Unilateral internal carotid artery 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) infusion in non-human primates produces transient contralateral hemi-dystonia followed by stable contralateral hemi-parkinsonism; the relationship between dystonia and parkinsonism remains unclear. We hypothesized that transient dystonia severity following MPTP correlates with parkinsonism severity. In male Macaca nemestrina (n = 3) and M. fascicularis (n = 17) we administered unilateral intra-carotid MPTP, then correlated validated blinded ratings of transient peak dystonia and delayed parkinsonism. We also correlated dystonia severity with post-mortem measures of residual striatal dopamine and nigral neuron counts obtained a mean 53 ± 15 days following MPTP, after resolution of dystonia but during stable parkinsonism. Median latency to dystonia onset was 1 day, and peak severity 2.5 days after MPTP; total dystonia duration was 13.5 days. Parkinsonism peaked a median of 19.5 days after MPTP, remaining nearly constant thereafter. Peak dystonia severity highly correlated with parkinsonism severity (r[18] = 0.82, p < 0.001). Residual cell counts in lesioned nigra correlated linearly with peak dystonia scores (r[18] = -0.68, p=<0.001). Dystonia was not observed in monkeys without striatal dopamine depletion (n = 2); dystonia severity correlated with striatal dopamine depletion when residual nigral cell loss was less than 50% ([11] r = -0.83, p < 0.001) but spanned a broad range with near complete striatal dopamine depletion, when nigral cell loss was greater than 50%. Our data indicate that residual striatal dopamine may not reflect dystonia severity. We speculate on mechanisms of transient dystonia followed by parkinsonism that may be studied using this particular NHP MPTP model to better understand relationships of transient dystonia to nigrostriatal injury and parkinsonism.
Focal Hand Dystonia (FHD) is a disabling movement disorder characterized by involuntary movements, cramps and spasms. It is associated with pathological neural microcircuits in the cortical somatosensory system. While invasive preclinical modalities allow researchers to probe specific neural microcircuits of cortical layers and columns, conventional functional magnetic resonance imaging (fMRI) cannot resolve such small neural computational units. In this study, we take advantage of recent developments in ultra-high-field MRI hardware and MR-sequences to capture altered digit representations and laminar processing in FHD patients. We aim to characterize the capability and challenges of layer-specific imaging and analysis tools in resolving laminar and columnar structures in clinical research setups. We scanned N = 4 affected and N = 5 unaffected hemispheres at 7T and found consistent results of altered neural microcircuitry in FHD patients: 1) In affected hemispheres of FHD patients, we found a breakdown of ordered finger representation in the primary somatosensory cortex, as suggested from previous low-resolution fMRI. 2) In affected primary motor cortices of FHD patients, we furthermore found increased fMRI activity in superficial cortico-cortical neural input layers (II/III), compared to relatively weaker activity in the cortico-spinal output layers (Vb/VI). Overall, we show that layer-fMRI acquisition and analysis tools have the potential to address clinically-driven neuroscience research questions about altered computational mechanisms at the spatial scales that were previously only accessible in animal models. We believe that this study paves the way for easier translation of preclinical work into clinical research in focal hand dystonia and beyond.
According to expert consensus, dystonia can be classified as focal, segmental, multifocal, and generalized, based on the affected body distribution. To provide an empirical and data-driven approach to categorizing these distributions, we used a data-driven clustering approach to compare frequency and co-occurrence rates of non-focal dystonia in pre-defined body regions using the Dystonia Coalition (DC) dataset. We analyzed 1,618 participants with isolated non-focal dystonia from the DC database. The analytic approach included construction of frequency tables, variable-wise analysis using hierarchical clustering and independent component analysis (ICA), and case-wise consensus hierarchical clustering to describe associations and clusters for dystonia affecting any combination of eighteen pre-defined body regions. Variable-wise hierarchical clustering demonstrated closest relationships between bilateral upper legs (distance = 0.40), upper and lower face (distance = 0.45), bilateral hands (distance = 0.53), and bilateral feet (distance = 0.53). ICA demonstrated clear grouping for the a) bilateral hands, b) neck, and c) upper and lower face. Case-wise consensus hierarchical clustering at k = 9 identified 3 major clusters. Major clusters consisted primarily of a) cervical dystonia with nearby regions, b) bilateral hand dystonia, and c) cranial dystonia. Our data-driven approach in a large dataset of isolated non-focal dystonia reinforces common segmental patterns in cranial and cervical regions. We observed unexpectedly strong associations between bilateral upper or lower limbs, which suggests that symmetric multifocal patterns may represent a previously underrecognized dystonia subtype.
Background: Blepharospasm (BSP) is a focal dystonia. There is a lack of standardization in the length of time necessary to get a measure of BSP severity for rating scales.
Objectives: 1) Determine the difference between evaluating the number of eye closures in patients with blepharospasm in 1 vs. 2 min. 2) Characterize the prevalence, phenomenology and concordance of sensory trick in subjects with only blepharospasm compared to those with blepharospasm associated with other dystonias of the head.
Methods: Thirty-eight, 2-min-long standardized videos of subjects with BSP without any other dystonias were reviewed (group1). Eye closure rate was measured in 0-60 s vs. 60-120 s. Wilcoxon signed-rank test and Spearman correlation coefficient were used to compare the eye closure rate between these two intervals. An additional 68 standardized videos of subjects with blepharospasm associated with dystonia of the head were reviewed (group2). Presence, phenomenology and concordance between what subjects verbally reported as their sensory trick and what they demonstrated was classified for both groups then qualitatively compared.
Results/conclusion: Eye closure rates between 0-60 s and 0-120 s were not statistically different. There is no added benefit of counting the number of eye closures in 2 min, compared to 1 min, in patients with BSP. Sensory trick was reported by 57% of subjects with BSP and 80% of subjects who have blepharospasm and other dystonias of the head. With 100% and 97% concordance, patients' self-reported sensory trick accurately describes the movements that alleviate their dystonic movements.