首页 > 最新文献

eLight最新文献

英文 中文
Parity-time symmetry enabled ultra-efficient nonlinear optical signal processing 利用奇偶时对称性实现超高效非线性光学信号处理
Q1 OPTICS Pub Date : 2024-04-04 DOI: 10.1186/s43593-024-00062-w
Chanju Kim, Xinda Lu, Deming Kong, Nuo Chen, Yuntian Chen, Leif Katsuo Oxenløwe, Kresten Yvind, Xinliang Zhang, Lan Yang, Minhao Pu, Jing Xu
Nonlinear optical signal processing (NOSP) has the potential to significantly improve the throughput, flexibility, and cost-efficiency of optical communication networks by exploiting the intrinsically ultrafast optical nonlinear wave mixing. It can support digital signal processing speeds of up to terabits per second, far exceeding the line rate of the electronic counterpart. In NOSP, high-intensity light fields are used to generate nonlinear optical responses, which can be used to process optical signals. Great efforts have been devoted to developing new materials and structures for NOSP. However, one of the challenges in implementing NOSP is the requirement of high-intensity light fields, which is difficult to generate and maintain. This has been a major roadblock to realize practical NOSP systems for high-speed, high-capacity optical communications. Here, we propose using a parity-time (PT) symmetric microresonator system to significantly enhance the light intensity and support high-speed operation by relieving the bandwidth-efficiency limit imposed on conventional single resonator systems. The design concept is the co-existence of a PT symmetry broken regime for a narrow-linewidth pump wave and near-exceptional point operation for broadband signal and idler waves. This enables us to achieve a new NOSP system with two orders of magnitude improvement in efficiency compared to a single resonator. With a highly nonlinear AlGaAs-on-Insulator platform, we demonstrate an NOSP at a data rate approaching 40 gigabits per second with a record low pump power of one milliwatt. These findings pave the way for the development of fully chip-scale NOSP devices with pump light sources integrated together, potentially leading to a wide range of applications in optical communication networks and classical or quantum computation. The combination of PT symmetry and NOSP may also open up opportunities for amplification, detection, and sensing, where response speed and efficiency are equally important.
非线性光信号处理(NOSP)通过利用固有的超快光非线性波混合,有可能显著提高光通信网络的吞吐量、灵活性和成本效益。它可以支持高达每秒太比特的数字信号处理速度,远远超过电子信号处理的线路速率。在 NOSP 中,高强度光场用于产生非线性光学响应,这些响应可用于处理光信号。人们一直致力于开发用于 NOSP 的新材料和新结构。然而,实现 NOSP 的挑战之一是需要高强度光场,而这种光场很难产生和维持。这一直是实现用于高速、大容量光通信的实用 NOSP 系统的主要障碍。在此,我们建议使用奇偶校验时间(PT)对称微谐振器系统,通过缓解传统单谐振器系统的带宽效率限制,显著增强光强度并支持高速运行。其设计理念是,窄线宽泵浦波的 PT 对称性被打破,而宽带信号波和惰波则近乎超常点工作。这使我们能够实现一种新型 NOSP 系统,与单谐振器相比,效率提高了两个数量级。利用高度非线性的 AlGaAs-on-Insulator 平台,我们展示了一个数据传输率接近每秒 40 千兆比特的 NOSP 系统,其泵浦功率低至创纪录的一毫瓦。这些发现为开发集成了泵浦光源的全芯片级 NOSP 器件铺平了道路,从而有可能在光通信网络、经典或量子计算领域实现广泛应用。PT 对称性和 NOSP 的结合还可能为放大、检测和传感带来机遇,因为在这些领域,响应速度和效率同样重要。
{"title":"Parity-time symmetry enabled ultra-efficient nonlinear optical signal processing","authors":"Chanju Kim, Xinda Lu, Deming Kong, Nuo Chen, Yuntian Chen, Leif Katsuo Oxenløwe, Kresten Yvind, Xinliang Zhang, Lan Yang, Minhao Pu, Jing Xu","doi":"10.1186/s43593-024-00062-w","DOIUrl":"https://doi.org/10.1186/s43593-024-00062-w","url":null,"abstract":"Nonlinear optical signal processing (NOSP) has the potential to significantly improve the throughput, flexibility, and cost-efficiency of optical communication networks by exploiting the intrinsically ultrafast optical nonlinear wave mixing. It can support digital signal processing speeds of up to terabits per second, far exceeding the line rate of the electronic counterpart. In NOSP, high-intensity light fields are used to generate nonlinear optical responses, which can be used to process optical signals. Great efforts have been devoted to developing new materials and structures for NOSP. However, one of the challenges in implementing NOSP is the requirement of high-intensity light fields, which is difficult to generate and maintain. This has been a major roadblock to realize practical NOSP systems for high-speed, high-capacity optical communications. Here, we propose using a parity-time (PT) symmetric microresonator system to significantly enhance the light intensity and support high-speed operation by relieving the bandwidth-efficiency limit imposed on conventional single resonator systems. The design concept is the co-existence of a PT symmetry broken regime for a narrow-linewidth pump wave and near-exceptional point operation for broadband signal and idler waves. This enables us to achieve a new NOSP system with two orders of magnitude improvement in efficiency compared to a single resonator. With a highly nonlinear AlGaAs-on-Insulator platform, we demonstrate an NOSP at a data rate approaching 40 gigabits per second with a record low pump power of one milliwatt. These findings pave the way for the development of fully chip-scale NOSP devices with pump light sources integrated together, potentially leading to a wide range of applications in optical communication networks and classical or quantum computation. The combination of PT symmetry and NOSP may also open up opportunities for amplification, detection, and sensing, where response speed and efficiency are equally important.","PeriodicalId":72891,"journal":{"name":"eLight","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vectorial liquid-crystal holography 矢量液晶全息技术
Q1 OPTICS Pub Date : 2024-03-05 DOI: 10.1186/s43593-024-00061-x
Ze-Yu Wang, Zhou Zhou, Han Zhang, Yang Wei, Hong-Guan Yu, Wei Hu, Wei Chen, Hai-Tao Dai, Ling-Ling Ma, Cheng-Wei Qiu, Yan-Qing Lu
Vectorial optics with fine inhomogeneous polarization control are highly desired. Metasurfaces have been captivated a promising candidate, but their static post-fabrication geometry largely limits the dynamic tunability. Liquid crystal (LC) is usually employed as an additional index-changing layer together with metasurfaces. Unfortunately, most of the reported LCs only impart a varying but uniform phase on top of that from the metasurface, which we term “scalar” LC optics. Here, we pixelate a single-layer LC to display versatile and tunable vectorial holography, in which the polarization and amplitude could be arbitrarily and independently controlled at varying spatial positions. Furthermore, the subtle and vectorial LC-holography highlights the broadband and electrically-switchable functionalities. Our vectorial LC holography reveals significant opportunities for advanced cryptography, super-resolution imaging, and many other applications.
具有精细非均相偏振控制功能的矢量光学技术非常受欢迎。元表面是一种很有前途的候选材料,但其静态的制造后几何形状在很大程度上限制了动态可调性。液晶(LC)通常与元表面一起用作额外的指数变化层。遗憾的是,大多数已报道的液晶都只是在元表面的基础上传递一个变化但均匀的相位,我们称之为 "标量 "液晶光学。在这里,我们对单层 LC 进行像素化处理,以展示多功能、可调谐的矢量全息技术,其中偏振和振幅可在不同的空间位置进行任意、独立的控制。此外,微妙的矢量 LC 全息技术还突出了宽带和电开关功能。我们的矢量低通全息技术为先进的密码学、超分辨率成像和许多其他应用带来了重大机遇。
{"title":"Vectorial liquid-crystal holography","authors":"Ze-Yu Wang, Zhou Zhou, Han Zhang, Yang Wei, Hong-Guan Yu, Wei Hu, Wei Chen, Hai-Tao Dai, Ling-Ling Ma, Cheng-Wei Qiu, Yan-Qing Lu","doi":"10.1186/s43593-024-00061-x","DOIUrl":"https://doi.org/10.1186/s43593-024-00061-x","url":null,"abstract":"Vectorial optics with fine inhomogeneous polarization control are highly desired. Metasurfaces have been captivated a promising candidate, but their static post-fabrication geometry largely limits the dynamic tunability. Liquid crystal (LC) is usually employed as an additional index-changing layer together with metasurfaces. Unfortunately, most of the reported LCs only impart a varying but uniform phase on top of that from the metasurface, which we term “scalar” LC optics. Here, we pixelate a single-layer LC to display versatile and tunable vectorial holography, in which the polarization and amplitude could be arbitrarily and independently controlled at varying spatial positions. Furthermore, the subtle and vectorial LC-holography highlights the broadband and electrically-switchable functionalities. Our vectorial LC holography reveals significant opportunities for advanced cryptography, super-resolution imaging, and many other applications.","PeriodicalId":72891,"journal":{"name":"eLight","volume":"171 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-permittivity ceramics enabled highly homogeneous zero-index metamaterials for high-directivity antennas and beyond 高导率陶瓷实现了高均匀性零指数超材料,可用于高指向性天线及其他领域
Q1 OPTICS Pub Date : 2024-02-05 DOI: 10.1186/s43593-023-00059-x
Yueyang Liu, Tian Dong, Xu Qin, Weijia Luo, Ning Leng, Yujing He, Yong Yuan, Ming Bai, Jingbo Sun, Ji Zhou, Yue Li, Yang Li
Zero-index metamaterials (ZIMs) can support uniform electromagnetic field distributions at any frequency, but their applications are hampered by the ZIM’s homogenization level—only 3 unit cells per free-space wavelength, which is fundamentally limited by the low-permittivity inclusions (εr ≈ 12) and background matrix (εr ≈ 1). Here, by filling high-permittivity SrTiO3 ceramic (εr ≈ 294) pillars in BaTiO3 (εr ≈ 25) background matrix, we demonstrate a highly homogeneous microwave ZIM with an over threefold increase in the homogenization level. Leveraging such a ZIM, we achieve not only an antenna, approaching the fundamental limit in the directivity with outstanding scalability, but also a concave lens with a focal length of as short as 1λ0. Our highly homogeneous ZIM has profound implications in ceramics, ZIM-based waveguides and cavities, free-space wavefront manipulation, and microwave quantum optics, and opens up enormous possibilities in wireless communications, remote sensing, global positioning satellites, etc.
零指数超材料(ZIMs)可以在任何频率上支持均匀的电磁场分布,但其应用却受到 ZIM 均质化水平的阻碍--每个自由空间波长只有 3 个单元格,这从根本上受到低导率夹杂物(εr ≈ 12)和背景矩阵(εr ≈ 1)的限制。在这里,通过在 BaTiO3(εr ≈ 25)背景基质中填充高导通率 SrTiO3 陶瓷(εr ≈ 294)柱,我们展示了一种高度均匀的微波 ZIM,其均匀化水平提高了三倍以上。利用这种 ZIM,我们不仅实现了接近基本极限指向性的天线,而且还实现了焦距短至 1λ0 的凹透镜。我们的高度均质 ZIM 在陶瓷、基于 ZIM 的波导和空腔、自由空间波前操纵和微波量子光学方面具有深远的影响,并为无线通信、遥感、全球定位卫星等领域带来了巨大的可能性。
{"title":"High-permittivity ceramics enabled highly homogeneous zero-index metamaterials for high-directivity antennas and beyond","authors":"Yueyang Liu, Tian Dong, Xu Qin, Weijia Luo, Ning Leng, Yujing He, Yong Yuan, Ming Bai, Jingbo Sun, Ji Zhou, Yue Li, Yang Li","doi":"10.1186/s43593-023-00059-x","DOIUrl":"https://doi.org/10.1186/s43593-023-00059-x","url":null,"abstract":"Zero-index metamaterials (ZIMs) can support uniform electromagnetic field distributions at any frequency, but their applications are hampered by the ZIM’s homogenization level—only 3 unit cells per free-space wavelength, which is fundamentally limited by the low-permittivity inclusions (εr ≈ 12) and background matrix (εr ≈ 1). Here, by filling high-permittivity SrTiO3 ceramic (εr ≈ 294) pillars in BaTiO3 (εr ≈ 25) background matrix, we demonstrate a highly homogeneous microwave ZIM with an over threefold increase in the homogenization level. Leveraging such a ZIM, we achieve not only an antenna, approaching the fundamental limit in the directivity with outstanding scalability, but also a concave lens with a focal length of as short as 1λ0. Our highly homogeneous ZIM has profound implications in ceramics, ZIM-based waveguides and cavities, free-space wavefront manipulation, and microwave quantum optics, and opens up enormous possibilities in wireless communications, remote sensing, global positioning satellites, etc.","PeriodicalId":72891,"journal":{"name":"eLight","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integral imaging near-eye 3D display using a nanoimprint metalens array 使用纳米压印金属膜阵列的整体成像近眼 3D 显示器
Q1 OPTICS Pub Date : 2024-01-22 DOI: 10.1186/s43593-023-00055-1
Zhi-Bin Fan, Yun-Fan Cheng, Ze-Ming Chen, Xia Liu, Wen-Long Lu, Shi-Hao Li, Shao-Ji Jiang, Zong Qin, Jian-Wen Dong

Abstract

Integral imaging (II) display, one of the most critical true-3D display technologies, has received increasing research recently. Significantly, an achromatic metalens array has realized a broadband metalens-array-based II (meta-II). However, the past micro-scale metalens arrays were incompatible with commercial micro-displays; furthermore, the elemental image array (EIA) rendering is always slow. The two hinders in device and algorithm prevent meta-II from being used for practical video-rate near-eye displays (NEDs). This research demonstrates a meta-II NED combining a commercial micro-display and a metalens array. The large-area nanoimprint technology fabricates the metalens array, and a novel real-time rendering algorithm is proposed to generate the EIA. The hardware and software efforts solve the bottlenecks of video-rate meta-II displays. We also build a see-through prototype based on our meta-II NED, demonstrating the feasibility of augmented reality. Our work explores the potential of video-rate meta-II displays, which we expect can be valuable for future virtual and augmented reality.

摘要 积分成像(II)显示技术是最关键的真三维显示技术之一,近来得到了越来越多的研究。值得注意的是,消色差金属膜阵列实现了基于金属膜阵列的宽带 II(meta-II)。然而,过去的微尺度金属伦斯阵列与商用微型显示器不兼容,而且元素图像阵列(EIA)的渲染速度总是很慢。设备和算法上的两个障碍阻碍了元 II 用于实用视频速率近眼显示器(NED)。这项研究展示了一种结合了商用微型显示器和金属膜阵列的元 II NED。大面积纳米压印技术制造了金属膜阵列,并提出了一种新颖的实时渲染算法来生成 EIA。硬件和软件方面的努力解决了视频速率元 II 显示器的瓶颈问题。我们还基于元 II NED 建立了一个透视原型,证明了增强现实的可行性。我们的工作探索了视频速率元 II 显示器的潜力,我们希望它能对未来的虚拟现实和增强现实有价值。
{"title":"Integral imaging near-eye 3D display using a nanoimprint metalens array","authors":"Zhi-Bin Fan, Yun-Fan Cheng, Ze-Ming Chen, Xia Liu, Wen-Long Lu, Shi-Hao Li, Shao-Ji Jiang, Zong Qin, Jian-Wen Dong","doi":"10.1186/s43593-023-00055-1","DOIUrl":"https://doi.org/10.1186/s43593-023-00055-1","url":null,"abstract":"<h3>Abstract</h3> <p>Integral imaging (II) display, one of the most critical true-3D display technologies, has received increasing research recently. Significantly, an achromatic metalens array has realized a broadband metalens-array-based II (meta-II). However, the past micro-scale metalens arrays were incompatible with commercial micro-displays; furthermore, the elemental image array (EIA) rendering is always slow. The two hinders in device and algorithm prevent meta-II from being used for practical video-rate near-eye displays (NEDs). This research demonstrates a meta-II NED combining a commercial micro-display and a metalens array. The large-area nanoimprint technology fabricates the metalens array, and a novel real-time rendering algorithm is proposed to generate the EIA. The hardware and software efforts solve the bottlenecks of video-rate meta-II displays. We also build a see-through prototype based on our meta-II NED, demonstrating the feasibility of augmented reality. Our work explores the potential of video-rate meta-II displays, which we expect can be valuable for future virtual and augmented reality.</p>","PeriodicalId":72891,"journal":{"name":"eLight","volume":"104 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139515234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesized complex-frequency excitation for ultrasensitive molecular sensing 用于超灵敏分子传感的合成复频激发技术
Q1 OPTICS Pub Date : 2024-01-05 DOI: 10.1186/s43593-023-00058-y
Kebo Zeng, Chenchen Wu, Xiangdong Guo, Fuxin Guan, Yu Duan, Lauren L. Zhang, Xiaoxia Yang, Na Liu, Qing Dai, Shuang Zhang

Abstract

Sensors have emerged as indispensable analytical tools across a wide range of important fields, encompassing environmental monitoring, food safety, and public health. They facilitate early disease diagnosis, personalized medicine, and rapid detection of toxic agents. However, detecting trace molecules remains a significant challenge. Surface-enhanced infrared absorption (SEIRA) based on plasmonic nanostructures, particularly graphene, has emerged as a promising approach to enhance sensing sensitivity. While graphene-based SEIRA offers advantages such as high sensitivity and active tunability, intrinsic molecular damping weakens the interaction between vibrational modes and plasmons. Here, we demonstrate ultrahigh-sensitive molecular sensing based on synthesized complex-frequency waves (CFW). Our experiment shows that CFW can amplify the molecular signals (silk protein monolayer) detected by graphene-based sensor by at least an order of magnitude and can be universally applied to molecular sensing in different phases. Our approach is highly scalable and can facilitate the investigation of light-matter interactions, enabling diverse potential applications in fields such as optical spectroscopy, biomedicine and pharmaceutics.

摘要 传感器已成为环境监测、食品安全和公共卫生等众多重要领域不可或缺的分析工具。它们有助于早期疾病诊断、个性化医疗和有毒物质的快速检测。然而,检测痕量分子仍然是一项重大挑战。基于等离子体纳米结构(尤其是石墨烯)的表面增强红外吸收(SEIRA)已成为提高传感灵敏度的一种有前途的方法。虽然基于石墨烯的 SEIRA 具有高灵敏度和主动可调谐性等优点,但固有的分子阻尼削弱了振动模式与质子之间的相互作用。在此,我们展示了基于合成复频波(CFW)的超高灵敏度分子传感。实验表明,复频波可以将石墨烯传感器检测到的分子信号(丝蛋白单层)放大至少一个数量级,并可普遍应用于不同阶段的分子传感。我们的方法具有高度可扩展性,可促进光-物质相互作用的研究,从而在光学光谱学、生物医学和制药学等领域实现多种潜在应用。
{"title":"Synthesized complex-frequency excitation for ultrasensitive molecular sensing","authors":"Kebo Zeng, Chenchen Wu, Xiangdong Guo, Fuxin Guan, Yu Duan, Lauren L. Zhang, Xiaoxia Yang, Na Liu, Qing Dai, Shuang Zhang","doi":"10.1186/s43593-023-00058-y","DOIUrl":"https://doi.org/10.1186/s43593-023-00058-y","url":null,"abstract":"<h3>Abstract</h3> <p>Sensors have emerged as indispensable analytical tools across a wide range of important fields, encompassing environmental monitoring, food safety, and public health. They facilitate early disease diagnosis, personalized medicine, and rapid detection of toxic agents. However, detecting trace molecules remains a significant challenge. Surface-enhanced infrared absorption (SEIRA) based on plasmonic nanostructures, particularly graphene, has emerged as a promising approach to enhance sensing sensitivity. While graphene-based SEIRA offers advantages such as high sensitivity and active tunability, intrinsic molecular damping weakens the interaction between vibrational modes and plasmons. Here, we demonstrate ultrahigh-sensitive molecular sensing based on synthesized complex-frequency waves (CFW). Our experiment shows that CFW can amplify the molecular signals (silk protein monolayer) detected by graphene-based sensor by at least an order of magnitude and can be universally applied to molecular sensing in different phases. Our approach is highly scalable and can facilitate the investigation of light-matter interactions, enabling diverse potential applications in fields such as optical spectroscopy, biomedicine and pharmaceutics.</p>","PeriodicalId":72891,"journal":{"name":"eLight","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Waveguide-based augmented reality displays: perspectives and challenges 更正:基于波导的增强现实显示器:前景与挑战
Q1 OPTICS Pub Date : 2024-01-04 DOI: 10.1186/s43593-023-00060-4
Yuqiang Ding, Qian Yang, Yannanqi Li, Zhiyong Yang, Zhengyang Wang, Haowen Liang, Shin‑Tson Wu
<br/><p><b>Correction: eLight (2023) 3:24 </b><b>https://doi.org/10.1186/s43593-023-00057-z</b></p><br/><p>After publication of this article [1], it was brought to our attention that the first author's name Yuqian Ding is incorrect, the correct name is Yuqiang Ding.</p><br/><p>The original publication has been corrected.</p><ol data-track-component="outbound reference"><li data-counter="1."><p>Y. Ding, Q. Yang, Y. Li, Z. Yang, Z. Wang, H. Liang, W. Shin-Tson, Waveguide-based augmented reality displays: perspectives and challenges. eLight <b>3</b>, 24 (2023). https://doi.org/10.1186/s43593-023-00057-z</p><p>Article Google Scholar </p></li></ol><p>Download references<svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-download-medium" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA</p><p>Yuqiang Ding, Qian Yang, Yannanqi Li, Zhiyong Yang & Shin‑Tson Wu</p></li><li><p>State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China</p><p>Zhengyang Wang & Haowen Liang</p></li></ol><span>Authors</span><ol><li><span>Yuqiang Ding</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Qian Yang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Yannanqi Li</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Zhiyong Yang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Zhengyang Wang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Haowen Liang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Shin‑Tson Wu</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Corresponding authors</h3><p>Correspondence to Haowen Liang or Shin‑Tson Wu.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not incl
更正:eLight (2023) 3:24 https://doi.org/10.1186/s43593-023-00057-zAfter 发表本文[1]时,我们注意到第一作者的名字Yuqian Ding有误,正确的名字是Yuqiang Ding。原文已更正。Y. Ding, Q. Yang, Y. Li, Z. Yang, Z. Wang, H. Liang, W. Shin-Tson, Waveguide-based augmented reality displays: perspectives and challenges. eLight 3, 24 (2023). https://doi.org/10.1186/s43593-023-00057-zArticle Google Scholar Download referencesAuthors and AffiliationsCollege of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USAYuqiang Ding, Qian Yang, Yannanqi Li, Zhiyong Yang & Shin-Tson WuState Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, ChinaZhengyang Wang &;Haowen Liang作者:丁玉强查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者杨谦查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者李亚楠奇查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者杨志勇查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者PubMed Google Scholar王正阳View Author publications您也可以在 PubMed Google Scholar中搜索该作者Haowen LiangView Author publications您也可以在 PubMed Google Scholar中搜索该作者Shin-Tson WuView Author publications您也可以在 PubMed Google Scholar中搜索该作者Corresponding authors给Haowen Liang或Shin-Tson Wu的回信。开放存取 本文采用知识共享署名 4.0 国际许可协议进行许可,该协议允许以任何媒介或格式使用、共享、改编、分发和复制本文,只要您适当注明原作者和来源,提供知识共享许可协议的链接,并说明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,则您需要直接从版权所有者处获得许可。要查看该许可的副本,请访问 http://creativecommons.org/licenses/by/4.0/.Reprints and permissionsCite this articleDing, Y., Yang, Q., Li, Y. et al. Correction:eLight 4, 2 (2024). https://doi.org/10.1186/s43593-023-00060-4Download citationPublished: 04 January 2024DOI: https://doi.org/10.1186/s43593-023-00060-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
{"title":"Correction: Waveguide-based augmented reality displays: perspectives and challenges","authors":"Yuqiang Ding, Qian Yang, Yannanqi Li, Zhiyong Yang, Zhengyang Wang, Haowen Liang, Shin‑Tson Wu","doi":"10.1186/s43593-023-00060-4","DOIUrl":"https://doi.org/10.1186/s43593-023-00060-4","url":null,"abstract":"&lt;br/&gt;&lt;p&gt;&lt;b&gt;Correction: eLight (2023) 3:24 &lt;/b&gt;&lt;b&gt;https://doi.org/10.1186/s43593-023-00057-z&lt;/b&gt;&lt;/p&gt;&lt;br/&gt;&lt;p&gt;After publication of this article [1], it was brought to our attention that the first author's name Yuqian Ding is incorrect, the correct name is Yuqiang Ding.&lt;/p&gt;&lt;br/&gt;&lt;p&gt;The original publication has been corrected.&lt;/p&gt;&lt;ol data-track-component=\"outbound reference\"&gt;&lt;li data-counter=\"1.\"&gt;&lt;p&gt;Y. Ding, Q. Yang, Y. Li, Z. Yang, Z. Wang, H. Liang, W. Shin-Tson, Waveguide-based augmented reality displays: perspectives and challenges. eLight &lt;b&gt;3&lt;/b&gt;, 24 (2023). https://doi.org/10.1186/s43593-023-00057-z&lt;/p&gt;&lt;p&gt;Article Google Scholar &lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;p&gt;Download references&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/p&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA&lt;/p&gt;&lt;p&gt;Yuqiang Ding, Qian Yang, Yannanqi Li, Zhiyong Yang &amp; Shin‑Tson Wu&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China&lt;/p&gt;&lt;p&gt;Zhengyang Wang &amp; Haowen Liang&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;span&gt;Authors&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;span&gt;Yuqiang Ding&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Qian Yang&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Yannanqi Li&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Zhiyong Yang&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Zhengyang Wang&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Haowen Liang&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Shin‑Tson Wu&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;h3&gt;Corresponding authors&lt;/h3&gt;&lt;p&gt;Correspondence to Haowen Liang or Shin‑Tson Wu.&lt;/p&gt;&lt;p&gt;&lt;b&gt;Open Access&lt;/b&gt; This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not incl","PeriodicalId":72891,"journal":{"name":"eLight","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient microresonator frequency combs. 高效微谐振器频率梳
IF 27.2 Q1 OPTICS Pub Date : 2024-01-01 Epub Date: 2024-10-10 DOI: 10.1186/s43593-024-00075-5
Qi-Fan Yang, Yaowen Hu, Victor Torres-Company, Kerry Vahala

The rapid development of optical frequency combs from their table-top origins towards chip-scale platforms has opened up exciting possibilities for comb functionalities outside laboratories. Enhanced nonlinear processes in microresonators have emerged as a mainstream comb-generating mechanism with compelling advantages in size, weight, and power consumption. The established understanding of gain and loss in nonlinear microresonators, along with recently developed ultralow-loss nonlinear photonic circuitry, has boosted the optical energy conversion efficiency of microresonator frequency comb (microcomb) devices from below a few percent to above 50%. This review summarizes the latest advances in novel photonic devices and pumping strategies that contribute to these milestones of microcomb efficiency. The resulting benefits for high-performance integration of comb applications are also discussed before summarizing the remaining challenges.

光学频率梳从台式平台向芯片级平台的快速发展,为实验室外的梳状功能开辟了令人兴奋的可能性。微谐振器中的增强型非线性过程已成为一种主流的梳状产生机制,在尺寸、重量和功耗方面具有令人信服的优势。对非线性微谐振器增益和损耗的成熟认识,以及最近开发的超低损耗非线性光子电路,已将微谐振器频率梳(微梳)器件的光能转换效率从低于百分之几提高到 50%以上。本综述总结了新型光子器件和泵浦策略的最新进展,这些进展为提高微蜂窝器件的效率做出了里程碑式的贡献。在总结余下的挑战之前,还讨论了梳状应用的高性能集成所带来的好处。
{"title":"Efficient microresonator frequency combs.","authors":"Qi-Fan Yang, Yaowen Hu, Victor Torres-Company, Kerry Vahala","doi":"10.1186/s43593-024-00075-5","DOIUrl":"https://doi.org/10.1186/s43593-024-00075-5","url":null,"abstract":"<p><p>The rapid development of optical frequency combs from their table-top origins towards chip-scale platforms has opened up exciting possibilities for comb functionalities outside laboratories. Enhanced nonlinear processes in microresonators have emerged as a mainstream comb-generating mechanism with compelling advantages in size, weight, and power consumption. The established understanding of gain and loss in nonlinear microresonators, along with recently developed ultralow-loss nonlinear photonic circuitry, has boosted the optical energy conversion efficiency of microresonator frequency comb (microcomb) devices from below a few percent to above 50%. This review summarizes the latest advances in novel photonic devices and pumping strategies that contribute to these milestones of microcomb efficiency. The resulting benefits for high-performance integration of comb applications are also discussed before summarizing the remaining challenges.</p>","PeriodicalId":72891,"journal":{"name":"eLight","volume":"4 1","pages":"18"},"PeriodicalIF":27.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waveguide-based augmented reality displays: perspectives and challenges 基于波导的增强现实显示器:前景与挑战
Q1 OPTICS Pub Date : 2023-12-07 DOI: 10.1186/s43593-023-00057-z
Yuqian Ding, Qian Yang, Yannanqi Li, Zhiyong Yang, Zhengyang Wang, Haowen Liang, Shin-Tson Wu
Augmented reality (AR) displays, as the next generation platform for spatial computing and digital twins, enable users to view digital images superimposed on real-world environment, fostering a deeper level of human-digital interactions. However, as a critical element in an AR system, optical combiners face unprecedented challenges to match the exceptional performance requirements of human vision system while keeping the headset ultracompact and lightweight. After decades of extensive device and material research efforts, and heavy investment in manufacturing technologies, several promising waveguide combiners have been developed. In this review paper, we focus on the perspectives and challenges of optical waveguide combiners for AR displays. We will begin by introducing the basic device structures and operation principles of different AR architectures, and then delve into different waveguide combiners, including geometric and diffractive waveguide combiners. Some commonly used in-couplers and out-couplers, such as prisms, mirrors, surface relief gratings, volume holographic gratings, polarization volume gratings, and metasurface-based couplers, will be discussed, and their properties analyzed in detail. Additionally, we will explore recent advances in waveguide combiner design and modeling, such as exit pupil expansion, wide field of view, geometric architectures of waveguide couplers, full-color propagation, and brightness and color uniformity optimization. Finally, we will discuss the bottlenecks and future development trends in waveguide combiner technologies. The objective of this review is to provide a comprehensive overview of the current state of waveguide combiner technologies, analyze their pros and cons, and then present the future challenges of AR displays.
增强现实(AR)显示器作为空间计算和数字孪生的下一代平台,使用户能够观看叠加在现实世界环境中的数字图像,从而促进更深层次的人机交互。然而,作为 AR 系统的关键元件,光学合路器面临着前所未有的挑战,既要满足人类视觉系统的特殊性能要求,又要保持耳机的超小型和轻量化。经过数十年对器件和材料的广泛研究,以及对制造技术的大量投资,已经开发出了几种前景看好的波导合路器。在这篇综述论文中,我们将重点讨论用于 AR 显示器的光波导合路器的前景和挑战。我们将首先介绍不同 AR 架构的基本器件结构和工作原理,然后深入探讨不同的波导合路器,包括几何波导合路器和衍射波导合路器。我们将讨论一些常用的内耦合器和外耦合器,如棱镜、反射镜、表面浮雕光栅、体全息光栅、偏振体光栅和基于元表面的耦合器,并详细分析它们的特性。此外,我们还将探讨波导组合器设计和建模的最新进展,如出口瞳孔扩大、宽视场、波导耦合器的几何结构、全彩传播以及亮度和色彩均匀性优化。最后,我们将讨论波导合路器技术的瓶颈和未来发展趋势。本综述旨在全面概述波导合路器技术的现状,分析其优缺点,然后提出 AR 显示屏未来面临的挑战。
{"title":"Waveguide-based augmented reality displays: perspectives and challenges","authors":"Yuqian Ding, Qian Yang, Yannanqi Li, Zhiyong Yang, Zhengyang Wang, Haowen Liang, Shin-Tson Wu","doi":"10.1186/s43593-023-00057-z","DOIUrl":"https://doi.org/10.1186/s43593-023-00057-z","url":null,"abstract":"Augmented reality (AR) displays, as the next generation platform for spatial computing and digital twins, enable users to view digital images superimposed on real-world environment, fostering a deeper level of human-digital interactions. However, as a critical element in an AR system, optical combiners face unprecedented challenges to match the exceptional performance requirements of human vision system while keeping the headset ultracompact and lightweight. After decades of extensive device and material research efforts, and heavy investment in manufacturing technologies, several promising waveguide combiners have been developed. In this review paper, we focus on the perspectives and challenges of optical waveguide combiners for AR displays. We will begin by introducing the basic device structures and operation principles of different AR architectures, and then delve into different waveguide combiners, including geometric and diffractive waveguide combiners. Some commonly used in-couplers and out-couplers, such as prisms, mirrors, surface relief gratings, volume holographic gratings, polarization volume gratings, and metasurface-based couplers, will be discussed, and their properties analyzed in detail. Additionally, we will explore recent advances in waveguide combiner design and modeling, such as exit pupil expansion, wide field of view, geometric architectures of waveguide couplers, full-color propagation, and brightness and color uniformity optimization. Finally, we will discuss the bottlenecks and future development trends in waveguide combiner technologies. The objective of this review is to provide a comprehensive overview of the current state of waveguide combiner technologies, analyze their pros and cons, and then present the future challenges of AR displays.","PeriodicalId":72891,"journal":{"name":"eLight","volume":"108 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138548394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vectorial adaptive optics 矢量自适应光学
Q1 OPTICS Pub Date : 2023-11-27 DOI: 10.1186/s43593-023-00056-0
Chao He, Jacopo Antonello, Martin J. Booth
Adaptive optics normally concerns the feedback correction of phase aberrations. Such correction has been of benefit in various optical systems, with applications ranging in scale from astronomical telescopes to super-resolution microscopes. Here we extend this powerful tool into the vectorial domain, encompassing higher-dimensional feedback correction of both polarisation and phase. This technique is termed vectorial adaptive optics (V-AO). We show that V-AO can be implemented using sensor feedback, indirectly using sensorless AO, or in hybrid form combining aspects of both. We validate improvements in both vector field state and the focal quality of an optical system, through correction for commonplace vectorial aberration sources, ranging from objective lenses to biological samples. This technique pushes the boundaries of traditional scalar beam shaping by providing feedback control of extra vectorial degrees of freedom. This paves the way for next generation AO functionality by manipulating the complex vectorial field.
自适应光学通常涉及相位像差的反馈校正。这种校正在各种光学系统中都是有益的,应用范围从天文望远镜到超分辨率显微镜。在这里,我们将这个强大的工具扩展到向量域,包括极化和相位的高维反馈校正。这种技术被称为矢量自适应光学(V-AO)。我们表明,V-AO可以使用传感器反馈,间接使用无传感器AO,或以混合形式结合两者的各个方面来实现。我们通过校正常见的矢量像差源(从物镜到生物样品)来验证光学系统的矢量场状态和焦质量的改进。该技术通过提供额外矢量自由度的反馈控制,突破了传统标量光束整形的极限。这为通过操纵复向量场实现下一代AO功能铺平了道路。
{"title":"Vectorial adaptive optics","authors":"Chao He, Jacopo Antonello, Martin J. Booth","doi":"10.1186/s43593-023-00056-0","DOIUrl":"https://doi.org/10.1186/s43593-023-00056-0","url":null,"abstract":"Adaptive optics normally concerns the feedback correction of phase aberrations. Such correction has been of benefit in various optical systems, with applications ranging in scale from astronomical telescopes to super-resolution microscopes. Here we extend this powerful tool into the vectorial domain, encompassing higher-dimensional feedback correction of both polarisation and phase. This technique is termed vectorial adaptive optics (V-AO). We show that V-AO can be implemented using sensor feedback, indirectly using sensorless AO, or in hybrid form combining aspects of both. We validate improvements in both vector field state and the focal quality of an optical system, through correction for commonplace vectorial aberration sources, ranging from objective lenses to biological samples. This technique pushes the boundaries of traditional scalar beam shaping by providing feedback control of extra vectorial degrees of freedom. This paves the way for next generation AO functionality by manipulating the complex vectorial field.","PeriodicalId":72891,"journal":{"name":"eLight","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling 高效柔性结构超表面,采用卷对卷印刷,全天候辐射冷却
Q1 OPTICS Pub Date : 2023-10-25 DOI: 10.1186/s43593-023-00053-3
Keng-Te Lin, Xianbo Nian, Ke Li, Jihong Han, Nan Zheng, Xiaokang Lu, Chunsheng Guo, Han Lin, Baohua Jia
Abstract An ideal radiative cooler requires accurate spectral control capability to achieve efficient thermal emission in the atmospheric transparency window (8–13 μm), low solar absorption, good stability, scalability, and a simple structure for effective diurnal radiative cooling. Flexible cooling films made from polymer relying on polymer intrinsic absorbance represent a cost-effective solution but lack accuracy in spectral control. Here, we propose and demonstrate a metasurface concept enabled by periodically arranged three-dimensional (3D) trench-like structures in a thin layer of polymer for high-performance radiative cooling. The structured polymer metasurface radiative cooler is manufactured by a roll-to-roll printing method. It exhibits superior spectral breadth and selectivity, which offers outstanding omnidirectional absorption/emission (96.1%) in the atmospheric transparency window, low solar absorption (4.8%), and high stability. Impressive cooling power of 129.8 W m −2 and temperature deduction of 7 °C on a clear sky midday have been achieved, promising broad practical applications in energy saving and passive heat dispersion fields.
理想的辐射冷却器要求具有精确的光谱控制能力,在大气透明窗(8 ~ 13 μm)内实现高效的热发射,太阳吸收率低,稳定性好,可扩展性好,结构简单,从而实现有效的日间辐射冷却。利用聚合物固有吸光度制成的柔性冷却膜是一种经济有效的解决方案,但在光谱控制方面缺乏准确性。在这里,我们提出并演示了一种超表面概念,该概念是通过在薄层聚合物中周期性排列的三维(3D)沟槽状结构实现的,用于高性能辐射冷却。该结构聚合物超表面辐射冷却器采用卷对卷印刷方法制造。它具有优异的光谱宽度和选择性,在大气透明窗口内具有出色的全向吸收/发射(96.1%)、低太阳吸收(4.8%)和高稳定性。在晴朗的中午,令人印象深刻的冷却功率达到129.8 W m−2,温度降低7°C,在节能和被动散热领域有广泛的实际应用前景。
{"title":"Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling","authors":"Keng-Te Lin, Xianbo Nian, Ke Li, Jihong Han, Nan Zheng, Xiaokang Lu, Chunsheng Guo, Han Lin, Baohua Jia","doi":"10.1186/s43593-023-00053-3","DOIUrl":"https://doi.org/10.1186/s43593-023-00053-3","url":null,"abstract":"Abstract An ideal radiative cooler requires accurate spectral control capability to achieve efficient thermal emission in the atmospheric transparency window (8–13 μm), low solar absorption, good stability, scalability, and a simple structure for effective diurnal radiative cooling. Flexible cooling films made from polymer relying on polymer intrinsic absorbance represent a cost-effective solution but lack accuracy in spectral control. Here, we propose and demonstrate a metasurface concept enabled by periodically arranged three-dimensional (3D) trench-like structures in a thin layer of polymer for high-performance radiative cooling. The structured polymer metasurface radiative cooler is manufactured by a roll-to-roll printing method. It exhibits superior spectral breadth and selectivity, which offers outstanding omnidirectional absorption/emission (96.1%) in the atmospheric transparency window, low solar absorption (4.8%), and high stability. Impressive cooling power of 129.8 W m −2 and temperature deduction of 7 °C on a clear sky midday have been achieved, promising broad practical applications in energy saving and passive heat dispersion fields.","PeriodicalId":72891,"journal":{"name":"eLight","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134972776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
eLight
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1