Pub Date : 2023-01-16DOI: 10.3389/fceng.2022.1086099
Narges Yazdani, R. Willits
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
{"title":"Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions","authors":"Narges Yazdani, R. Willits","doi":"10.3389/fceng.2022.1086099","DOIUrl":"https://doi.org/10.3389/fceng.2022.1086099","url":null,"abstract":"Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48949166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-12DOI: 10.3389/fceng.2022.1097215
Nina Muratovska, M. Carlquist
We report on the development of a method based on recombinant yeast Saccharomyces cerevisiae to produce nonivamide, a capsaicinoid and potent agonist of the pain receptor TRPV1. Nonivamide was produced in a two-step batch process where yeast was i) grown aerobically on glucose and ii) used to produce nonivamide from vanillin and non-anoic acid by bioconversion. The yeast was engineered to express multiple copies of an amine transaminase from Chromobacterium violaceum (CvTA), along with an NADH-dependent alanine dehydrogenase from Bacillus subtilis (BsAlaDH) to enable efficient reductive amination of vanillin. Oxygen-limited conditions and the use of ethanol as a co-substrate to regenerate NADH were identified to favour amination over the formation of the by-products vanillic alcohol and vanillic acid. The native alcohol dehydrogenase ADH6 was deleted to further reduce the formation of vanillic alcohol. A two-enzyme system consisting of an N-acyltransferase from Capsicum annuum (CaAT), and a CoA ligase from Sphingomonas sp. Ibu-2 (IpfF) was co-expressed to produce the amide. This study provides proof of concept for yeast-based production of non-ivamide by combined transamination and amidation of vanillin.
{"title":"Recombinant yeast for production of the pain receptor modulator nonivamide from vanillin","authors":"Nina Muratovska, M. Carlquist","doi":"10.3389/fceng.2022.1097215","DOIUrl":"https://doi.org/10.3389/fceng.2022.1097215","url":null,"abstract":"We report on the development of a method based on recombinant yeast Saccharomyces cerevisiae to produce nonivamide, a capsaicinoid and potent agonist of the pain receptor TRPV1. Nonivamide was produced in a two-step batch process where yeast was i) grown aerobically on glucose and ii) used to produce nonivamide from vanillin and non-anoic acid by bioconversion. The yeast was engineered to express multiple copies of an amine transaminase from Chromobacterium violaceum (CvTA), along with an NADH-dependent alanine dehydrogenase from Bacillus subtilis (BsAlaDH) to enable efficient reductive amination of vanillin. Oxygen-limited conditions and the use of ethanol as a co-substrate to regenerate NADH were identified to favour amination over the formation of the by-products vanillic alcohol and vanillic acid. The native alcohol dehydrogenase ADH6 was deleted to further reduce the formation of vanillic alcohol. A two-enzyme system consisting of an N-acyltransferase from Capsicum annuum (CaAT), and a CoA ligase from Sphingomonas sp. Ibu-2 (IpfF) was co-expressed to produce the amide. This study provides proof of concept for yeast-based production of non-ivamide by combined transamination and amidation of vanillin.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47713530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-11DOI: 10.3389/fceng.2022.1086031
Emma R. Sudduth, Emily L. Kolewe, Jodi Graf, Yinkui Yu, Joaquina Somma, C. Fromen
Introduction: Nanoparticle evaluation within the pulmonary airspace has increasingly important implications for human health, with growing interest from drug delivery, environmental, and toxicology fields. While there have been widespread investigations of nanoparticle physiochemical properties following many routes of administration, nanoparticle behavior at the air-liquid interface (ALI) is less well-characterized. Methods: In this work, we fabricate two formulations of poly(ethylene)-glycol diacrylate (PEGDA)-based model nanoparticles to establish an in vitro workflow allowing evaluation of nanoparticle charge effects at the ALI. Results and Discussion: Both cationic and anionic PEGDA formulations were synthesized with similar hydrodynamic diameters around ∼225 nm and low polydispersity, with expected surface charges corresponding with the respective functional co-monomer. We find that both formulations are readily nebulized from an aqueous suspension in a commercial Aeroneb® Lab Nebulizer, but the aqueous delivery solution served to slightly increase the overall hydrodynamic and geometric size of the cationic particle formulation. However, nanoparticle loading at 50 μg/ml of either formulation did not influence the resultant aerosol diameter from the nebulizer. To assess aerosol delivery in vitro, we designed a 3D printed adapter capable of ensuring aerosol delivery to transwell 24-well culture plates. Nanoparticle uptake by macrophages was compared between traditional cell culture techniques and that of air-liquid interface-cultured macrophages following aerosol delivery. Cell viability was unaffected by nanoparticle delivery using either method. However, only traditional cell culture methods demonstrated significant uptake that was dependent on the nanoparticle surface charge. Concurrently, air-liquid interface culture resulted in lower metabolic activity of macrophages than those in traditional cell culture, leading to lower overall nanoparticle uptake at air-liquid interface. Overall, this work demonstrates that base-material similarities between both particle formulations provide an expected consistency in aerosol delivery regardless of the nanoparticle surface charge and provides an important workflow that enables a holistic evaluation of aerosolizable nanoparticles.
{"title":"Nebulization of model hydrogel nanoparticles to macrophages at the air-liquid interface","authors":"Emma R. Sudduth, Emily L. Kolewe, Jodi Graf, Yinkui Yu, Joaquina Somma, C. Fromen","doi":"10.3389/fceng.2022.1086031","DOIUrl":"https://doi.org/10.3389/fceng.2022.1086031","url":null,"abstract":"Introduction: Nanoparticle evaluation within the pulmonary airspace has increasingly important implications for human health, with growing interest from drug delivery, environmental, and toxicology fields. While there have been widespread investigations of nanoparticle physiochemical properties following many routes of administration, nanoparticle behavior at the air-liquid interface (ALI) is less well-characterized. Methods: In this work, we fabricate two formulations of poly(ethylene)-glycol diacrylate (PEGDA)-based model nanoparticles to establish an in vitro workflow allowing evaluation of nanoparticle charge effects at the ALI. Results and Discussion: Both cationic and anionic PEGDA formulations were synthesized with similar hydrodynamic diameters around ∼225 nm and low polydispersity, with expected surface charges corresponding with the respective functional co-monomer. We find that both formulations are readily nebulized from an aqueous suspension in a commercial Aeroneb® Lab Nebulizer, but the aqueous delivery solution served to slightly increase the overall hydrodynamic and geometric size of the cationic particle formulation. However, nanoparticle loading at 50 μg/ml of either formulation did not influence the resultant aerosol diameter from the nebulizer. To assess aerosol delivery in vitro, we designed a 3D printed adapter capable of ensuring aerosol delivery to transwell 24-well culture plates. Nanoparticle uptake by macrophages was compared between traditional cell culture techniques and that of air-liquid interface-cultured macrophages following aerosol delivery. Cell viability was unaffected by nanoparticle delivery using either method. However, only traditional cell culture methods demonstrated significant uptake that was dependent on the nanoparticle surface charge. Concurrently, air-liquid interface culture resulted in lower metabolic activity of macrophages than those in traditional cell culture, leading to lower overall nanoparticle uptake at air-liquid interface. Overall, this work demonstrates that base-material similarities between both particle formulations provide an expected consistency in aerosol delivery regardless of the nanoparticle surface charge and provides an important workflow that enables a holistic evaluation of aerosolizable nanoparticles.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41652532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-10DOI: 10.3389/fceng.2022.1055744
Sandra E. Fajardo Muñoz, Anthony J. Freire Castro, Michael I. Mejía Garzón, Galo J. Páez Fajardo, Galo J. Páez Gracia
Introduction: Excessive demand, environmental problems, and shortages in market-leader countries have led the citrus (essential) oil market price to drift to unprecedented high levels with negative implications for citrus oil-dependent secondary industries. However, the high price conditions have promoted market incentives for the incorporation of new small-scale suppliers as a short-term supply solution for the market. Essential oil chemical extraction via steam distillation is a valuable option for these new suppliers at a lab and small-scale production level. Nevertheless, mass-scaling production requires prediction tools for better large-scale control of outputs. Methods: This study provides an intelligent model based on a multi-layer perceptron (MLP) artificial neural network (ANN) for developing a highly reliable numerical dependency between the chemical extraction output from essential oil steam distillation processes (output vector) and orange peel mass loading (input vector). In a data pool of 25 extraction experiments, 14 output–input pairs were the in training set, 6 in the testing set, and 5 cross-compared the model’s accuracy with traditional numerical approaches. Results and Discussion: After varying the number of nodes in the hidden layer, a 1–9–1 MLP topology best optimizes the statistical parameters (coefficient of determination (R2) and mean square error) of the testing set, achieving a precision of nearly 97.6%. Our model can capture non-linearity behavior when scaling-up production output for mass production processes, thus providing a viable answer for the scalability issue with a state-of-the-art computational tool for planning, management, and mass production of citrus essential oils.
{"title":"Artificial intelligence models for yield efficiency optimization, prediction, and production scalability of essential oil extraction processes from citrus fruit exocarps","authors":"Sandra E. Fajardo Muñoz, Anthony J. Freire Castro, Michael I. Mejía Garzón, Galo J. Páez Fajardo, Galo J. Páez Gracia","doi":"10.3389/fceng.2022.1055744","DOIUrl":"https://doi.org/10.3389/fceng.2022.1055744","url":null,"abstract":"Introduction: Excessive demand, environmental problems, and shortages in market-leader countries have led the citrus (essential) oil market price to drift to unprecedented high levels with negative implications for citrus oil-dependent secondary industries. However, the high price conditions have promoted market incentives for the incorporation of new small-scale suppliers as a short-term supply solution for the market. Essential oil chemical extraction via steam distillation is a valuable option for these new suppliers at a lab and small-scale production level. Nevertheless, mass-scaling production requires prediction tools for better large-scale control of outputs. Methods: This study provides an intelligent model based on a multi-layer perceptron (MLP) artificial neural network (ANN) for developing a highly reliable numerical dependency between the chemical extraction output from essential oil steam distillation processes (output vector) and orange peel mass loading (input vector). In a data pool of 25 extraction experiments, 14 output–input pairs were the in training set, 6 in the testing set, and 5 cross-compared the model’s accuracy with traditional numerical approaches. Results and Discussion: After varying the number of nodes in the hidden layer, a 1–9–1 MLP topology best optimizes the statistical parameters (coefficient of determination (R2) and mean square error) of the testing set, achieving a precision of nearly 97.6%. Our model can capture non-linearity behavior when scaling-up production output for mass production processes, thus providing a viable answer for the scalability issue with a state-of-the-art computational tool for planning, management, and mass production of citrus essential oils.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44360397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-10DOI: 10.3389/fceng.2022.1051594
J. Gabitto, C. Tsouris
There is increased interest in many different processes based upon interactions between a charged solid surface and a liquid electrolyte. Energy storage in capacitive porous materials, ionic membranes, capacitive deionization (CDI) for water desalination, capacitive energy generation, removal of heavy ions from wastewater streams, and geophysical applications are some examples of these processes. Process development is driven by the production of porous materials with increasing surface area. Understanding of the physical phenomena occurring at the charged solid-electrolyte interface will significantly improve the design and development of more effective applied processes. The goal of this work is to critically review the current knowledge in the field. The focus is on concepts behind different models. We start by briefly presenting the classical electrical double layer (EDL) models in flat surfaces. Then, we discuss models for porous materials containing macro-, meso-, and micro-pores. Some of the current models for systems comprising two different pore sizes are also included. Finally, we discuss the concepts behind the most common models used for ionic transport and Faradaic processes in porous media. The latter models are used for simulation of electrosorption processes in porous media.
{"title":"A review of transport models in charged porous electrodes","authors":"J. Gabitto, C. Tsouris","doi":"10.3389/fceng.2022.1051594","DOIUrl":"https://doi.org/10.3389/fceng.2022.1051594","url":null,"abstract":"There is increased interest in many different processes based upon interactions between a charged solid surface and a liquid electrolyte. Energy storage in capacitive porous materials, ionic membranes, capacitive deionization (CDI) for water desalination, capacitive energy generation, removal of heavy ions from wastewater streams, and geophysical applications are some examples of these processes. Process development is driven by the production of porous materials with increasing surface area. Understanding of the physical phenomena occurring at the charged solid-electrolyte interface will significantly improve the design and development of more effective applied processes. The goal of this work is to critically review the current knowledge in the field. The focus is on concepts behind different models. We start by briefly presenting the classical electrical double layer (EDL) models in flat surfaces. Then, we discuss models for porous materials containing macro-, meso-, and micro-pores. Some of the current models for systems comprising two different pore sizes are also included. Finally, we discuss the concepts behind the most common models used for ionic transport and Faradaic processes in porous media. The latter models are used for simulation of electrosorption processes in porous media.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48929993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-09DOI: 10.3389/fceng.2022.1112876
A. Gitter, J. Oghuan, Anuja Rajendra Godbole, C. Chavarria, Carlos Monserrat, Tao Hu, Yun Wang, A. Maresso, B. Hanson, K. Mena, Fuqing Wu
Domestic wastewater, when collected and evaluated appropriately, can provide valuable health-related information for a community. As a relatively unbiased and non-invasive approach, wastewater surveillance may complement current practices towards mitigating risks and protecting population health. Spurred by the COVID-19 pandemic, wastewater programs are now widely implemented to monitor viral infection trends in sewersheds and inform public health decision-making. This review summarizes recent developments in wastewater-based epidemiology for detecting and monitoring communicable infectious diseases, dissemination of antimicrobial resistance, and illicit drug consumption. Wastewater surveillance, a quickly advancing Frontier in environmental science, is becoming a new tool to enhance public health, improve disease prevention, and respond to future epidemics and pandemics.
{"title":"Not a waste: Wastewater surveillance to enhance public health","authors":"A. Gitter, J. Oghuan, Anuja Rajendra Godbole, C. Chavarria, Carlos Monserrat, Tao Hu, Yun Wang, A. Maresso, B. Hanson, K. Mena, Fuqing Wu","doi":"10.3389/fceng.2022.1112876","DOIUrl":"https://doi.org/10.3389/fceng.2022.1112876","url":null,"abstract":"Domestic wastewater, when collected and evaluated appropriately, can provide valuable health-related information for a community. As a relatively unbiased and non-invasive approach, wastewater surveillance may complement current practices towards mitigating risks and protecting population health. Spurred by the COVID-19 pandemic, wastewater programs are now widely implemented to monitor viral infection trends in sewersheds and inform public health decision-making. This review summarizes recent developments in wastewater-based epidemiology for detecting and monitoring communicable infectious diseases, dissemination of antimicrobial resistance, and illicit drug consumption. Wastewater surveillance, a quickly advancing Frontier in environmental science, is becoming a new tool to enhance public health, improve disease prevention, and respond to future epidemics and pandemics.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42864372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular design of redox-active materials with higher solubility and greater redox potential windows is instrumental in enhancing the performance of redox flow batteries Here we propose a computational procedure for a systematic evaluation of organic redox-active species by combining machine learning, quantum-mechanical, and classical density functional theory calculations. 1,517 small quinone molecules were generated from the building blocks of benzoquinone, naphthoquinone, and anthraquinone with different substituent groups. The physics-based methods were used to predict HOMO-LUMO gaps and solvation free energies that account for the redox potential differences and aqueous solubility, respectively. The high-throughput calculations were augmented with the quantitative structure-property relationship analyses and machine learning/graph network modeling to evaluate the materials’ overall behavior. The computational procedure was able to reproduce high-performance cathode electrolyte materials consistent with experimental observations and identify new electrolytes for RFBs by screening 100,000 di-substituted quinone molecules, the largest library of redox-active quinone molecules ever investigated. The efficient computational platform may facilitate a better understanding of the structure-function relationship of quinone molecules and advance the design and application of all-organic active materials for RFBs.
{"title":"Computational design of quinone electrolytes for redox flow batteries using high-throughput machine learning and theoretical calculations","authors":"Fei Wang, Jipeng Li, Zheng Liu, Tong Qiu, Jianzhong Wu, Diannan Lu","doi":"10.3389/fceng.2022.1086412","DOIUrl":"https://doi.org/10.3389/fceng.2022.1086412","url":null,"abstract":"Molecular design of redox-active materials with higher solubility and greater redox potential windows is instrumental in enhancing the performance of redox flow batteries Here we propose a computational procedure for a systematic evaluation of organic redox-active species by combining machine learning, quantum-mechanical, and classical density functional theory calculations. 1,517 small quinone molecules were generated from the building blocks of benzoquinone, naphthoquinone, and anthraquinone with different substituent groups. The physics-based methods were used to predict HOMO-LUMO gaps and solvation free energies that account for the redox potential differences and aqueous solubility, respectively. The high-throughput calculations were augmented with the quantitative structure-property relationship analyses and machine learning/graph network modeling to evaluate the materials’ overall behavior. The computational procedure was able to reproduce high-performance cathode electrolyte materials consistent with experimental observations and identify new electrolytes for RFBs by screening 100,000 di-substituted quinone molecules, the largest library of redox-active quinone molecules ever investigated. The efficient computational platform may facilitate a better understanding of the structure-function relationship of quinone molecules and advance the design and application of all-organic active materials for RFBs.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42387085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-05DOI: 10.3389/fceng.2022.978842
Saeed Rahimpour Golroudbary, A. Kraslawski, B. Wilson, M. Lundström
Nickel (Ni) in batteries (e.g., nickel-metal hydride battery (NiMH), lithium nickel cobalt aluminum oxide (NCA) and lithium nickel manganese cobalt oxide (NMC)) aim to ensure higher energy density and greater storage capacity. Two typical layered nickel-rich ternary cathode materials, NCA and NMC, are commercialized as advanced lithium-ion batteries (LiBs) for electric vehicles (EVs). The technology of those batteries has been improving by steadily increasing the nickel content in each cathode generation. In this study, we consider two types of batteries having a composite cathode made of Li [Ni0.80Co0.1Al0.1]O2, and Li [Ni0.33Mn0.33Co0.33]O2, which are the most common cathode materials for LiBs in EVs since 2010 and their functional recycling is performed. The increasing use of nickel in battery technologies has resulted in the continuous growth of demand for nickel over recent years. Nickel was added to the list of critical materials by the United States Geological Survey (USGS) already in 2021. Unfortunately now, the sustainable supply of nickel is even at higher risk due to the sanctions-related disruption of supplies from Russia. Therefore, enhancing the circularity of nickel starts to be vital for many economies. Demand for recycled nickel is growing, however, a systematic analysis of the sustainability of its recycling is still missing. Therefore, we provide a comprehensive assessment of the sustainability of the global primary and secondary production of nickel. Using system dynamics modelling integrated with geometallurgy principles and by analyzing the processing routes (pyrometallurgical and hydrometallurgical processes), we quantify the key environmental concerns across the life cycle of primary and secondary nickel required for sustainable mobility transition. Energy consumption, water use, and related emissions are assessed for all stages of the nickel supply chain, from mining to recycling. Our analysis shows the possibility of reducing the emissions by around 4.7 mt for GHG, 6.9 kt for PM2.5, 34.3 t for BC, 2.8 kt for CH4, 7.5 kt for CO, 3.3 mt for CO2, 169.9 t for N2O, 3.8 kt for NOx, 11.8 kt for PM10, 104.8 t for POC, 1.6 mt for SOx, and 232.5 t for VOC by engaging in the secondary production of nickel through the recycling of batteries. However, identical growth rate of energy consumption and water use compared to nickel mass flows means no technical progress has been achieved in different stages of the nickel supply chain towards sustainability over the period 2010–2030. Therefore, an improvement in technology is needed to save energy and water in nickel production processes. The results and findings of this study contribute to a better understanding of the necessity for improving closed-loop supply chain policies for nickel.
{"title":"Assessment of environmental sustainability of nickel required for mobility transition","authors":"Saeed Rahimpour Golroudbary, A. Kraslawski, B. Wilson, M. Lundström","doi":"10.3389/fceng.2022.978842","DOIUrl":"https://doi.org/10.3389/fceng.2022.978842","url":null,"abstract":"Nickel (Ni) in batteries (e.g., nickel-metal hydride battery (NiMH), lithium nickel cobalt aluminum oxide (NCA) and lithium nickel manganese cobalt oxide (NMC)) aim to ensure higher energy density and greater storage capacity. Two typical layered nickel-rich ternary cathode materials, NCA and NMC, are commercialized as advanced lithium-ion batteries (LiBs) for electric vehicles (EVs). The technology of those batteries has been improving by steadily increasing the nickel content in each cathode generation. In this study, we consider two types of batteries having a composite cathode made of Li [Ni0.80Co0.1Al0.1]O2, and Li [Ni0.33Mn0.33Co0.33]O2, which are the most common cathode materials for LiBs in EVs since 2010 and their functional recycling is performed. The increasing use of nickel in battery technologies has resulted in the continuous growth of demand for nickel over recent years. Nickel was added to the list of critical materials by the United States Geological Survey (USGS) already in 2021. Unfortunately now, the sustainable supply of nickel is even at higher risk due to the sanctions-related disruption of supplies from Russia. Therefore, enhancing the circularity of nickel starts to be vital for many economies. Demand for recycled nickel is growing, however, a systematic analysis of the sustainability of its recycling is still missing. Therefore, we provide a comprehensive assessment of the sustainability of the global primary and secondary production of nickel. Using system dynamics modelling integrated with geometallurgy principles and by analyzing the processing routes (pyrometallurgical and hydrometallurgical processes), we quantify the key environmental concerns across the life cycle of primary and secondary nickel required for sustainable mobility transition. Energy consumption, water use, and related emissions are assessed for all stages of the nickel supply chain, from mining to recycling. Our analysis shows the possibility of reducing the emissions by around 4.7 mt for GHG, 6.9 kt for PM2.5, 34.3 t for BC, 2.8 kt for CH4, 7.5 kt for CO, 3.3 mt for CO2, 169.9 t for N2O, 3.8 kt for NOx, 11.8 kt for PM10, 104.8 t for POC, 1.6 mt for SOx, and 232.5 t for VOC by engaging in the secondary production of nickel through the recycling of batteries. However, identical growth rate of energy consumption and water use compared to nickel mass flows means no technical progress has been achieved in different stages of the nickel supply chain towards sustainability over the period 2010–2030. Therefore, an improvement in technology is needed to save energy and water in nickel production processes. The results and findings of this study contribute to a better understanding of the necessity for improving closed-loop supply chain policies for nickel.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49364247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-05DOI: 10.3389/fceng.2022.1126710
A. Sánchez
The objective of this Research Topic was to collect high quality contributions evaluating novel developments, current challenges, latest discoveries and future perspectives, across the scope of our Environmental chemical engineering section. In this sense, my opinion is that the objectives have been fulfilled. Among the papers published, we can found perspective papers, reviews and original papers showing the last advances in several Environmental chemical engineering topics. Among chemical engineers, there has have been always a discussion on the paradigms of this discipline. Although the first two are clear: the first paradigm–unit operations–at the end of 19th century and the second one in the late 1950s–transport phenomena–a discussion has been alive about the third paradigm. At the beginning of 2000s, it seems that product engineering was recognized as the third paradigm (Woinaroschy, 2016), but science have evolved so fast, together with the birth of worldwide problems where the participation of Chemical Engineering is critical, has pointed out that probably the third paradigm, at least in general terms, should be multidisciplinarity. In this sense, current Chemical Engineering works involve fields such as Environmental Sciences, Material Science and Energy. Environmental sciences and Chemical Engineering have already a consolidated relationship, from wastewater treatment design to bioremediation of soils and polluted gases. Probably the field of biological waste management is less explored from a chemical engineering perspective, and this is the main topic of one of the reviews published Sánchez. In the case of Materials Science, the amount of studies involving nanomaterials with implications in Chemical Engineering has dramatically increased. From the use of nanoparticles as heterogonous highly selective and efficient catalysts in classical bulk chemical reactions to their use in environmental remediation, the number of publications grows each month. As example, a paper published is related to the use of graphene for the removal of pollutants in water and wastewater Melo et al. In particular, recent works point graphene as a material with an enormous potential for the development of Chemical Engineering. Finally, I would like to mention some papers that I particularly like: those related to ambitious nexus of Chemical Engineering with other disciplines, which should have a predominant role: the nexus environment-nanomaterials-renewable energy is a good example (Svetlana et al., 2019), where some emerging works are being published Casals et al. OPEN ACCESS
{"title":"Editorial: Editors’ showcase: Environmental chemical engineering","authors":"A. Sánchez","doi":"10.3389/fceng.2022.1126710","DOIUrl":"https://doi.org/10.3389/fceng.2022.1126710","url":null,"abstract":"The objective of this Research Topic was to collect high quality contributions evaluating novel developments, current challenges, latest discoveries and future perspectives, across the scope of our Environmental chemical engineering section. In this sense, my opinion is that the objectives have been fulfilled. Among the papers published, we can found perspective papers, reviews and original papers showing the last advances in several Environmental chemical engineering topics. Among chemical engineers, there has have been always a discussion on the paradigms of this discipline. Although the first two are clear: the first paradigm–unit operations–at the end of 19th century and the second one in the late 1950s–transport phenomena–a discussion has been alive about the third paradigm. At the beginning of 2000s, it seems that product engineering was recognized as the third paradigm (Woinaroschy, 2016), but science have evolved so fast, together with the birth of worldwide problems where the participation of Chemical Engineering is critical, has pointed out that probably the third paradigm, at least in general terms, should be multidisciplinarity. In this sense, current Chemical Engineering works involve fields such as Environmental Sciences, Material Science and Energy. Environmental sciences and Chemical Engineering have already a consolidated relationship, from wastewater treatment design to bioremediation of soils and polluted gases. Probably the field of biological waste management is less explored from a chemical engineering perspective, and this is the main topic of one of the reviews published Sánchez. In the case of Materials Science, the amount of studies involving nanomaterials with implications in Chemical Engineering has dramatically increased. From the use of nanoparticles as heterogonous highly selective and efficient catalysts in classical bulk chemical reactions to their use in environmental remediation, the number of publications grows each month. As example, a paper published is related to the use of graphene for the removal of pollutants in water and wastewater Melo et al. In particular, recent works point graphene as a material with an enormous potential for the development of Chemical Engineering. Finally, I would like to mention some papers that I particularly like: those related to ambitious nexus of Chemical Engineering with other disciplines, which should have a predominant role: the nexus environment-nanomaterials-renewable energy is a good example (Svetlana et al., 2019), where some emerging works are being published Casals et al. OPEN ACCESS","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46393524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-05DOI: 10.3389/fceng.2022.1087435
Martin Velazquez-Rizo, Adrian Cavazos Sepulveda
Hydrogen is considered one of the most promising decarbonized fuels. However, its applicability is limited due to the ecological constraints of its production. Hydrogen sulfide (H2S) is widely available in oil and gas reservoirs and has the potential of becoming an energetically favorable source of hydrogen. Nevertheless, its electrochemical separation into H2 and elemental sulfur has not been successfully achieved at the industrial scale, due to sulfur poisoning of the electrodes at the sulfur oxidation half-reaction. This review highlights the progress of the direct electrolytic separation of H2S below the sulfur dew point, where the sulfur poisoning effect becomes more prominent. The article discusses the different technologies and approaches explored to improve the energy efficiency and stability of H2S electrolytic systems, including the recent use of nanostructured electrodes and novel sulfur solvents as electrolytes.
{"title":"Low-temperature direct electrochemical splitting of H2S","authors":"Martin Velazquez-Rizo, Adrian Cavazos Sepulveda","doi":"10.3389/fceng.2022.1087435","DOIUrl":"https://doi.org/10.3389/fceng.2022.1087435","url":null,"abstract":"Hydrogen is considered one of the most promising decarbonized fuels. However, its applicability is limited due to the ecological constraints of its production. Hydrogen sulfide (H2S) is widely available in oil and gas reservoirs and has the potential of becoming an energetically favorable source of hydrogen. Nevertheless, its electrochemical separation into H2 and elemental sulfur has not been successfully achieved at the industrial scale, due to sulfur poisoning of the electrodes at the sulfur oxidation half-reaction. This review highlights the progress of the direct electrolytic separation of H2S below the sulfur dew point, where the sulfur poisoning effect becomes more prominent. The article discusses the different technologies and approaches explored to improve the energy efficiency and stability of H2S electrolytic systems, including the recent use of nanostructured electrodes and novel sulfur solvents as electrolytes.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44429329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}