Pub Date : 2023-11-27DOI: 10.1186/s43593-023-00056-0
Chao He, Jacopo Antonello, Martin J. Booth
Adaptive optics normally concerns the feedback correction of phase aberrations. Such correction has been of benefit in various optical systems, with applications ranging in scale from astronomical telescopes to super-resolution microscopes. Here we extend this powerful tool into the vectorial domain, encompassing higher-dimensional feedback correction of both polarisation and phase. This technique is termed vectorial adaptive optics (V-AO). We show that V-AO can be implemented using sensor feedback, indirectly using sensorless AO, or in hybrid form combining aspects of both. We validate improvements in both vector field state and the focal quality of an optical system, through correction for commonplace vectorial aberration sources, ranging from objective lenses to biological samples. This technique pushes the boundaries of traditional scalar beam shaping by providing feedback control of extra vectorial degrees of freedom. This paves the way for next generation AO functionality by manipulating the complex vectorial field.
{"title":"Vectorial adaptive optics","authors":"Chao He, Jacopo Antonello, Martin J. Booth","doi":"10.1186/s43593-023-00056-0","DOIUrl":"https://doi.org/10.1186/s43593-023-00056-0","url":null,"abstract":"Adaptive optics normally concerns the feedback correction of phase aberrations. Such correction has been of benefit in various optical systems, with applications ranging in scale from astronomical telescopes to super-resolution microscopes. Here we extend this powerful tool into the vectorial domain, encompassing higher-dimensional feedback correction of both polarisation and phase. This technique is termed vectorial adaptive optics (V-AO). We show that V-AO can be implemented using sensor feedback, indirectly using sensorless AO, or in hybrid form combining aspects of both. We validate improvements in both vector field state and the focal quality of an optical system, through correction for commonplace vectorial aberration sources, ranging from objective lenses to biological samples. This technique pushes the boundaries of traditional scalar beam shaping by providing feedback control of extra vectorial degrees of freedom. This paves the way for next generation AO functionality by manipulating the complex vectorial field.","PeriodicalId":72891,"journal":{"name":"eLight","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-25DOI: 10.1186/s43593-023-00053-3
Keng-Te Lin, Xianbo Nian, Ke Li, Jihong Han, Nan Zheng, Xiaokang Lu, Chunsheng Guo, Han Lin, Baohua Jia
Abstract An ideal radiative cooler requires accurate spectral control capability to achieve efficient thermal emission in the atmospheric transparency window (8–13 μm), low solar absorption, good stability, scalability, and a simple structure for effective diurnal radiative cooling. Flexible cooling films made from polymer relying on polymer intrinsic absorbance represent a cost-effective solution but lack accuracy in spectral control. Here, we propose and demonstrate a metasurface concept enabled by periodically arranged three-dimensional (3D) trench-like structures in a thin layer of polymer for high-performance radiative cooling. The structured polymer metasurface radiative cooler is manufactured by a roll-to-roll printing method. It exhibits superior spectral breadth and selectivity, which offers outstanding omnidirectional absorption/emission (96.1%) in the atmospheric transparency window, low solar absorption (4.8%), and high stability. Impressive cooling power of 129.8 W m −2 and temperature deduction of 7 °C on a clear sky midday have been achieved, promising broad practical applications in energy saving and passive heat dispersion fields.
理想的辐射冷却器要求具有精确的光谱控制能力,在大气透明窗(8 ~ 13 μm)内实现高效的热发射,太阳吸收率低,稳定性好,可扩展性好,结构简单,从而实现有效的日间辐射冷却。利用聚合物固有吸光度制成的柔性冷却膜是一种经济有效的解决方案,但在光谱控制方面缺乏准确性。在这里,我们提出并演示了一种超表面概念,该概念是通过在薄层聚合物中周期性排列的三维(3D)沟槽状结构实现的,用于高性能辐射冷却。该结构聚合物超表面辐射冷却器采用卷对卷印刷方法制造。它具有优异的光谱宽度和选择性,在大气透明窗口内具有出色的全向吸收/发射(96.1%)、低太阳吸收(4.8%)和高稳定性。在晴朗的中午,令人印象深刻的冷却功率达到129.8 W m−2,温度降低7°C,在节能和被动散热领域有广泛的实际应用前景。
{"title":"Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling","authors":"Keng-Te Lin, Xianbo Nian, Ke Li, Jihong Han, Nan Zheng, Xiaokang Lu, Chunsheng Guo, Han Lin, Baohua Jia","doi":"10.1186/s43593-023-00053-3","DOIUrl":"https://doi.org/10.1186/s43593-023-00053-3","url":null,"abstract":"Abstract An ideal radiative cooler requires accurate spectral control capability to achieve efficient thermal emission in the atmospheric transparency window (8–13 μm), low solar absorption, good stability, scalability, and a simple structure for effective diurnal radiative cooling. Flexible cooling films made from polymer relying on polymer intrinsic absorbance represent a cost-effective solution but lack accuracy in spectral control. Here, we propose and demonstrate a metasurface concept enabled by periodically arranged three-dimensional (3D) trench-like structures in a thin layer of polymer for high-performance radiative cooling. The structured polymer metasurface radiative cooler is manufactured by a roll-to-roll printing method. It exhibits superior spectral breadth and selectivity, which offers outstanding omnidirectional absorption/emission (96.1%) in the atmospheric transparency window, low solar absorption (4.8%), and high stability. Impressive cooling power of 129.8 W m −2 and temperature deduction of 7 °C on a clear sky midday have been achieved, promising broad practical applications in energy saving and passive heat dispersion fields.","PeriodicalId":72891,"journal":{"name":"eLight","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134972776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-18DOI: 10.1186/s43593-023-00054-2
Ziwei Feng, Tan Shi, Guangzhou Geng, Junjie Li, Zi-Lan Deng, Yuri Kivshar, Xiangping Li
Abstract Lanthanide-doped upconversion nanoparticles emerged recently as an attractive material platform underpinning a broad range of innovative applications such as optical cryptography, luminescent probes, and lasing. However, the intricate 4f-associated electronic transition in upconversion nanoparticles leads only to a weak photoluminescence intensity and unpolarized emission, hindering many applications that demand ultrabright and polarized light sources. Here, we present an effective strategy for achieving ultrabright and dual-band polarized upconversion photoluminescence. We employ resonant dielectric metasurfaces supporting high-quality resonant modes at dual upconversion bands enabling two-order-of-magnitude amplification of upconversion emissions. We demonstrate that dual-band resonances can be selectively switched on polarization, endowing cross-polarization controlled upconversion luminescence with ultra-high degrees of polarization, reaching approximately 0.86 and 0.91 at dual emission wavelengths of 540 and 660 nm, respectively. Our strategy offers an effective approach for enhancing photon upconversion processes paving the way towards efficient low-threshold polarization upconversion lasers.
{"title":"Dual-band polarized upconversion photoluminescence enhanced by resonant dielectric metasurfaces","authors":"Ziwei Feng, Tan Shi, Guangzhou Geng, Junjie Li, Zi-Lan Deng, Yuri Kivshar, Xiangping Li","doi":"10.1186/s43593-023-00054-2","DOIUrl":"https://doi.org/10.1186/s43593-023-00054-2","url":null,"abstract":"Abstract Lanthanide-doped upconversion nanoparticles emerged recently as an attractive material platform underpinning a broad range of innovative applications such as optical cryptography, luminescent probes, and lasing. However, the intricate 4f-associated electronic transition in upconversion nanoparticles leads only to a weak photoluminescence intensity and unpolarized emission, hindering many applications that demand ultrabright and polarized light sources. Here, we present an effective strategy for achieving ultrabright and dual-band polarized upconversion photoluminescence. We employ resonant dielectric metasurfaces supporting high-quality resonant modes at dual upconversion bands enabling two-order-of-magnitude amplification of upconversion emissions. We demonstrate that dual-band resonances can be selectively switched on polarization, endowing cross-polarization controlled upconversion luminescence with ultra-high degrees of polarization, reaching approximately 0.86 and 0.91 at dual emission wavelengths of 540 and 660 nm, respectively. Our strategy offers an effective approach for enhancing photon upconversion processes paving the way towards efficient low-threshold polarization upconversion lasers.","PeriodicalId":72891,"journal":{"name":"eLight","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135110686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-18DOI: 10.1186/s43593-023-00049-z
A. Minopoli, Susan Wagner, E. Erben, W. Liao, I. Stoev, E. Lauga, M. Kreysing
{"title":"ISO-FLUCS: symmetrization of optofluidic manipulations in quasi-isothermal micro-environments","authors":"A. Minopoli, Susan Wagner, E. Erben, W. Liao, I. Stoev, E. Lauga, M. Kreysing","doi":"10.1186/s43593-023-00049-z","DOIUrl":"https://doi.org/10.1186/s43593-023-00049-z","url":null,"abstract":"","PeriodicalId":72891,"journal":{"name":"eLight","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44625902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-10DOI: 10.1186/s43593-023-00050-6
Xiaoyang Bai, Zuodong Liang, Zhongmin Zhu, A. Schwing, David Forsyth, Viktor Gruev
{"title":"Polarization-based underwater geolocalization with deep learning","authors":"Xiaoyang Bai, Zuodong Liang, Zhongmin Zhu, A. Schwing, David Forsyth, Viktor Gruev","doi":"10.1186/s43593-023-00050-6","DOIUrl":"https://doi.org/10.1186/s43593-023-00050-6","url":null,"abstract":"","PeriodicalId":72891,"journal":{"name":"eLight","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45378071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}