Pub Date : 2023-12-26DOI: 10.1080/09243046.2023.2299635
Elena I. Senkina, Aleksandr S. Lozhkomoev, Svetlana P. Buyakova, Andrey A. Miller, Ales S. Buyakov
The success of replacement of damaged bone tissue by porous ceramic scaffolds is determined not only by biochemical compatibility of the artificial material, but also by a set of interrelated morph...
{"title":"Comprehensive evaluation of morphology-property relationship in porous zirconia bioceramics at different levels of scale hierarchy","authors":"Elena I. Senkina, Aleksandr S. Lozhkomoev, Svetlana P. Buyakova, Andrey A. Miller, Ales S. Buyakov","doi":"10.1080/09243046.2023.2299635","DOIUrl":"https://doi.org/10.1080/09243046.2023.2299635","url":null,"abstract":"The success of replacement of damaged bone tissue by porous ceramic scaffolds is determined not only by biochemical compatibility of the artificial material, but also by a set of interrelated morph...","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139072314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we evaluated the effects of the fiber orientation and the presence of resin-rich layers on electromagnetic induction testing (EIT) of carbon fiber reinforced thermoplastics (CFRTPs)....
{"title":"Effects of fiber orientation and resin-rich layers in carbon fiber reinforced thermoplastics on electromagnetic induction testing","authors":"Wataru Matsunaga, Satoshi Imai, Yoshihiro Mizutani, Akira Todoroki","doi":"10.1080/09243046.2023.2293603","DOIUrl":"https://doi.org/10.1080/09243046.2023.2293603","url":null,"abstract":"In this study, we evaluated the effects of the fiber orientation and the presence of resin-rich layers on electromagnetic induction testing (EIT) of carbon fiber reinforced thermoplastics (CFRTPs)....","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138825481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1080/09243046.2023.2278258
Hyun Kyu Shin, Sung Kyu Ha
The hydrogen gas storage tank market includes passenger cars and heavy-duty trucks. However, there is insufficient economic analysis of these tanks, which is the key element for achieving market ex...
氢气储罐市场包括乘用车和重型卡车。然而,对这些储罐的经济分析不足,这是实现市场效益的关键因素。
{"title":"Techno-economic analysis of type III and IV composite hydrogen storage tanks for fuel cell vehicles","authors":"Hyun Kyu Shin, Sung Kyu Ha","doi":"10.1080/09243046.2023.2278258","DOIUrl":"https://doi.org/10.1080/09243046.2023.2278258","url":null,"abstract":"The hydrogen gas storage tank market includes passenger cars and heavy-duty trucks. However, there is insufficient economic analysis of these tanks, which is the key element for achieving market ex...","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-23DOI: 10.1080/09243046.2023.2283679
Sangmook Lee
In existing power devices, various insulating parts are manufactured with petroleum-based epoxy resin. However, as petroleum-based resources are gradually depleted and environmental problems have e...
{"title":"3-D modeling of automatic pressure gelation process for manufacturing gas insulated switchgear spacer using bio-based epoxy composite","authors":"Sangmook Lee","doi":"10.1080/09243046.2023.2283679","DOIUrl":"https://doi.org/10.1080/09243046.2023.2283679","url":null,"abstract":"In existing power devices, various insulating parts are manufactured with petroleum-based epoxy resin. However, as petroleum-based resources are gradually depleted and environmental problems have e...","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-21DOI: 10.1080/09243046.2023.2280353
Limin Bao, Yuya Tanasawa, Jian Shi, Ye Sun
Over the course of many years of use, impingement wear from dust, sand, and other materials can damage wind turbine blades, necessitating repairs and other maintenance work. Recently, wind turbine ...
{"title":"Erosion resistant effects of protective films for wind turbine blades","authors":"Limin Bao, Yuya Tanasawa, Jian Shi, Ye Sun","doi":"10.1080/09243046.2023.2280353","DOIUrl":"https://doi.org/10.1080/09243046.2023.2280353","url":null,"abstract":"Over the course of many years of use, impingement wear from dust, sand, and other materials can damage wind turbine blades, necessitating repairs and other maintenance work. Recently, wind turbine ...","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Three-dimensional (3D) printing technology has revolutionized the fabrication of complex geometries, including electromagnetic wave absorbers. In this study, the multilayer radar absorbing structur...
{"title":"Fabrication of multi-layer radar absorbing structures based on continuous fiber 3D printing and thickness correction method","authors":"Do-Hyeon Jin, Jong-Min Hyun, Jung-Ryul Lee, Joon-Mo Ahn","doi":"10.1080/09243046.2023.2283681","DOIUrl":"https://doi.org/10.1080/09243046.2023.2283681","url":null,"abstract":"Three-dimensional (3D) printing technology has revolutionized the fabrication of complex geometries, including electromagnetic wave absorbers. In this study, the multilayer radar absorbing structur...","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study proposes the novel manufacturing method of adhesively bonded joint with double-sided tapes by following the concept of bi-adhesive bondline. The stress concentration at the ends of the b...
本研究以双面胶粘接线为概念,提出了双面胶粘接接头的新制造方法。b末端的应力集中…
{"title":"Toughened single-lap joints by composite bondline of adhesive and double-sided tape","authors":"Kosuke Takahashi, Zhantong Sun, Takuma Kikuzawa, Kounosuke Shimamura, Sourabh Jagrat, Nao Fujimura, Takashi Nakamura","doi":"10.1080/09243046.2023.2284057","DOIUrl":"https://doi.org/10.1080/09243046.2023.2284057","url":null,"abstract":"This study proposes the novel manufacturing method of adhesively bonded joint with double-sided tapes by following the concept of bi-adhesive bondline. The stress concentration at the ends of the b...","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-12DOI: 10.1080/09243046.2023.2279001
Yuta Naito, Christophe Mobuchon, Anoush Poursartip, Masaaki Nishikawa, Masaki Hojo
AbstractTwo types of flow mechanisms consisting of unidirectionally arrayed fibers and uncured thermoset resin exist in prepreg materials. These mechanisms are percolation flow where resin flows out of the gaps between fibers, and shear flow where resin and fibers flow together. Based on our previous study, we assumed that percolation flow is controlled by the rheology of the matrix resin, whereas shear flow is controlled by the rheology of prepreg. Based on this assumption, we experimentally evaluated the ‘multiscale’ solidification (solidification of matrix resin and that of prepreg) process using dynamic mechanical analysis during gelation. The solidification of matrix resin was examined by observing the development of loss angle, which provides a continuous description of the solidification process. On the other hand, the solidification of prepreg was characterized by analyzing the relationship between the shear storage modulus of prepreg and that of the matrix resin. Finally, we examined the difference in the solidification process between prepreg and matrix resin during gelation.Keywords: Thermoset prepregrheological propertiesgelationphase transition;process modeling Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by JSPS KAKENHI Grant Number JP17H03144/JP20H02028. This research was partially supported by JSPS KAKENHI 23H01604. This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP) ‘“Materials Integration” for revolutionary design system of structural materials’ (Funding agency: JST).
{"title":"Experimental characterization of multiscale solidification in thermoset CFRP during gelation for flow and stress modeling","authors":"Yuta Naito, Christophe Mobuchon, Anoush Poursartip, Masaaki Nishikawa, Masaki Hojo","doi":"10.1080/09243046.2023.2279001","DOIUrl":"https://doi.org/10.1080/09243046.2023.2279001","url":null,"abstract":"AbstractTwo types of flow mechanisms consisting of unidirectionally arrayed fibers and uncured thermoset resin exist in prepreg materials. These mechanisms are percolation flow where resin flows out of the gaps between fibers, and shear flow where resin and fibers flow together. Based on our previous study, we assumed that percolation flow is controlled by the rheology of the matrix resin, whereas shear flow is controlled by the rheology of prepreg. Based on this assumption, we experimentally evaluated the ‘multiscale’ solidification (solidification of matrix resin and that of prepreg) process using dynamic mechanical analysis during gelation. The solidification of matrix resin was examined by observing the development of loss angle, which provides a continuous description of the solidification process. On the other hand, the solidification of prepreg was characterized by analyzing the relationship between the shear storage modulus of prepreg and that of the matrix resin. Finally, we examined the difference in the solidification process between prepreg and matrix resin during gelation.Keywords: Thermoset prepregrheological propertiesgelationphase transition;process modeling Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by JSPS KAKENHI Grant Number JP17H03144/JP20H02028. This research was partially supported by JSPS KAKENHI 23H01604. This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP) ‘“Materials Integration” for revolutionary design system of structural materials’ (Funding agency: JST).","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135036684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AbstractComposite fan blades made of CFRP have been developed and investigated to reduce the weight of aircraft engines. Aircraft fan blades are subjected to high-speed impact by foreign objects, such as bird strikes. Because CFRP has lower impact resistance than metal materials, it is necessary to focus on possible failure not only at the impact point but also at the tip and trailing edge of the fan blade. This paper developed a finite element analysis model of fan blade geometry and investigated the dynamic deformation that may induce peripheral fracture when a bird strike occurs on a composite fan blade. Natural vibration analysis and transient response analysis were performed to analyze the vibration behavior at the fan blade periphery. The natural vibration analysis showed that the vibration modes in the out-of-plane direction of the blade are of low order. In the transient response analysis, when a group of particles defined by the equation of state and the SPH method collided, a sudden deformation in the periphery, called a whipping motion, was observed immediately after the impact. The spanwise strain has a peak value at the trailing edge of the fan blade, while the chordwise strain has a peak value at the leading edge of the fan blade. Furthermore, the transient response analysis with the fan blades rotating showed an increase in the peak strain value. A comparison of the impact loads and displacements immediately below the impact indicated that the centrifugal force increased the geometric stiffness, which increased the reaction force due to the fan blade, increasing the peak value.Keywords: Finite element method (FEM)LS−DYNAsmoothed particle hydrodynamics method (SPH)natural frequency analysisdynamic transient response analysis Disclosure statementNo potential conflict of interest was reported by the author(s).
{"title":"Whipping motion of airplane composite fan blades due to bird strike","authors":"Sho Kajihara, Ryo Higuchi, Takahira Aoki, Shinya Fukushige","doi":"10.1080/09243046.2023.2280347","DOIUrl":"https://doi.org/10.1080/09243046.2023.2280347","url":null,"abstract":"AbstractComposite fan blades made of CFRP have been developed and investigated to reduce the weight of aircraft engines. Aircraft fan blades are subjected to high-speed impact by foreign objects, such as bird strikes. Because CFRP has lower impact resistance than metal materials, it is necessary to focus on possible failure not only at the impact point but also at the tip and trailing edge of the fan blade. This paper developed a finite element analysis model of fan blade geometry and investigated the dynamic deformation that may induce peripheral fracture when a bird strike occurs on a composite fan blade. Natural vibration analysis and transient response analysis were performed to analyze the vibration behavior at the fan blade periphery. The natural vibration analysis showed that the vibration modes in the out-of-plane direction of the blade are of low order. In the transient response analysis, when a group of particles defined by the equation of state and the SPH method collided, a sudden deformation in the periphery, called a whipping motion, was observed immediately after the impact. The spanwise strain has a peak value at the trailing edge of the fan blade, while the chordwise strain has a peak value at the leading edge of the fan blade. Furthermore, the transient response analysis with the fan blades rotating showed an increase in the peak strain value. A comparison of the impact loads and displacements immediately below the impact indicated that the centrifugal force increased the geometric stiffness, which increased the reaction force due to the fan blade, increasing the peak value.Keywords: Finite element method (FEM)LS−DYNAsmoothed particle hydrodynamics method (SPH)natural frequency analysisdynamic transient response analysis Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135240729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1080/09243046.2023.2274211
Jae Seong Bae, Sung Nam Jung
AbstractA variationally consistent analytical beam model that describes the theory in a Timoshenko-Vlasov level is developed based on Reissner’s mixed variational theorem. Starting from a shell theory, all the field-governing equations (equilibrium and continuity) and the boundary conditions of the shell wall are derived in closed form, and the mixed method enables finding the explicit forms of the reactive stresses and sectional warpings which are evaluated progressively depending on the level of beam model to be analyzed. The stress recovery part is incorporated in the post-stage of the analysis to compute the layer-wise distribution of stresses over the beam cross-section. The present analysis is validated against numerous benchmark examples available in the literature, including beams with multi-layered strip section, thin-walled anisotropic box sections with elastic couplings, and two-cell airfoil section. The comparison study demonstrates excellent correlations with the results from detailed three-dimensional finite element analysis and other up-to-date beam approaches. Also presented are symbolically expressed stiffness coefficients and the sectional warping modes of coupled composite beams to demonstrate the strength of the proposed beam model.Keywords: Beamsection analysiswarpingstress recovery; stiffness matrix Nomenclature a=Local shell radius of curvatureFx=Axial force along x axisFy, Fz=Shear forces along y and z axesMx=Torsional moment about x axisMy, Mz=Bending moments about y and z axesMω=Torsional bi-momentMxx, Mss, Mxs=Bending and twisting couples of the shell wallNxx, Nss, Nxs=In-plane stress resultants of the shell wallNxn, Nsn=Transverse shear stress resultants of the shell wallU, V, W=Translational displacements of beam sectional reference origin along x, y, z axesu, v, w=Translational displacements of an arbitrary material point of beam section along x, y, z axesux, us, un=Translational displacements of the shell wall along x, s, n axesβy, βz=Sectional rotation angles about y and z axesγxn,γsn=Transverse shear strains of the shell wallγxn,γsn=Transverse shear strains of the beam in x-y, x-z planesγxs=In-plane shear strain of the shell wallisinxx,isinss=In-plane normal strains of the shell wallκxx,κss,κxs=Curvatures of the shell wallϕ=Sectional rotation angle about x axisψx, ψs=Rotation angles of the shell wall about s, x axesωx=Contour warping function along x axisSubscripts=(),x, (),s=∂()/∂x, ∂()/∂sSuperscripts=()T=Transpose of an array()−1=Inversion of an arrayDisclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Additional informationFundingThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R14A1018884). This work was supported by Korea Research Institute for defense Technology planning and advancement (KRIT) gr
{"title":"Fully analytical solution framework for general thin-walled composite beams with mixed variational approach","authors":"Jae Seong Bae, Sung Nam Jung","doi":"10.1080/09243046.2023.2274211","DOIUrl":"https://doi.org/10.1080/09243046.2023.2274211","url":null,"abstract":"AbstractA variationally consistent analytical beam model that describes the theory in a Timoshenko-Vlasov level is developed based on Reissner’s mixed variational theorem. Starting from a shell theory, all the field-governing equations (equilibrium and continuity) and the boundary conditions of the shell wall are derived in closed form, and the mixed method enables finding the explicit forms of the reactive stresses and sectional warpings which are evaluated progressively depending on the level of beam model to be analyzed. The stress recovery part is incorporated in the post-stage of the analysis to compute the layer-wise distribution of stresses over the beam cross-section. The present analysis is validated against numerous benchmark examples available in the literature, including beams with multi-layered strip section, thin-walled anisotropic box sections with elastic couplings, and two-cell airfoil section. The comparison study demonstrates excellent correlations with the results from detailed three-dimensional finite element analysis and other up-to-date beam approaches. Also presented are symbolically expressed stiffness coefficients and the sectional warping modes of coupled composite beams to demonstrate the strength of the proposed beam model.Keywords: Beamsection analysiswarpingstress recovery; stiffness matrix Nomenclature a=Local shell radius of curvatureFx=Axial force along x axisFy, Fz=Shear forces along y and z axesMx=Torsional moment about x axisMy, Mz=Bending moments about y and z axesMω=Torsional bi-momentMxx, Mss, Mxs=Bending and twisting couples of the shell wallNxx, Nss, Nxs=In-plane stress resultants of the shell wallNxn, Nsn=Transverse shear stress resultants of the shell wallU, V, W=Translational displacements of beam sectional reference origin along x, y, z axesu, v, w=Translational displacements of an arbitrary material point of beam section along x, y, z axesux, us, un=Translational displacements of the shell wall along x, s, n axesβy, βz=Sectional rotation angles about y and z axesγxn,γsn=Transverse shear strains of the shell wallγxn,γsn=Transverse shear strains of the beam in x-y, x-z planesγxs=In-plane shear strain of the shell wallisinxx,isinss=In-plane normal strains of the shell wallκxx,κss,κxs=Curvatures of the shell wallϕ=Sectional rotation angle about x axisψx, ψs=Rotation angles of the shell wall about s, x axesωx=Contour warping function along x axisSubscripts=(),x, (),s=∂()/∂x, ∂()/∂sSuperscripts=()T=Transpose of an array()−1=Inversion of an arrayDisclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Additional informationFundingThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R14A1018884). This work was supported by Korea Research Institute for defense Technology planning and advancement (KRIT) gr","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135870318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}