首页 > 最新文献

Foundations of data science (Springfield, Mo.)最新文献

英文 中文
Applying topological data analysis to local search problems 将拓扑数据分析应用于局部搜索问题
Q2 MATHEMATICS, APPLIED Pub Date : 2022-01-01 DOI: 10.3934/fods.2022006
Erik Carlsson, J. Carlsson, Shannon Sweitzer

We present an application of topological data analysis (TDA) to discrete optimization problems, which we show can improve the performance of the 2-opt local search method for the traveling salesman problem by simply applying standard Vietoris-Rips construction to a data set of trials. We then construct a simplicial complex which is specialized for this sort of simulated data set, determined by a stochastic matrix with a steady state vector begin{document}$ (P,pi) $end{document}. When begin{document}$ P $end{document} is induced from a random walk on a finite metric space, this complex exhibits similarities with standard constructions such as Vietoris-Rips on the data set, but is not sensitive to outliers, as sparsity is a natural feature of the construction. We interpret the persistent homology groups in several examples coming from random walks and discrete optimization, and illustrate how higher dimensional Betti numbers can be used to classify connected components, i.e. zero dimensional features in higher dimensions.

We present an application of topological data analysis (TDA) to discrete optimization problems, which we show can improve the performance of the 2-opt local search method for the traveling salesman problem by simply applying standard Vietoris-Rips construction to a data set of trials. We then construct a simplicial complex which is specialized for this sort of simulated data set, determined by a stochastic matrix with a steady state vector begin{document}$ (P,pi) $end{document}. When begin{document}$ P $end{document} is induced from a random walk on a finite metric space, this complex exhibits similarities with standard constructions such as Vietoris-Rips on the data set, but is not sensitive to outliers, as sparsity is a natural feature of the construction. We interpret the persistent homology groups in several examples coming from random walks and discrete optimization, and illustrate how higher dimensional Betti numbers can be used to classify connected components, i.e. zero dimensional features in higher dimensions.
{"title":"Applying topological data analysis to local search problems","authors":"Erik Carlsson, J. Carlsson, Shannon Sweitzer","doi":"10.3934/fods.2022006","DOIUrl":"https://doi.org/10.3934/fods.2022006","url":null,"abstract":"<p style='text-indent:20px;'>We present an application of topological data analysis (TDA) to discrete optimization problems, which we show can improve the performance of the 2-opt local search method for the traveling salesman problem by simply applying standard Vietoris-Rips construction to a data set of trials. We then construct a simplicial complex which is specialized for this sort of simulated data set, determined by a stochastic matrix with a steady state vector <inline-formula><tex-math id=\"M1\">begin{document}$ (P,pi) $end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id=\"M2\">begin{document}$ P $end{document}</tex-math></inline-formula> is induced from a random walk on a finite metric space, this complex exhibits similarities with standard constructions such as Vietoris-Rips on the data set, but is not sensitive to outliers, as sparsity is a natural feature of the construction. We interpret the persistent homology groups in several examples coming from random walks and discrete optimization, and illustrate how higher dimensional Betti numbers can be used to classify connected components, i.e. zero dimensional features in higher dimensions.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70248570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multimodal correlations-based data clustering 基于多模态相关的数据聚类
Q2 MATHEMATICS, APPLIED Pub Date : 2022-01-01 DOI: 10.3934/fods.2022011
Jia Chen, I. Schizas
This work proposes a novel technique for clustering multimodal data according to their information content. Statistical correlations present in data that contain similar information are exploited to perform the clustering task. Specifically, multiset canonical correlation analysis is equipped with norm-one regularization mechanisms to identify clusters within different types of data that share the same information content. A pertinent minimization formulation is put forth, while block coordinate descent is employed to derive a batch clustering algorithm which achieves better clustering performance than existing alternatives. Relying on subgradient descent, an online clustering approach is derived which substantially lowers computational complexity compared to the batch approach, while not compromising significantly the clustering performance. It is established that for an increasing number of data the novel regularized multiset framework is able to correctly cluster the multimodal data entries. Further, it is proved that the online clustering scheme converges with probability one to a stationary point of the ensemble regularized multiset correlations cost having the potential to recover the correct clusters. Extensive numerical tests demonstrate that the novel clustering scheme outperforms existing alternatives, while the online scheme achieves substantial computational savings.
本文提出了一种基于信息含量的多模态数据聚类方法。包含相似信息的数据中存在的统计相关性被用来执行聚类任务。具体来说,多集典型相关分析配备了规范一正则化机制,以识别共享相同信息内容的不同类型数据中的聚类。提出了相应的最小化公式,并采用块坐标下降法导出了一种比现有算法具有更好聚类性能的批量聚类算法。基于亚梯度下降,推导出了一种在线聚类方法,该方法与批处理方法相比大大降低了计算复杂度,同时不会显著影响聚类性能。结果表明,在数据量不断增加的情况下,本文提出的正则化多集框架能够正确聚类多模态数据。进一步证明了在线聚类方案以概率1收敛到集成正则化多集相关代价的平稳点,具有恢复正确聚类的潜力。大量的数值测试表明,新的聚类方案优于现有的替代方案,而在线方案实现了大量的计算节省。
{"title":"Multimodal correlations-based data clustering","authors":"Jia Chen, I. Schizas","doi":"10.3934/fods.2022011","DOIUrl":"https://doi.org/10.3934/fods.2022011","url":null,"abstract":"This work proposes a novel technique for clustering multimodal data according to their information content. Statistical correlations present in data that contain similar information are exploited to perform the clustering task. Specifically, multiset canonical correlation analysis is equipped with norm-one regularization mechanisms to identify clusters within different types of data that share the same information content. A pertinent minimization formulation is put forth, while block coordinate descent is employed to derive a batch clustering algorithm which achieves better clustering performance than existing alternatives. Relying on subgradient descent, an online clustering approach is derived which substantially lowers computational complexity compared to the batch approach, while not compromising significantly the clustering performance. It is established that for an increasing number of data the novel regularized multiset framework is able to correctly cluster the multimodal data entries. Further, it is proved that the online clustering scheme converges with probability one to a stationary point of the ensemble regularized multiset correlations cost having the potential to recover the correct clusters. Extensive numerical tests demonstrate that the novel clustering scheme outperforms existing alternatives, while the online scheme achieves substantial computational savings.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70248118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HOMOTOPY CONTINUATION FOR THE SPECTRA OF PERSISTENT LAPLACIANS. 持久拉普拉斯算子谱的同伦延拓。
Q2 MATHEMATICS, APPLIED Pub Date : 2021-12-01 DOI: 10.3934/fods.2021017
Xiaoqi Wei, Guo-Wei Wei

The p-persistent q-combinatorial Laplacian defined for a pair of simplicial complexes is a generalization of the q-combinatorial Laplacian. Given a filtration, the spectra of persistent combinatorial Laplacians not only recover the persistent Betti numbers of persistent homology but also provide extra multiscale geometrical information of the data. Paired with machine learning algorithms, the persistent Laplacian has many potential applications in data science. Seeking different ways to find the spectrum of an operator is an active research topic, becoming interesting when ideas are originated from multiple fields. In this work, we explore an alternative approach for the spectrum of persistent Laplacians. As the eigenvalues of a persistent Laplacian matrix are the roots of its characteristic polynomial, one may attempt to find the roots of the characteristic polynomial by homotopy continuation, and thus resolving the spectrum of the corresponding persistent Laplacian. We consider a set of simple polytopes and small molecules to prove the principle that algebraic topology, combinatorial graph, and algebraic geometry can be integrated to understand the shape of data.

对于一对简单复合体定义的p-持久q-组合拉普拉斯算子是对q-组合拉普拉斯算子的推广。经过过滤后,持久组合拉普拉斯算子的谱不仅恢复了持久同调的持久Betti数,而且提供了数据的额外多尺度几何信息。与机器学习算法相结合,持久拉普拉斯在数据科学中有许多潜在的应用。寻找不同的方法来寻找算子的频谱是一个活跃的研究课题,当想法来自多个领域时变得有趣。在这项工作中,我们探索了持久拉普拉斯光谱的另一种方法。由于持久拉普拉斯矩阵的特征值是其特征多项式的根,因此可以尝试用同伦延拓的方法求出特征多项式的根,从而求解相应的持久拉普拉斯矩阵的谱。我们考虑一组简单的多面体和小分子来证明代数拓扑、组合图和代数几何可以结合起来理解数据形状的原理。
{"title":"HOMOTOPY CONTINUATION FOR THE SPECTRA OF PERSISTENT LAPLACIANS.","authors":"Xiaoqi Wei,&nbsp;Guo-Wei Wei","doi":"10.3934/fods.2021017","DOIUrl":"https://doi.org/10.3934/fods.2021017","url":null,"abstract":"<p><p>The <i>p</i>-persistent <i>q</i>-combinatorial Laplacian defined for a pair of simplicial complexes is a generalization of the <i>q</i>-combinatorial Laplacian. Given a filtration, the spectra of persistent combinatorial Laplacians not only recover the persistent Betti numbers of persistent homology but also provide extra multiscale geometrical information of the data. Paired with machine learning algorithms, the persistent Laplacian has many potential applications in data science. Seeking different ways to find the spectrum of an operator is an active research topic, becoming interesting when ideas are originated from multiple fields. In this work, we explore an alternative approach for the spectrum of persistent Laplacians. As the eigenvalues of a persistent Laplacian matrix are the roots of its characteristic polynomial, one may attempt to find the roots of the characteristic polynomial by homotopy continuation, and thus resolving the spectrum of the corresponding persistent Laplacian. We consider a set of simple polytopes and small molecules to prove the principle that algebraic topology, combinatorial graph, and algebraic geometry can be integrated to understand the shape of data.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"3 4","pages":"677-700"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273002/pdf/nihms-1768199.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40610845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Analysis of the feedback particle filter with diffusion map based approximation of the gain 基于扩散图逼近增益的反馈粒子滤波器分析
Q2 MATHEMATICS, APPLIED Pub Date : 2021-09-06 DOI: 10.3934/fods.2021023
S. Pathiraja, W. Stannat

Control-type particle filters have been receiving increasing attention over the last decade as a means of obtaining sample based approximations to the sequential Bayesian filtering problem in the nonlinear setting. Here we analyse one such type, namely the feedback particle filter and a recently proposed approximation of the associated gain function based on diffusion maps. The key purpose is to provide analytic insights on the form of the approximate gain, which are of interest in their own right. These are then used to establish a roadmap to obtaining well-posedness and convergence of the finite begin{document}$ N $end{document} system to its mean field limit. A number of possible future research directions are also discussed.

Control-type particle filters have been receiving increasing attention over the last decade as a means of obtaining sample based approximations to the sequential Bayesian filtering problem in the nonlinear setting. Here we analyse one such type, namely the feedback particle filter and a recently proposed approximation of the associated gain function based on diffusion maps. The key purpose is to provide analytic insights on the form of the approximate gain, which are of interest in their own right. These are then used to establish a roadmap to obtaining well-posedness and convergence of the finite begin{document}$ N $end{document} system to its mean field limit. A number of possible future research directions are also discussed.
{"title":"Analysis of the feedback particle filter with diffusion map based approximation of the gain","authors":"S. Pathiraja, W. Stannat","doi":"10.3934/fods.2021023","DOIUrl":"https://doi.org/10.3934/fods.2021023","url":null,"abstract":"<p style='text-indent:20px;'>Control-type particle filters have been receiving increasing attention over the last decade as a means of obtaining sample based approximations to the sequential Bayesian filtering problem in the nonlinear setting. Here we analyse one such type, namely the feedback particle filter and a recently proposed approximation of the associated gain function based on diffusion maps. The key purpose is to provide analytic insights on the form of the approximate gain, which are of interest in their own right. These are then used to establish a roadmap to obtaining well-posedness and convergence of the finite <inline-formula><tex-math id=\"M1\">begin{document}$ N $end{document}</tex-math></inline-formula> system to its mean field limit. A number of possible future research directions are also discussed.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42664532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Fast computation of persistent homology representatives with involuted persistent homology 具有对折持久同调的持久同调表示的快速计算
Q2 MATHEMATICS, APPLIED Pub Date : 2021-05-08 DOI: 10.3934/fods.2023006
Matija vCufar, Žiga Virk
Persistent homology is typically computed through persistent cohomology. While this generally improves the running time significantly, it does not facilitate extraction of homology representatives. The mentioned representatives are geometric manifestations of the corresponding holes and often carry desirable information. We propose a new method of extraction of persistent homology representatives using cohomology. In a nutshell, we first compute persistent cohomology and use the obtained information to significantly improve the running time of the direct persistent homology computations. This algorithm applied to Rips filtrations generally computes persistent homology representatives much faster than the standard methods.
持久同调通常通过持久上同调来计算。虽然这通常会显著改善运行时间,但它不利于提取同源表示。所述代表物是相应孔的几何表现形式,并且通常携带所需的信息。提出了一种利用上同调提取持久同调代表的新方法。简而言之,我们首先计算持久上同调,并使用获得的信息来显著提高直接持久同调计算的运行时间。该算法应用于rip过滤,通常比标准方法更快地计算持久同源表示。
{"title":"Fast computation of persistent homology representatives with involuted persistent homology","authors":"Matija vCufar, Žiga Virk","doi":"10.3934/fods.2023006","DOIUrl":"https://doi.org/10.3934/fods.2023006","url":null,"abstract":"Persistent homology is typically computed through persistent cohomology. While this generally improves the running time significantly, it does not facilitate extraction of homology representatives. The mentioned representatives are geometric manifestations of the corresponding holes and often carry desirable information. We propose a new method of extraction of persistent homology representatives using cohomology. In a nutshell, we first compute persistent cohomology and use the obtained information to significantly improve the running time of the direct persistent homology computations. This algorithm applied to Rips filtrations generally computes persistent homology representatives much faster than the standard methods.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48820334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
HERMES: PERSISTENT SPECTRAL GRAPH SOFTWARE. hermes:持久光谱图软件。
Q2 MATHEMATICS, APPLIED Pub Date : 2021-03-01 DOI: 10.3934/fods.2021006
Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei

Persistent homology (PH) is one of the most popular tools in topological data analysis (TDA), while graph theory has had a significant impact on data science. Our earlier work introduced the persistent spectral graph (PSG) theory as a unified multiscale paradigm to encompass TDA and geometric analysis. In PSG theory, families of persistent Laplacian matrices (PLMs) corresponding to various topological dimensions are constructed via a filtration to sample a given dataset at multiple scales. The harmonic spectra from the null spaces of PLMs offer the same topological invariants, namely persistent Betti numbers, at various dimensions as those provided by PH, while the non-harmonic spectra of PLMs give rise to additional geometric analysis of the shape of the data. In this work, we develop an open-source software package, called highly efficient robust multidimensional evolutionary spectra (HERMES), to enable broad applications of PSGs in science, engineering, and technology. To ensure the reliability and robustness of HERMES, we have validated the software with simple geometric shapes and complex datasets from three-dimensional (3D) protein structures. We found that the smallest non-zero eigenvalues are very sensitive to data abnormality.

持久同源性(PH)是拓扑数据分析(TDA)中最流行的工具之一,而图理论则对数据科学产生了重大影响。我们早期的工作引入了持久谱图(PSG)理论,将其作为一种统一的多尺度范式,涵盖了拓扑数据分析和几何分析。在持久谱图理论中,通过过滤构建了对应于各种拓扑维度的持久拉普拉斯矩阵(PLM)族,以在多个尺度上对给定数据集进行采样。来自 PLMs 空域的谐波谱在不同维度上提供了与 PH 所提供的相同的拓扑不变式,即持久贝蒂数,而 PLMs 的非谐波谱则提供了对数据形状的额外几何分析。在这项工作中,我们开发了一个名为 "高效鲁棒多维进化谱(HERMES)"的开源软件包,以实现 PSG 在科学、工程和技术领域的广泛应用。为了确保 HERMES 的可靠性和鲁棒性,我们用简单的几何图形和来自三维(3D)蛋白质结构的复杂数据集对该软件进行了验证。我们发现,最小的非零特征值对数据异常非常敏感。
{"title":"HERMES: PERSISTENT SPECTRAL GRAPH SOFTWARE.","authors":"Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei","doi":"10.3934/fods.2021006","DOIUrl":"10.3934/fods.2021006","url":null,"abstract":"<p><p>Persistent homology (PH) is one of the most popular tools in topological data analysis (TDA), while graph theory has had a significant impact on data science. Our earlier work introduced the persistent spectral graph (PSG) theory as a unified multiscale paradigm to encompass TDA and geometric analysis. In PSG theory, families of persistent Laplacian matrices (PLMs) corresponding to various topological dimensions are constructed via a filtration to sample a given dataset at multiple scales. The harmonic spectra from the null spaces of PLMs offer the same topological invariants, namely persistent Betti numbers, at various dimensions as those provided by PH, while the non-harmonic spectra of PLMs give rise to additional geometric analysis of the shape of the data. In this work, we develop an open-source software package, called highly efficient robust multidimensional evolutionary spectra (HERMES), to enable broad applications of PSGs in science, engineering, and technology. To ensure the reliability and robustness of HERMES, we have validated the software with simple geometric shapes and complex datasets from three-dimensional (3D) protein structures. We found that the smallest non-zero eigenvalues are very sensitive to data abnormality.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"3 1","pages":"67-97"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411887/pdf/nihms-1717421.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39387483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study of disproportionately affected populations by race/ethnicity during the SARS-CoV-2 pandemic using multi-population SEIR modeling and ensemble data assimilation 使用多人群SEIR模型和集合数据同化对SARS-CoV-2大流行期间按种族/族裔受不成比例影响人群的研究
Q2 MATHEMATICS, APPLIED Pub Date : 2021-01-01 DOI: 10.3934/fods.2021022
Emmanuel Fleurantin, C. Sampson, Daniel P. Maes, Justin P. Bennett, Tayler Fernandes-Nunez, S. Marx, G. Evensen

The disparity in the impact of COVID-19 on minority populations in the United States has been well established in the available data on deaths, case counts, and adverse outcomes. However, critical metrics used by public health officials and epidemiologists, such as a time dependent viral reproductive number (begin{document}$ R_t $end{document}), can be hard to calculate from this data especially for individual populations. Furthermore, disparities in the availability of testing, record keeping infrastructure, or government funding in disadvantaged populations can produce incomplete data sets. In this work, we apply ensemble data assimilation techniques which optimally combine model and data to produce a more complete data set providing better estimates of the critical metrics used by public health officials and epidemiologists. We employ a multi-population SEIR (Susceptible, Exposed, Infected and Recovered) model with a time dependent reproductive number and age stratified contact rate matrix for each population. We assimilate the daily death data for populations separated by ethnic/racial groupings using a technique called Ensemble Smoothing with Multiple Data Assimilation (ESMDA) to estimate model parameters and produce an begin{document}$R_t(n)$end{document} for the begin{document}$n^{th}$end{document} population. We do this with three distinct approaches, (1) using the same contact matrices and prior begin{document}$R_t(n)$end{document} for each population, (2) assigning contact matrices with increased contact rates for working age and older adults to populations experiencing disparity and (3) as in (2) but with a time-continuous update to begin{document}$R_t(n)$end{document}. We make a study of 9 U.S. states and the District of Columbia providing a complete time series of the pandemic in each and, in some cases, identifying disparities not otherwise evident in the aggregate statistics.

The disparity in the impact of COVID-19 on minority populations in the United States has been well established in the available data on deaths, case counts, and adverse outcomes. However, critical metrics used by public health officials and epidemiologists, such as a time dependent viral reproductive number (begin{document}$ R_t $end{document}), can be hard to calculate from this data especially for individual populations. Furthermore, disparities in the availability of testing, record keeping infrastructure, or government funding in disadvantaged populations can produce incomplete data sets. In this work, we apply ensemble data assimilation techniques which optimally combine model and data to produce a more complete data set providing better estimates of the critical metrics used by public health officials and epidemiologists. We employ a multi-population SEIR (Susceptible, Exposed, Infected and Recovered) model with a time dependent reproductive number and age stratified contact rate matrix for each population. We assimilate the daily death data for populations separated by ethnic/racial groupings using a technique called Ensemble Smoothing with Multiple Data Assimilation (ESMDA) to estimate model parameters and produce an begin{document}$R_t(n)$end{document} for the begin{document}$n^{th}$end{document} population. We do this with three distinct approaches, (1) using the same contact matrices and prior begin{document}$R_t(n)$end{document} for each population, (2) assigning contact matrices with increased contact rates for working age and older adults to populations experiencing disparity and (3) as in (2) but with a time-continuous update to begin{document}$R_t(n)$end{document}. We make a study of 9 U.S. states and the District of Columbia providing a complete time series of the pandemic in each and, in some cases, identifying disparities not otherwise evident in the aggregate statistics.
{"title":"A study of disproportionately affected populations by race/ethnicity during the SARS-CoV-2 pandemic using multi-population SEIR modeling and ensemble data assimilation","authors":"Emmanuel Fleurantin, C. Sampson, Daniel P. Maes, Justin P. Bennett, Tayler Fernandes-Nunez, S. Marx, G. Evensen","doi":"10.3934/fods.2021022","DOIUrl":"https://doi.org/10.3934/fods.2021022","url":null,"abstract":"<p style='text-indent:20px;'>The disparity in the impact of COVID-19 on minority populations in the United States has been well established in the available data on deaths, case counts, and adverse outcomes. However, critical metrics used by public health officials and epidemiologists, such as a time dependent viral reproductive number (<inline-formula><tex-math id=\"M1\">begin{document}$ R_t $end{document}</tex-math></inline-formula>), can be hard to calculate from this data especially for individual populations. Furthermore, disparities in the availability of testing, record keeping infrastructure, or government funding in disadvantaged populations can produce incomplete data sets. In this work, we apply ensemble data assimilation techniques which optimally combine model and data to produce a more complete data set providing better estimates of the critical metrics used by public health officials and epidemiologists. We employ a multi-population SEIR (Susceptible, Exposed, Infected and Recovered) model with a time dependent reproductive number and age stratified contact rate matrix for each population. We assimilate the daily death data for populations separated by ethnic/racial groupings using a technique called Ensemble Smoothing with Multiple Data Assimilation (ESMDA) to estimate model parameters and produce an <inline-formula><tex-math id=\"M10000\">begin{document}$R_t(n)$end{document}</tex-math></inline-formula> for the <inline-formula><tex-math id=\"M2000\">begin{document}$n^{th}$end{document}</tex-math></inline-formula> population. We do this with three distinct approaches, (1) using the same contact matrices and prior <inline-formula><tex-math id=\"M30000\">begin{document}$R_t(n)$end{document}</tex-math></inline-formula> for each population, (2) assigning contact matrices with increased contact rates for working age and older adults to populations experiencing disparity and (3) as in (2) but with a time-continuous update to <inline-formula><tex-math id=\"M4\">begin{document}$R_t(n)$end{document}</tex-math></inline-formula>. We make a study of 9 U.S. states and the District of Columbia providing a complete time series of the pandemic in each and, in some cases, identifying disparities not otherwise evident in the aggregate statistics.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"112 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70248403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Intrinsic disease maps using persistent cohomology 使用持续上同源的内在疾病图
Q2 MATHEMATICS, APPLIED Pub Date : 2021-01-01 DOI: 10.3934/FODS.2021008
Daniel Amin, Mikael Vejdemo-Johansson
We use persistent cohomology and circular coordinates to investigate three datasets related to infectious diseases. We show that all three datasets exhibit circular coordinates that carry information about the data itself. For one of the datasets we are able to recover time post infection from the circular coordinate itself – for the other datasets, this information was not available, but in one we were able to relate the circular coordinate to red blood cell counts and weight changes in the subjects.
我们使用持久上同源和圆坐标来调查三个与传染病相关的数据集。我们展示了所有三个数据集都显示了带有数据本身信息的圆形坐标。对于其中一个数据集,我们能够从圆形坐标本身恢复感染后的时间-对于其他数据集,该信息不可用,但在一个数据集中,我们能够将圆形坐标与受试者的红细胞计数和体重变化联系起来。
{"title":"Intrinsic disease maps using persistent cohomology","authors":"Daniel Amin, Mikael Vejdemo-Johansson","doi":"10.3934/FODS.2021008","DOIUrl":"https://doi.org/10.3934/FODS.2021008","url":null,"abstract":"We use persistent cohomology and circular coordinates to investigate three datasets related to infectious diseases. We show that all three datasets exhibit circular coordinates that carry information about the data itself. For one of the datasets we are able to recover time post infection from the circular coordinate itself – for the other datasets, this information was not available, but in one we were able to relate the circular coordinate to red blood cell counts and weight changes in the subjects.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70248273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
ToFU: Topology functional units for deep learning 豆腐:深度学习的拓扑功能单元
Q2 MATHEMATICS, APPLIED Pub Date : 2021-01-01 DOI: 10.3934/fods.2021021
Christopher Oballe, D. Boothe, P. Franaszczuk, V. Maroulas
We propose ToFU, a new trainable neural network unit with a persistence diagram dissimilarity function as its activation. Since persistence diagrams are topological summaries of structures, this new activation measures and learns the topology of data to leverage it in machine learning tasks. We showcase the utility of ToFU in two experiments: one involving the classification of discrete-time autoregressive signals, and another involving a variational autoencoder. In the former, ToFU yields competitive results with networks that use spectral features while outperforming CNN architectures. In the latter, ToFU produces topologically-interpretable latent space representations of inputs without sacrificing reconstruction fidelity.
我们提出了一种新的可训练神经网络单元豆腐,该神经网络单元以一个持续图不相似函数作为其激活。由于持久性图是结构的拓扑摘要,这个新的激活测量和学习数据的拓扑,以便在机器学习任务中利用它。我们在两个实验中展示了豆腐的效用:一个涉及离散时间自回归信号的分类,另一个涉及变分自编码器。在前者中,豆腐与使用频谱特征的网络产生竞争结果,同时优于CNN架构。在后者中,豆腐在不牺牲重建保真度的情况下产生输入的拓扑可解释的潜在空间表示。
{"title":"ToFU: Topology functional units for deep learning","authors":"Christopher Oballe, D. Boothe, P. Franaszczuk, V. Maroulas","doi":"10.3934/fods.2021021","DOIUrl":"https://doi.org/10.3934/fods.2021021","url":null,"abstract":"We propose ToFU, a new trainable neural network unit with a persistence diagram dissimilarity function as its activation. Since persistence diagrams are topological summaries of structures, this new activation measures and learns the topology of data to leverage it in machine learning tasks. We showcase the utility of ToFU in two experiments: one involving the classification of discrete-time autoregressive signals, and another involving a variational autoencoder. In the former, ToFU yields competitive results with networks that use spectral features while outperforming CNN architectures. In the latter, ToFU produces topologically-interpretable latent space representations of inputs without sacrificing reconstruction fidelity.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70248392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A density-based approach to feature detection in persistence diagrams for firn data 一种基于密度的方法,用于在企业数据的持久性图中进行特征检测
Q2 MATHEMATICS, APPLIED Pub Date : 2021-01-01 DOI: 10.3934/FODS.2021012
A. Lawson, Tyler Hoffman, Yu-Min Chung, K. Keegan, S. Day
Topological data analysis, and in particular persistence diagrams, are gaining popularity as tools for extracting topological information from noisy point cloud and digital data. Persistence diagrams track topological features in the form of begin{document}$ k $end{document} -dimensional holes in the data. Here, we construct a new, automated approach for identifying persistence diagram points that represent robust long-life features. These features may be used to provide a more accurate estimate of Betti numbers for the underlying space. This approach extends the established practice of using a lifespan cutoff on the features in order to take advantage of the observation that noisy features typically appear in clusters in the persistence diagram. We show that this approach offers more flexibility in partitioning features in the persistence diagram, resulting in greater accuracy in computed Betti numbers, especially in the case of high noise levels and varying image illumination. This work is motivated by 3-dimensional Micro-CT imaging of ice core samples, and is applicable for separating noise from robust signals in persistence diagrams from noisy data.
Topological data analysis, and in particular persistence diagrams, are gaining popularity as tools for extracting topological information from noisy point cloud and digital data. Persistence diagrams track topological features in the form of begin{document}$ k $end{document} -dimensional holes in the data. Here, we construct a new, automated approach for identifying persistence diagram points that represent robust long-life features. These features may be used to provide a more accurate estimate of Betti numbers for the underlying space. This approach extends the established practice of using a lifespan cutoff on the features in order to take advantage of the observation that noisy features typically appear in clusters in the persistence diagram. We show that this approach offers more flexibility in partitioning features in the persistence diagram, resulting in greater accuracy in computed Betti numbers, especially in the case of high noise levels and varying image illumination. This work is motivated by 3-dimensional Micro-CT imaging of ice core samples, and is applicable for separating noise from robust signals in persistence diagrams from noisy data.
{"title":"A density-based approach to feature detection in persistence diagrams for firn data","authors":"A. Lawson, Tyler Hoffman, Yu-Min Chung, K. Keegan, S. Day","doi":"10.3934/FODS.2021012","DOIUrl":"https://doi.org/10.3934/FODS.2021012","url":null,"abstract":"Topological data analysis, and in particular persistence diagrams, are gaining popularity as tools for extracting topological information from noisy point cloud and digital data. Persistence diagrams track topological features in the form of begin{document}$ k $end{document} -dimensional holes in the data. Here, we construct a new, automated approach for identifying persistence diagram points that represent robust long-life features. These features may be used to provide a more accurate estimate of Betti numbers for the underlying space. This approach extends the established practice of using a lifespan cutoff on the features in order to take advantage of the observation that noisy features typically appear in clusters in the persistence diagram. We show that this approach offers more flexibility in partitioning features in the persistence diagram, resulting in greater accuracy in computed Betti numbers, especially in the case of high noise levels and varying image illumination. This work is motivated by 3-dimensional Micro-CT imaging of ice core samples, and is applicable for separating noise from robust signals in persistence diagrams from noisy data.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70248282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Foundations of data science (Springfield, Mo.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1