位移方面,其准确性可与使用量子机器学习和标准经典回归模型的最先进方法相媲美。特别是,MACE 描述子在药物分子的 ${^{13}}$C NMR 化学位移基准上显示了迄今为止最高的准确度。这项工作提供了一种准确预测性质的有效方法,有可能加速新分子和新材料的发现。
{"title":"Universal neural network potentials as descriptors: towards scalable chemical property prediction using quantum and classical computers","authors":"Tomoya Shiota, Kenji Ishihara and Wataru Mizukami","doi":"10.1039/D4DD00098F","DOIUrl":"10.1039/D4DD00098F","url":null,"abstract":"<p >Accurate prediction of diverse chemical properties is crucial for advancing molecular design and materials discovery. Here we present a versatile approach that uses the intermediate information of a universal neural network potential as a general-purpose descriptor for chemical property prediction. Our method is based on the insight that by training a sophisticated neural network architecture for universal force fields, it learns transferable representations of atomic environments. We show that transfer learning with graph neural network potentials such as M3GNet and MACE achieves accuracy comparable to state-of-the-art methods for predicting the NMR chemical shifts by using quantum machine learning as well as a standard classical regression model, despite the compactness of its descriptors. In particular, the MACE descriptor demonstrates the highest accuracy to date on the <small><sup>13</sup></small>C NMR chemical shift benchmarks for drug molecules. This work provides an efficient way to accurately predict properties, potentially accelerating the discovery of new molecules and materials.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 1714-1728"},"PeriodicalIF":6.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00098f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-orchestration of multiple instruments to uncover structure–property relationships in combinatorial libraries† 联合协调多种仪器,揭示组合库的结构-性能关系
IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-15 DOI: 10.1039/D4DD00109E
Boris N. Slautin, Utkarsh Pratiush, Ilia N. Ivanov, Yongtao Liu, Rohit Pant, Xiaohang Zhang, Ichiro Takeuchi, Maxim A. Ziatdinov and Sergei V. Kalinin

The rapid growth of automated and autonomous instrumentation brings forth opportunities for the co-orchestration of multimodal tools that are equipped with multiple sequential detection methods or several characterization techniques to explore identical samples. This is exemplified by combinatorial libraries that can be explored in multiple locations via multiple tools simultaneously or downstream characterization in automated synthesis systems. In co-orchestration approaches, information gained in one modality should accelerate the discovery of other modalities. Correspondingly, an orchestrating agent should select the measurement modality based on the anticipated knowledge gain and measurement cost. Herein, we propose and implement a co-orchestration approach for conducting measurements with complex observables, such as spectra or images. The method relies on combining dimensionality reduction by variational autoencoders with representation learning for control over the latent space structure and integration into an iterative workflow via multi-task Gaussian Processes (GPs). This approach further allows for the native incorporation of the system's physics via a probabilistic model as a mean function of the GPs. We illustrate this method for different modes of piezoresponse force microscopy and micro-Raman spectroscopy on a combinatorial Sm-BiFeO3 library. However, the proposed framework is general and can be extended to multiple measurement modalities and arbitrary dimensionality of the measured signals.

自动化和自主仪器的快速发展为多模态工具的共同协调带来了机遇,这些工具配备了多种连续检测方法或多种表征技术,可对相同的样品进行检测。例如,可以通过多个工具同时在多个位置探索组合库,或在自动合成系统中进行下游表征。在共同协调方法中,从一种模式中获得的信息应能加速其他模式的发现。相应地,协调代理应根据预期的知识收益和测量成本选择测量模式。在此,我们提出并实施了一种共同协调方法,用于对光谱或图像等复杂观测对象进行测量。该方法将变异自动编码器降维与表征学习相结合,以控制潜空间结构,并通过多任务高斯过程(GPs)集成到迭代工作流程中。这种方法还允许通过作为 GPs 平均函数的概率模型,将系统的物理特性融入其中。我们针对压电响应力显微镜和微拉曼光谱学的不同模式,对组合 Sm-BiFeO3 库进行了说明。不过,所提出的框架是通用的,可以扩展到多种测量模式和测量信号的任意维度。
{"title":"Co-orchestration of multiple instruments to uncover structure–property relationships in combinatorial libraries†","authors":"Boris N. Slautin, Utkarsh Pratiush, Ilia N. Ivanov, Yongtao Liu, Rohit Pant, Xiaohang Zhang, Ichiro Takeuchi, Maxim A. Ziatdinov and Sergei V. Kalinin","doi":"10.1039/D4DD00109E","DOIUrl":"10.1039/D4DD00109E","url":null,"abstract":"<p >The rapid growth of automated and autonomous instrumentation brings forth opportunities for the co-orchestration of multimodal tools that are equipped with multiple sequential detection methods or several characterization techniques to explore identical samples. This is exemplified by combinatorial libraries that can be explored in multiple locations <em>via</em> multiple tools simultaneously or downstream characterization in automated synthesis systems. In co-orchestration approaches, information gained in one modality should accelerate the discovery of other modalities. Correspondingly, an orchestrating agent should select the measurement modality based on the anticipated knowledge gain and measurement cost. Herein, we propose and implement a co-orchestration approach for conducting measurements with complex observables, such as spectra or images. The method relies on combining dimensionality reduction by variational autoencoders with representation learning for control over the latent space structure and integration into an iterative workflow <em>via</em> multi-task Gaussian Processes (GPs). This approach further allows for the native incorporation of the system's physics <em>via</em> a probabilistic model as a mean function of the GPs. We illustrate this method for different modes of piezoresponse force microscopy and micro-Raman spectroscopy on a combinatorial Sm-BiFeO<small><sub>3</sub></small> library. However, the proposed framework is general and can be extended to multiple measurement modalities and arbitrary dimensionality of the measured signals.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 8","pages":" 1602-1611"},"PeriodicalIF":6.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00109e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated prediction of ground state spin for transition metal complexes† 过渡金属复合物基态自旋的自动预测
IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-12 DOI: 10.1039/D4DD00093E
Yuri Cho, Ruben Laplaza, Sergi Vela and Clémence Corminboeuf

Exploiting crystallographic data repositories for large-scale quantum chemical computations requires the rapid and accurate extraction of the molecular structure, charge and spin from the crystallographic information file. Here, we develop a general approach to assign the ground state spin of transition metal complexes, in complement to our previous efforts on determining metal oxidation states and bond order within the cell2mol software. Starting from a database of 31k transition metal complexes extracted from the Cambridge Structural Database with cell2mol, we construct the TM-GSspin dataset, which contains 2063 mononuclear first row transition metal complexes and their computed ground state spins. TM-GSspin is highly diverse in terms of metals, metal oxidation states, coordination geometries, and coordination sphere compositions. Based on TM-GSspin, we identify correlations between structural and electronic features of the complexes and their ground state spins to develop a rule-based spin state assignment model. Leveraging this knowledge, we construct interpretable descriptors and build a statistical model achieving 98% cross-validated accuracy in predicting the ground state spin across the board. Our approach provides a practical way to determine the ground state spin of transition metal complexes directly from crystal structures without additional computations, thus enabling the automated use of crystallographic data for large-scale computations involving transition metal complexes.

利用晶体学数据资源库进行大规模量子化学计算,需要从晶体学信息文件中快速准确地提取分子结构、电荷和自旋。在此,我们开发了一种分配过渡金属复合物基态自旋的通用方法,以补充我们之前在 cell2mol 软件中确定金属氧化态和键序的工作。从利用 cell2mol 从剑桥结构数据库提取的 31K 个过渡金属配合物数据库开始,我们构建了 TM-GSspin 数据集,其中包含 2,063 个单核第一行过渡金属配合物及其计算出的基态自旋。TM-GSspin 在金属、金属氧化态、配位几何和配位层组成方面具有高度多样性。在 TM-GSspin 的基础上,我们确定了复合物的结构和电子特征与其基态自旋之间的相关性,从而开发出一种基于规则的自旋态分配模型。利用这些知识,我们构建了可解释的描述符,并建立了一个统计模型,其预测基态自旋的交叉验证准确率达到 98%。我们的方法提供了一种直接从晶体结构确定过渡金属复合物基态自旋的实用方法,无需额外计算,从而使晶体学数据能够自动用于涉及过渡金属复合物的大规模计算。
{"title":"Automated prediction of ground state spin for transition metal complexes†","authors":"Yuri Cho, Ruben Laplaza, Sergi Vela and Clémence Corminboeuf","doi":"10.1039/D4DD00093E","DOIUrl":"10.1039/D4DD00093E","url":null,"abstract":"<p >Exploiting crystallographic data repositories for large-scale quantum chemical computations requires the rapid and accurate extraction of the molecular structure, charge and spin from the crystallographic information file. Here, we develop a general approach to assign the ground state spin of transition metal complexes, in complement to our previous efforts on determining metal oxidation states and bond order within the <em>cell2mol</em> software. Starting from a database of 31k transition metal complexes extracted from the Cambridge Structural Database with <em>cell2mol</em>, we construct the TM-GSspin dataset, which contains 2063 mononuclear first row transition metal complexes and their computed ground state spins. TM-GSspin is highly diverse in terms of metals, metal oxidation states, coordination geometries, and coordination sphere compositions. Based on TM-GSspin, we identify correlations between structural and electronic features of the complexes and their ground state spins to develop a rule-based spin state assignment model. Leveraging this knowledge, we construct interpretable descriptors and build a statistical model achieving 98% cross-validated accuracy in predicting the ground state spin across the board. Our approach provides a practical way to determine the ground state spin of transition metal complexes directly from crystal structures without additional computations, thus enabling the automated use of crystallographic data for large-scale computations involving transition metal complexes.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 8","pages":" 1638-1647"},"PeriodicalIF":6.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00093e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Digital discovery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1