首页 > 最新文献

Frontiers in genome editing最新文献

英文 中文
Genome-wide CRISPR screens and their applications in infectious disease. 全基因组CRISPR筛选及其在传染病中的应用。
Pub Date : 2023-09-19 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1243731
Kaveri Srivastava, Bhaswati Pandit

Inactivation or targeted disruption of a gene provides clues to assess the function of the gene in many cellular processes. Knockdown or knocking out a gene has been widely used for this purpose. However, recently CRISPR mediated genome editing has taken over the knockout/knockdown system with more precision. CRISPR technique has enabled us to perform targeted mutagenesis or genome editing to address questions in fundamental biology to biomedical research. Its application is wide in understanding the role of genes in the disease process, and response to therapy in cancer, metabolic disorders, or infectious disease. In this article, we have focused on infectious disease and how genome-wide CRISPR screens have enabled us to identify host factors involved in the process of infection. Understanding the biology of the host-pathogen interaction is of immense importance in planning host-directed therapy to improve better management of the disease. Genome-wide CRISPR screens provide strong mechanistic ways to identify the host dependency factors involved in various infections. We presented insights into genome-wide CRISPR screens conducted in the context of infectious diseases both viral and bacterial that led to better understanding of host-pathogen interactions and immune networks. We have discussed the advancement of knowledge pertaining to influenza virus, different hepatitis viruses, HIV, most recent SARS CoV2 and few more. Among bacterial diseases, we have focused on infection with life threatening Mycobacteria, Salmonella, S. aureus, etc. It appears that the CRISPR technique can be applied universally to multiple infectious disease models to unravel the role of known or novel host factors.

基因的失活或靶向破坏为评估基因在许多细胞过程中的功能提供了线索。敲除或敲除基因已被广泛用于此目的。然而,最近CRISPR介导的基因组编辑已经以更高的精度取代了敲除/敲除系统。CRISPR技术使我们能够进行靶向诱变或基因组编辑,以解决从基础生物学到生物医学研究的问题。它在理解基因在疾病过程中的作用以及对癌症、代谢紊乱或传染病治疗的反应方面具有广泛的应用。在这篇文章中,我们重点关注传染病,以及全基因组CRISPR筛查如何使我们能够识别参与感染过程的宿主因素。了解宿主-病原体相互作用的生物学对于规划宿主导向治疗以改善疾病管理具有极其重要的意义。全基因组CRISPR筛查为识别各种感染中涉及的宿主依赖性因素提供了强有力的机制方法。我们深入了解了在病毒和细菌传染病背景下进行的全基因组CRISPR筛查,从而更好地了解了宿主-病原体的相互作用和免疫网络。我们讨论了流感病毒、不同肝炎病毒、艾滋病毒、最近的严重急性呼吸系统综合征冠状病毒2型等方面的知识进展。在细菌性疾病中,我们关注的是威胁生命的分枝杆菌、沙门氏菌、金黄色葡萄球菌等的感染。CRISPR技术似乎可以普遍应用于多种传染病模型,以揭示已知或新型宿主因子的作用。
{"title":"Genome-wide CRISPR screens and their applications in infectious disease.","authors":"Kaveri Srivastava,&nbsp;Bhaswati Pandit","doi":"10.3389/fgeed.2023.1243731","DOIUrl":"https://doi.org/10.3389/fgeed.2023.1243731","url":null,"abstract":"<p><p>Inactivation or targeted disruption of a gene provides clues to assess the function of the gene in many cellular processes. Knockdown or knocking out a gene has been widely used for this purpose. However, recently CRISPR mediated genome editing has taken over the knockout/knockdown system with more precision. CRISPR technique has enabled us to perform targeted mutagenesis or genome editing to address questions in fundamental biology to biomedical research. Its application is wide in understanding the role of genes in the disease process, and response to therapy in cancer, metabolic disorders, or infectious disease. In this article, we have focused on infectious disease and how genome-wide CRISPR screens have enabled us to identify host factors involved in the process of infection. Understanding the biology of the host-pathogen interaction is of immense importance in planning host-directed therapy to improve better management of the disease. Genome-wide CRISPR screens provide strong mechanistic ways to identify the host dependency factors involved in various infections. We presented insights into genome-wide CRISPR screens conducted in the context of infectious diseases both viral and bacterial that led to better understanding of host-pathogen interactions and immune networks. We have discussed the advancement of knowledge pertaining to influenza virus, different hepatitis viruses, HIV, most recent SARS CoV2 and few more. Among bacterial diseases, we have focused on infection with life threatening <i>Mycobacteria</i>, <i>Salmonella</i>, <i>S</i>. <i>aureus</i>, etc. It appears that the CRISPR technique can be applied universally to multiple infectious disease models to unravel the role of known or novel host factors.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41164720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Genome edited organisms for agriculture-challenges and perspectives for development and regulation. 社论:基因组编辑的生物对农业的挑战和发展和监管的前景。
Pub Date : 2023-09-18 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1287973
Michael Eckerstorfer, Sarah Zanon Agapito-Tenfen, Gijs A Kleter
With pleasure, we present this Research Topic of articles, which we believe will inform current and future discussions surrounding the regulation, traceability, and safety of genome-edited crops and derived food and feed products. A handful of genome editedcrops have already been commercialized in several nations across the globe and their number is likely to expand progressively in the coming few years. This prospect raises a number of questions, some of which are addressed in this Research Topic as follows:
{"title":"Editorial: Genome edited organisms for agriculture-challenges and perspectives for development and regulation.","authors":"Michael Eckerstorfer,&nbsp;Sarah Zanon Agapito-Tenfen,&nbsp;Gijs A Kleter","doi":"10.3389/fgeed.2023.1287973","DOIUrl":"10.3389/fgeed.2023.1287973","url":null,"abstract":"With pleasure, we present this Research Topic of articles, which we believe will inform current and future discussions surrounding the regulation, traceability, and safety of genome-edited crops and derived food and feed products. A handful of genome editedcrops have already been commercialized in several nations across the globe and their number is likely to expand progressively in the coming few years. This prospect raises a number of questions, some of which are addressed in this Research Topic as follows:","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545873/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41168644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current approaches and potential challenges in the delivery of gene editing cargos into hematopoietic stem and progenitor cells. 将基因编辑货物递送到造血干细胞和祖细胞中的当前方法和潜在挑战。
Pub Date : 2023-09-15 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1148693
Ramya Murugesan, Karthik V Karuppusamy, Srujan Marepally, Saravanabhavan Thangavel

Advancements in gene delivery and editing have expanded the applications of autologous hematopoietic stem and progenitor cells (HSPCs) for the treatment of monogenic and acquired diseases. The gene editing toolbox is growing, and the ability to achieve gene editing with mRNA or protein delivered intracellularly by vehicles, such as electroporation and nanoparticles, has highlighted the potential of gene editing in HSPCs. Ongoing phase I/II clinical trials with gene-edited HSPCs for β-hemoglobinopathies provide hope for treating monogenic diseases. The development of safe and efficient gene editing reagents and their delivery into hard-to-transfect HSPCs have been critical drivers in the rapid translation of HSPC gene editing into clinical studies. This review article summarizes the available payloads and delivery vehicles for gene editing HSPCs and their potential impact on therapeutic applications.

基因递送和编辑的进步扩大了自体造血干细胞和祖细胞(HSPCs)在治疗单基因和获得性疾病中的应用。基因编辑工具箱正在发展,通过电穿孔和纳米颗粒等载体在细胞内递送信使核糖核酸或蛋白质来实现基因编辑的能力凸显了基因编辑在HSPCs中的潜力。正在进行的基因编辑HSPCs治疗β-血红蛋白病的I/II期临床试验为治疗单基因疾病提供了希望。开发安全有效的基因编辑试剂并将其递送到难以转染的HSPC中,是HSPC基因编辑快速转化为临床研究的关键驱动因素。本文综述了用于基因编辑HSPCs的有效载荷和递送载体及其对治疗应用的潜在影响。
{"title":"Current approaches and potential challenges in the delivery of gene editing cargos into hematopoietic stem and progenitor cells.","authors":"Ramya Murugesan,&nbsp;Karthik V Karuppusamy,&nbsp;Srujan Marepally,&nbsp;Saravanabhavan Thangavel","doi":"10.3389/fgeed.2023.1148693","DOIUrl":"https://doi.org/10.3389/fgeed.2023.1148693","url":null,"abstract":"<p><p>Advancements in gene delivery and editing have expanded the applications of autologous hematopoietic stem and progenitor cells (HSPCs) for the treatment of monogenic and acquired diseases. The gene editing toolbox is growing, and the ability to achieve gene editing with mRNA or protein delivered intracellularly by vehicles, such as electroporation and nanoparticles, has highlighted the potential of gene editing in HSPCs. Ongoing phase I/II clinical trials with gene-edited HSPCs for β-hemoglobinopathies provide hope for treating monogenic diseases. The development of safe and efficient gene editing reagents and their delivery into hard-to-transfect HSPCs have been critical drivers in the rapid translation of HSPC gene editing into clinical studies. This review article summarizes the available payloads and delivery vehicles for gene editing HSPCs and their potential impact on therapeutic applications.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41155927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient DNA knock-in using AAV-mediated delivery with 2-cell embryo CRISPR-Cas9 electroporation. 利用 AAV 介导的传递与 2 细胞胚胎 CRISPR-Cas9 电穿孔技术实现高效 DNA 基因敲入。
Pub Date : 2023-08-25 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1256451
Daniel J Davis, James F McNew, Hailey Maresca-Fichter, Kaiwen Chen, Bhanu P Telugu, Elizabeth C Bryda

Recent advances in CRISPR-Cas genome editing technology have been instrumental in improving the efficiency to produce genetically modified animal models. In this study we have combined four very promising approaches to come up with a highly effective pipeline to produce knock-in mouse and rat models. The four combined methods include: AAV-mediated DNA delivery, single-stranded DNA donor templates, 2-cell embryo modification, and CRISPR-Cas ribonucleoprotein (RNP) electroporation. Using this new combined approach, we were able to produce successfully targeted knock-in rat models containing either Cre or Flp recombinase sequences with knock-in efficiencies over 90%. Furthermore, we were able to produce a knock-in mouse model containing a Cre recombinase targeted insertion with over 50% knock-in efficiency directly comparing efficiencies to other commonly used approaches. Our modified AAV-mediated DNA delivery with 2-cell embryo CRISPR-Cas9 RNP electroporation technique has proven to be highly effective for generating both knock-in mouse and knock-in rat models.

最近,CRISPR-Cas 基因组编辑技术的进步有助于提高制作转基因动物模型的效率。在这项研究中,我们结合了四种非常有前景的方法,提出了一种高效的方法来制作基因敲入小鼠和大鼠模型。这四种组合方法包括AAV介导的DNA递送、单链DNA供体模板、2细胞胚胎修饰和CRISPR-Cas核糖核蛋白(RNP)电穿孔。利用这种新的组合方法,我们成功地制备出了含有 Cre 或 Flp 重组酶序列的靶向基因敲入大鼠模型,基因敲入效率超过 90%。此外,我们还成功制备了含有 Cre 重组酶定向插入基因的小鼠基因敲入模型,与其他常用方法相比,敲入效率超过 50%。事实证明,我们改良的 AAV 介导的 DNA 传播与 2 细胞胚胎 CRISPR-Cas9 RNP 电穿孔技术在产生基因敲入小鼠和基因敲入大鼠模型方面都非常有效。
{"title":"Efficient DNA knock-in using AAV-mediated delivery with 2-cell embryo CRISPR-Cas9 electroporation.","authors":"Daniel J Davis, James F McNew, Hailey Maresca-Fichter, Kaiwen Chen, Bhanu P Telugu, Elizabeth C Bryda","doi":"10.3389/fgeed.2023.1256451","DOIUrl":"10.3389/fgeed.2023.1256451","url":null,"abstract":"<p><p>Recent advances in CRISPR-Cas genome editing technology have been instrumental in improving the efficiency to produce genetically modified animal models. In this study we have combined four very promising approaches to come up with a highly effective pipeline to produce knock-in mouse and rat models. The four combined methods include: AAV-mediated DNA delivery, single-stranded DNA donor templates, 2-cell embryo modification, and CRISPR-Cas ribonucleoprotein (RNP) electroporation. Using this new combined approach, we were able to produce successfully targeted knock-in rat models containing either Cre or Flp recombinase sequences with knock-in efficiencies over 90%. Furthermore, we were able to produce a knock-in mouse model containing a Cre recombinase targeted insertion with over 50% knock-in efficiency directly comparing efficiencies to other commonly used approaches. Our modified AAV-mediated DNA delivery with 2-cell embryo CRISPR-Cas9 RNP electroporation technique has proven to be highly effective for generating both knock-in mouse and knock-in rat models.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10220069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potentials of genotypes, morpho-physio-biochemical traits, and growing media on shelf life and future prospects of gene editing in tomatoes. 基因型、形态生理生化性状和生长介质对番茄货架期的影响及基因编辑的未来前景。
IF 4.9 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-08-23 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1203485
Renu Yadav, Sarika Jaiswal, Tripti Singhal, Rohit Kumar Mahto, S B Verma, Ramesh Kumar Yadav, Rajendra Kumar

Background: To study the genetic basis of the impact of genotypes and morpho-physio-biochemical traits under different organic and inorganic fertilizer doses on the shelf life attribute of tomatoes, field experiments were conducted in randomized block designs during the rabi seasons of 2018-2019 and 2019-2020. The experiment comprised three diverse nutrient environments [T1-organic; T2-inorganic; T3-control (without any fertilizers)] and five tomato genotypes with variable growth habits, specifically Angoorlata (Indeterminate), Avinash-3 (semi-determinate), Swaraksha (semi-determinate), Pusa Sheetal (semi-determinate), and Pusa Rohini (determinate). Results: The different tomato genotypes behaved apparently differently from each other in terms of shelf life. All the genotypes had maximum shelf life when grown in organic environments. However, the Pusa Sheetal had a maximum shelf life of 8.35 days when grown in an organic environment and showed an increase of 12% over the control. The genotype Pusa Sheetal, organic environment and biochemical trait Anthocyanin provides a promise as potential contributor to improve the keeping quality of tomatoes. Conclusion: The genotype Pusa Sheetal a novel source for shelf life, organic environment, and anthocyanin have shown promises for extended shelf life in tomatoes. Thus, the identified trait and genotype can be utilized in tomato improvement programs. Furthermore, this identified trait can also be targeted for its quantitative enhancement in order to increase tomato shelf life through a genome editing approach. A generalized genome editing mechanism is consequently suggested.

背景为研究不同有机肥和无机肥剂量下基因型和形态生理生化性状对番茄货架期属性影响的遗传基础,在2018-2019年和2019-2020年的蕾季,采用随机区组设计进行了田间试验。实验包括三种不同的养分环境[T1-有机;T2-无机;T3-对照(不施任何肥料)]和五种生长习性各异的番茄基因型,即 Angoorlata(不定株型)、Avinash-3(半不定株型)、Swaraksha(半不定株型)、Pusa Sheetal(半不定株型)和 Pusa Rohini(不定株型)。结果不同番茄基因型的货架期表现明显不同。在有机环境中种植时,所有基因型的货架期都最长。然而,Pusa Sheetal 在有机环境中生长时的货架期最长为 8.35 天,比对照组增加了 12%。基因型 Pusa Sheetal、有机环境和生化性状花青素有望改善番茄的保存质量。结论Pusa Sheetal 基因型、有机环境和花青素是延长番茄货架期的新来源。因此,所确定的性状和基因型可用于番茄改良计划。此外,还可以通过基因组编辑方法,有针对性地定量增强已鉴定的性状,以延长番茄的货架期。因此,我们提出了一种通用的基因组编辑机制。
{"title":"Potentials of genotypes, morpho-physio-biochemical traits, and growing media on shelf life and future prospects of gene editing in tomatoes.","authors":"Renu Yadav, Sarika Jaiswal, Tripti Singhal, Rohit Kumar Mahto, S B Verma, Ramesh Kumar Yadav, Rajendra Kumar","doi":"10.3389/fgeed.2023.1203485","DOIUrl":"10.3389/fgeed.2023.1203485","url":null,"abstract":"<p><p><b>Background:</b> To study the genetic basis of the impact of genotypes and morpho-physio-biochemical traits under different organic and inorganic fertilizer doses on the shelf life attribute of tomatoes, field experiments were conducted in randomized block designs during the rabi seasons of 2018-2019 and 2019-2020. The experiment comprised three diverse nutrient environments [T1-organic; T2-inorganic; T3-control (without any fertilizers)] and five tomato genotypes with variable growth habits, specifically Angoorlata (Indeterminate), Avinash-3 (semi-determinate), Swaraksha (semi-determinate), Pusa Sheetal (semi-determinate), and Pusa Rohini (determinate). <b>Results:</b> The different tomato genotypes behaved apparently differently from each other in terms of shelf life. All the genotypes had maximum shelf life when grown in organic environments. However, the Pusa Sheetal had a maximum shelf life of 8.35 days when grown in an organic environment and showed an increase of 12% over the control. The genotype Pusa Sheetal, organic environment and biochemical trait Anthocyanin provides a promise as potential contributor to improve the keeping quality of tomatoes. <b>Conclusion:</b> The genotype Pusa Sheetal a novel source for shelf life, organic environment, and anthocyanin have shown promises for extended shelf life in tomatoes. Thus, the identified trait and genotype can be utilized in tomato improvement programs. Furthermore, this identified trait can also be targeted for its quantitative enhancement in order to increase tomato shelf life through a genome editing approach. A generalized genome editing mechanism is consequently suggested.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481343/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10184973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic manipulation of betta fish. betta 鱼的遗传操作。
Pub Date : 2023-07-21 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1167093
Alec Palmiotti, Madison R Lichak, Pei-Yin Shih, Young Mi Kwon, Andres Bendesky

Betta splendens, also known as Siamese fighting fish or "betta," is a freshwater fish species renowned for its astonishing morphological diversity and extreme aggressive behavior. Despite recent advances in our understanding of the genetics and neurobiology of betta, the lack of tools to manipulate their genome has hindered progress at functional and mechanistic levels. In this study, we outline the use of three genetic manipulation technologies, which we have optimized for use in betta: CRISPR/Cas9-mediated knockout, CRISPR/Cas9-mediated knockin, and Tol2-mediated transgenesis. We knocked out three genes: alkal2l, bco1l, and mitfa, and analyzed their effects on viability and pigmentation. Furthermore, we knocked in a fluorescent protein into the mitfa locus, a proof-of-principle experiment of this powerful technology in betta. Finally, we used Tol2-mediated transgenesis to create fish with ubiquitous expression of GFP, and then developed a bicistronic plasmid with heart-specific expression of a red fluorescent protein to serve as a visible marker of successful transgenesis. Our work highlights the potential for the genetic manipulation of betta, providing valuable resources for the effective use of genetic tools in this animal model.

Betta splendens,又名暹罗斗鱼或 "betta",是一种淡水鱼类,因其惊人的形态多样性和极端的攻击行为而闻名于世。尽管我们最近在了解 betta 的遗传学和神经生物学方面取得了进展,但由于缺乏操纵其基因组的工具,阻碍了其在功能和机理层面的进展。在本研究中,我们概述了三种基因操作技术的使用情况,并对其进行了优化,以便在鲶鱼中使用:CRISPR/Cas9 介导的基因敲除、CRISPR/Cas9 介导的基因敲入和 Tol2 介导的转基因。我们敲除了三个基因:alkal2l、bco1l 和 mitfa,并分析了它们对存活率和色素沉着的影响。此外,我们还在 mitfa 基因座中敲入了荧光蛋白,这是这项强大技术在 betta 中的原理验证实验。最后,我们利用 Tol2 介导的转基因技术创造出了普遍表达 GFP 的鱼类,然后又开发出了一种心脏特异性表达红色荧光蛋白的双螺旋质粒,作为转基因成功的可见标记。我们的工作凸显了对 betta 进行遗传操作的潜力,为在这种动物模型中有效利用遗传工具提供了宝贵的资源。
{"title":"Genetic manipulation of betta fish.","authors":"Alec Palmiotti, Madison R Lichak, Pei-Yin Shih, Young Mi Kwon, Andres Bendesky","doi":"10.3389/fgeed.2023.1167093","DOIUrl":"10.3389/fgeed.2023.1167093","url":null,"abstract":"<p><p><i>Betta splendens,</i> also known as Siamese fighting fish or \"betta,\" is a freshwater fish species renowned for its astonishing morphological diversity and extreme aggressive behavior. Despite recent advances in our understanding of the genetics and neurobiology of betta, the lack of tools to manipulate their genome has hindered progress at functional and mechanistic levels. In this study, we outline the use of three genetic manipulation technologies, which we have optimized for use in betta: CRISPR/Cas9-mediated knockout, CRISPR/Cas9-mediated knockin, and Tol2-mediated transgenesis. We knocked out three genes: <i>alkal2l, bco1l,</i> and <i>mitfa,</i> and analyzed their effects on viability and pigmentation. Furthermore, we knocked in a fluorescent protein into the <i>mitfa</i> locus, a proof-of-principle experiment of this powerful technology in betta. Finally, we used Tol2-mediated transgenesis to create fish with ubiquitous expression of GFP, and then developed a bicistronic plasmid with heart-specific expression of a red fluorescent protein to serve as a visible marker of successful transgenesis. Our work highlights the potential for the genetic manipulation of betta, providing valuable resources for the effective use of genetic tools in this animal model.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10325328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration. 提供 CRISPR/Cas 介导的基因组编辑的策略,以直接获得编辑过的植物,而无需转基因整合。
IF 4.9 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-07-20 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1209586
Zuzana Kocsisova, Viktoriya Coneva

Increased understanding of plant genetics and the development of powerful and easier-to-use gene editing tools over the past century have revolutionized humankind's ability to deliver precise genotypes in crops. Plant transformation techniques are well developed for making transgenic varieties in certain crops and model organisms, yet reagent delivery and plant regeneration remain key bottlenecks to applying the technology of gene editing to most crops. Typical plant transformation protocols to produce transgenic, genetically modified (GM) varieties rely on transgenes, chemical selection, and tissue culture. Typical protocols to make gene edited (GE) varieties also use transgenes, even though these may be undesirable in the final crop product. In some crops, the transgenes are routinely segregated away during meiosis by performing crosses, and thus only a minor concern. In other crops, particularly those propagated vegetatively, complex hybrids, or crops with long generation times, such crosses are impractical or impossible. This review highlights diverse strategies to deliver CRISPR/Cas gene editing reagents to regenerable plant cells and to recover edited plants without unwanted integration of transgenes. Some examples include delivering DNA-free gene editing reagents such as ribonucleoproteins or mRNA, relying on reagent expression from non-integrated DNA, using novel delivery mechanisms such as viruses or nanoparticles, using unconventional selection methods to avoid integration of transgenes, and/or avoiding tissue culture altogether. These methods are advancing rapidly and already enabling crop scientists to make use of the precision of CRISPR gene editing tools.

上个世纪,随着对植物遗传学认识的加深,以及功能强大、易于使用的基因编辑工具的开发,人类在作物中提供精确基因型的能力发生了革命性的变化。植物转化技术已经发展成熟,可用于制造某些作物和模式生物的转基因品种,但试剂输送和植物再生仍是将基因编辑技术应用于大多数作物的关键瓶颈。生产转基因品种的典型植物转化方案依赖于转基因、化学选择和组织培养。生产基因编辑(GE)品种的典型方案也使用转基因,尽管这些转基因在最终作物产品中可能不受欢迎。在某些作物中,转基因通常会通过杂交在减数分裂过程中分离掉,因此只是一个小问题。在其他作物中,尤其是无性繁殖、复杂杂交或世代时间较长的作物,这种杂交是不切实际或不可能的。本综述重点介绍了将 CRISPR/Cas 基因编辑试剂输送到可再生植物细胞并恢复编辑过的植物而不发生不必要的转基因整合的各种策略。其中一些例子包括:提供不含 DNA 的基因编辑试剂(如核糖核蛋白或 mRNA)、依赖于非整合 DNA 的试剂表达、使用新型传递机制(如病毒或纳米粒子)、使用非常规选择方法来避免整合转基因,以及/或完全避免组织培养。这些方法进展迅速,已经使作物科学家能够利用 CRISPR 基因编辑工具的精确性。
{"title":"Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration.","authors":"Zuzana Kocsisova, Viktoriya Coneva","doi":"10.3389/fgeed.2023.1209586","DOIUrl":"10.3389/fgeed.2023.1209586","url":null,"abstract":"<p><p>Increased understanding of plant genetics and the development of powerful and easier-to-use gene editing tools over the past century have revolutionized humankind's ability to deliver precise genotypes in crops. Plant transformation techniques are well developed for making transgenic varieties in certain crops and model organisms, yet reagent delivery and plant regeneration remain key bottlenecks to applying the technology of gene editing to most crops. Typical plant transformation protocols to produce transgenic, genetically modified (GM) varieties rely on transgenes, chemical selection, and tissue culture. Typical protocols to make gene edited (GE) varieties also use transgenes, even though these may be undesirable in the final crop product. In some crops, the transgenes are routinely segregated away during meiosis by performing crosses, and thus only a minor concern. In other crops, particularly those propagated vegetatively, complex hybrids, or crops with long generation times, such crosses are impractical or impossible. This review highlights diverse strategies to deliver CRISPR/Cas gene editing reagents to regenerable plant cells and to recover edited plants without unwanted integration of transgenes. Some examples include delivering DNA-free gene editing reagents such as ribonucleoproteins or mRNA, relying on reagent expression from non-integrated DNA, using novel delivery mechanisms such as viruses or nanoparticles, using unconventional selection methods to avoid integration of transgenes, and/or avoiding tissue culture altogether. These methods are advancing rapidly and already enabling crop scientists to make use of the precision of CRISPR gene editing tools.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10005816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methods of crop improvement and applications towards fortifying food security. 作物改良方法及其在加强粮食安全方面的应用。
Pub Date : 2023-07-07 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1171969
Aayushi Patel, Andrew Miles, Tara Strackhouse, Logan Cook, Sining Leng, Shrina Patel, Kelsey Klinger, Sairam Rudrabhatla, Shobha D Potlakayala

Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of "zero hunger" and "good human health and wellbeing." These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).

尽管全球粮食需求受到了过多的生物(害虫、病原体)和非生物(干旱、寒冷)压力,但农业从文明之初就支持着人类生活。在过去的50年里,对植物细胞和分子机制的深入理解导致了生物技术的新创新,从而通过植物基因工程引入了所需的基因/性状。靶向基因组编辑技术,如锌指核酸酶(ZFNs)、转录激活物样效应核酸酶(TALENs)和簇状规则间隔短回文重复序列(CRISPR),已成为作物改良的强大工具。这种新的CRISPR技术被证明是一种高效、简单、低成本的工艺。它在大多数植物物种中都具有适用性,靶向多个基因,并被用于设计植物代谢途径,以产生对病原体和非生物应激源的抵抗力。这些新的基因组编辑(GE)技术有望实现联合国的可持续发展目标,即“零饥饿”和“良好的人类健康和福祉”。这些技术可以更有效地开发转基因作物,并有助于加快美国农业部(USDA)、食品药品监督管理局(FDA),和环境保护局(EPA)。
{"title":"Methods of crop improvement and applications towards fortifying food security.","authors":"Aayushi Patel,&nbsp;Andrew Miles,&nbsp;Tara Strackhouse,&nbsp;Logan Cook,&nbsp;Sining Leng,&nbsp;Shrina Patel,&nbsp;Kelsey Klinger,&nbsp;Sairam Rudrabhatla,&nbsp;Shobha D Potlakayala","doi":"10.3389/fgeed.2023.1171969","DOIUrl":"10.3389/fgeed.2023.1171969","url":null,"abstract":"<p><p>Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of \"zero hunger\" and \"good human health and wellbeing.\" These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10241066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the future of GM technology in sustainable local food systems in Colombia. 探索转基因技术在哥伦比亚可持续地方粮食系统中的未来。
IF 4.9 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-06-30 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1181811
Néstor Julián Cárdenas Pardo, Dolly Esperanza Rodriguez Robayo, John Cristhian Fernandez Lizarazo, Diego Camilo Peña-Quemba, Erica McGale

The security of Earth's food systems is challenged by shifting regional climates. While agricultural processes are disrupted by climate change, they also play a large role in contributing to destabilizing greenhouse gases. Finding new strategies to increase yields while decreasing agricultural environmental impacts is essential. Tropical agriculture is particularly susceptible to climate change: local, smallholder farming, which provides a majority of the food supply, is high risk and has limited adaptation capacity. Rapid, inexpensive, intuitive solutions are needed, like the implementation of genetically modified (GM) crops. In the Latin American tropics, high awareness and acceptance of GM technologies, opportunities to test GM crops as part of local agricultural educations, and their known economic benefits, support their use. However, this is not all that is needed for the future of GM technologies in these areas: GM implementation must also consider environmental and social sustainability, which can be unique to a locality. Primarily from the perspective of its educators, the potential of a rural Colombian university in driving GM implementation is explored, including the role of this type of university in producing agricultural engineers who can innovate with GM to meet regionally-dependent environmental and cultural needs that could increase their sustainability.

地球粮食系统的安全受到区域气候变化的挑战。农业生产过程受到气候变化的干扰,同时也在造成温室气体不稳定方面发挥着重要作用。找到既能提高产量又能减少对农业环境影响的新策略至关重要。热带农业尤其容易受到气候变化的影响:当地的小农耕作提供了大部分的粮食供应,但风险高,适应能力有限。需要快速、廉价、直观的解决方案,比如转基因作物的实施。在拉丁美洲热带地区,人们对转基因技术的认识和接受程度很高,转基因作物试验是当地农业教育的一部分,而且转基因作物的经济效益众所周知,这些都支持转基因作物的使用。然而,这并不是转基因技术在这些地区未来发展的全部要求:转基因技术的实施还必须考虑环境和社会的可持续性,这可能是一个地方所特有的。本文主要从哥伦比亚一所农村大学教育者的角度出发,探讨了这所大学在推动转基因技术实施方面的潜力,包括这所大学在培养农业工程师方面的作用,这些工程师可以利用转基因技术进行创新,以满足当地的环境和文化需求,从而提高当地的可持续发展能力。
{"title":"Exploring the future of GM technology in sustainable local food systems in Colombia.","authors":"Néstor Julián Cárdenas Pardo, Dolly Esperanza Rodriguez Robayo, John Cristhian Fernandez Lizarazo, Diego Camilo Peña-Quemba, Erica McGale","doi":"10.3389/fgeed.2023.1181811","DOIUrl":"10.3389/fgeed.2023.1181811","url":null,"abstract":"<p><p>The security of Earth's food systems is challenged by shifting regional climates. While agricultural processes are disrupted by climate change, they also play a large role in contributing to destabilizing greenhouse gases. Finding new strategies to increase yields while decreasing agricultural environmental impacts is essential. Tropical agriculture is particularly susceptible to climate change: local, smallholder farming, which provides a majority of the food supply, is high risk and has limited adaptation capacity. Rapid, inexpensive, intuitive solutions are needed, like the implementation of genetically modified (GM) crops. In the Latin American tropics, high awareness and acceptance of GM technologies, opportunities to test GM crops as part of local agricultural educations, and their known economic benefits, support their use. However, this is not all that is needed for the future of GM technologies in these areas: GM implementation must also consider environmental and social sustainability, which can be unique to a locality. Primarily from the perspective of its educators, the potential of a rural Colombian university in driving GM implementation is explored, including the role of this type of university in producing agricultural engineers who can innovate with GM to meet regionally-dependent environmental and cultural needs that could increase their sustainability.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10202801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of anti-HIV-1 guide RNA efficacy in cells containing the viral target sequence, corresponding gRNA, and CRISPR/Cas9. 在含有病毒靶序列、相应gRNA和CRISPR/Cas9的细胞中评估抗HIV-1引导RNA的效力。
IF 4.9 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-04-13 eCollection Date: 2023-01-01 DOI: 10.3389/fgeed.2023.1101483
Alexander G Allen, Cheng-Han Chung, Stephen D Worrell, Glad Nwaozo, Rebekah Madrid, Anthony R Mele, Will Dampier, Michael R Nonnemacher, Brian Wigdahl

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 gene editing system has been shown to be effective at inhibiting human immunodeficiency virus type 1 (HIV-1). Studies have not consistently used a trackable dual reporter system to determine what cells received the Cas9/gRNA to determine the overall knockdown of HIV. Some studies have used stably transduced cells under drug selection to accomplish this goal. Here a two-color system was used that allows tracking of viral protein expression and which cells received the CRISPR/Cas9 system. These experiments ensured that each gRNA used was a perfect match to the intended target to remove this variable. The data showed that gRNAs targeting the transactivation response element (TAR) region or other highly conserved regions of the HIV-1 genome were effective at stopping viral gene expression, with multiple assays demonstrating greater than 95 percent reduction. Conversely, gRNAs targeting conserved sites of the 5' portion of the U3 region were largely ineffective, demonstrating that the location of edits in the long terminal repeat (LTR) matter with respect to function. In addition, it was observed that a gRNA targeting Tat was effective in a T-cell model of HIV-1 latency. Taken together, these studies demonstrated gRNAs designed to highly conserved functional regions have near 100% efficacy in vitro in cells known to have received the Cas9/gRNA pair.

簇状规则间隔短回文重复序列(CRISPR)/Cas9基因编辑系统已被证明能有效抑制人类免疫缺陷病毒1型(HIV-1)。研究还没有一致地使用可追踪的双报告系统来确定哪些细胞接受了Cas9/gRNA来确定HIV的总体敲除。一些研究已经在药物选择下使用稳定转导的细胞来实现这一目标。这里使用了双色系统,该系统允许跟踪病毒蛋白表达以及哪些细胞接受CRISPR/Cas9系统。这些实验确保了所使用的每种gRNA都与去除该变量的预期目标完美匹配。数据显示,靶向HIV-1基因组反式激活反应元件(TAR)区域或其他高度保守区域的gRNA在阻止病毒基因表达方面是有效的,多项检测显示减少了95%以上。相反,靶向U3区5'部分保守位点的gRNA在很大程度上是无效的,这表明编辑在长末端重复序列(LTR)中的位置与功能有关。此外,观察到靶向Tat的gRNA在HIV-1潜伏的T细胞模型中是有效的。总之,这些研究表明,在已知接受Cas9/gRNA对的细胞中,设计成高度保守功能区的gRNA在体外具有接近100%的效力。
{"title":"Assessment of anti-HIV-1 guide RNA efficacy in cells containing the viral target sequence, corresponding gRNA, and CRISPR/Cas9.","authors":"Alexander G Allen, Cheng-Han Chung, Stephen D Worrell, Glad Nwaozo, Rebekah Madrid, Anthony R Mele, Will Dampier, Michael R Nonnemacher, Brian Wigdahl","doi":"10.3389/fgeed.2023.1101483","DOIUrl":"10.3389/fgeed.2023.1101483","url":null,"abstract":"<p><p>The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 gene editing system has been shown to be effective at inhibiting human immunodeficiency virus type 1 (HIV-1). Studies have not consistently used a trackable dual reporter system to determine what cells received the Cas9/gRNA to determine the overall knockdown of HIV. Some studies have used stably transduced cells under drug selection to accomplish this goal. Here a two-color system was used that allows tracking of viral protein expression and which cells received the CRISPR/Cas9 system. These experiments ensured that each gRNA used was a perfect match to the intended target to remove this variable. The data showed that gRNAs targeting the transactivation response element (TAR) region or other highly conserved regions of the HIV-1 genome were effective at stopping viral gene expression, with multiple assays demonstrating greater than 95 percent reduction. Conversely, gRNAs targeting conserved sites of the 5' portion of the U3 region were largely ineffective, demonstrating that the location of edits in the long terminal repeat (LTR) matter with respect to function. In addition, it was observed that a gRNA targeting Tat was effective in a T-cell model of HIV-1 latency. Taken together, these studies demonstrated gRNAs designed to highly conserved functional regions have near 100% efficacy <i>in vitro</i> in cells known to have received the Cas9/gRNA pair.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9393688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in genome editing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1