Pub Date : 2023-03-30DOI: 10.3389/frmbi.2023.1071186
Mary K. English, C. Langdon, Carla B. Schubiger, Ryan S. Mueller
Oyster aquaculture is a growing industry that depends on production of fast-growing, healthy larvae and juveniles (spat) to be sold to farmers. Despite nearly identical genetics and environmental conditions in the early life stages of oysters, larvae and spat sizes can vary drastically. As the microbiome can influence the health and size of marine invertebrates, we analyzed the microbiomes of differently-sized juvenile Pacific oyster (Crassostrea gigas) spat of the same age to examine the relationship of their microbiomes with size variation. We used 16S sequencing of 128 animals (n = 60 large, n = 68 small) to characterize the microbiomes of each size class, comparing alpha diversity, beta diversity, and differentially abundant taxa between size classes. We observed that small spat had higher alpha diversity using measures that considered only richness, but there was no difference in alpha diversity between the two size classes using measures that incorporate compositional metrics. Additionally, large and small spat had distinct microbiomes, the separation of which was driven by more dominant bacterial taxa. Taxa that were differentially abundant in large oysters were also more abundant overall, and many appear to have roles in nutrient absorption and energy acquisition. The results of this study provide insight into how the microbiome of C. gigas may affect the early development of the animal, which can inform hatchery and nursery practices.
{"title":"Dominant bacterial taxa drive microbiome differences of juvenile Pacific oysters of the same age and variable sizes","authors":"Mary K. English, C. Langdon, Carla B. Schubiger, Ryan S. Mueller","doi":"10.3389/frmbi.2023.1071186","DOIUrl":"https://doi.org/10.3389/frmbi.2023.1071186","url":null,"abstract":"Oyster aquaculture is a growing industry that depends on production of fast-growing, healthy larvae and juveniles (spat) to be sold to farmers. Despite nearly identical genetics and environmental conditions in the early life stages of oysters, larvae and spat sizes can vary drastically. As the microbiome can influence the health and size of marine invertebrates, we analyzed the microbiomes of differently-sized juvenile Pacific oyster (Crassostrea gigas) spat of the same age to examine the relationship of their microbiomes with size variation. We used 16S sequencing of 128 animals (n = 60 large, n = 68 small) to characterize the microbiomes of each size class, comparing alpha diversity, beta diversity, and differentially abundant taxa between size classes. We observed that small spat had higher alpha diversity using measures that considered only richness, but there was no difference in alpha diversity between the two size classes using measures that incorporate compositional metrics. Additionally, large and small spat had distinct microbiomes, the separation of which was driven by more dominant bacterial taxa. Taxa that were differentially abundant in large oysters were also more abundant overall, and many appear to have roles in nutrient absorption and energy acquisition. The results of this study provide insight into how the microbiome of C. gigas may affect the early development of the animal, which can inform hatchery and nursery practices.","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"89 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83857071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: 10.3389/frmbi.2023.1029839
K. Jannat, Md Abdul Kader, S. Parvez, Russell Thomson, Md. Mahbubur Rahman, M. Kabir, K. Agho, R. Haque, D. Merom
Introduction We evaluated the effects of yogurt supplementation and nutrition education to low educated mothers on infant-gut health at an early age. Methods We designed a three-arm pilot randomized controlled trial with 162 infants aged 5-6 months and at risk of stunting (LAZ ≤-1 SD and >-2 SD at enrollment) living in slum areas in Dhaka, Bangladesh. Eligible children were randomized to receive, 1) nutrition education, 2) yogurt supplementation plus nutrition education or 3) usual care. Three faecal inflammatory biomarkers alpha-1 antitrypsin (AAT), myeloperoxidase (MPO), and neopterin (NEO) were measured before and after three months of yogurt feeding. Results At the end of three months, there were no significant differences in the biomarker concentrations between the yogurt plus group and control. Compared to control, the adjusted mean faecal NEO concentration decreased by 21% (NEO: RR 0.79, 95% CI: 0.60, 1.04) and the adjusted mean faecal AAT concentration decreased by 8% (AAT: RR 0.92, 95% CI: 0.69, 1.22); whereas, the adjusted mean faecal MPO concentration increased by 14% (MPO: RR 1.14, 95% CI: 0.62, 2.09). Such changes were not apparent in the education only group. Discussion After a three-month trial of daily yogurt feeding to children at risk of stunting and infant feeding education to their mothers, reduction in one inflammatory biomarker reached close to statistical significance, but not all of the measured biomarkers. The study did not finish its endline measurements at 6-month as designed due to COVID 19 pandemic. This has greatly impacted the interpretation of the results as we could not establish a decreasing trend in biomarker concentration with continued yogurt feeding.
{"title":"Faecal markers of intestinal inflammation in slum infants following yogurt intervention: A pilot randomized controlled trial in Bangladesh","authors":"K. Jannat, Md Abdul Kader, S. Parvez, Russell Thomson, Md. Mahbubur Rahman, M. Kabir, K. Agho, R. Haque, D. Merom","doi":"10.3389/frmbi.2023.1029839","DOIUrl":"https://doi.org/10.3389/frmbi.2023.1029839","url":null,"abstract":"Introduction We evaluated the effects of yogurt supplementation and nutrition education to low educated mothers on infant-gut health at an early age. Methods We designed a three-arm pilot randomized controlled trial with 162 infants aged 5-6 months and at risk of stunting (LAZ ≤-1 SD and >-2 SD at enrollment) living in slum areas in Dhaka, Bangladesh. Eligible children were randomized to receive, 1) nutrition education, 2) yogurt supplementation plus nutrition education or 3) usual care. Three faecal inflammatory biomarkers alpha-1 antitrypsin (AAT), myeloperoxidase (MPO), and neopterin (NEO) were measured before and after three months of yogurt feeding. Results At the end of three months, there were no significant differences in the biomarker concentrations between the yogurt plus group and control. Compared to control, the adjusted mean faecal NEO concentration decreased by 21% (NEO: RR 0.79, 95% CI: 0.60, 1.04) and the adjusted mean faecal AAT concentration decreased by 8% (AAT: RR 0.92, 95% CI: 0.69, 1.22); whereas, the adjusted mean faecal MPO concentration increased by 14% (MPO: RR 1.14, 95% CI: 0.62, 2.09). Such changes were not apparent in the education only group. Discussion After a three-month trial of daily yogurt feeding to children at risk of stunting and infant feeding education to their mothers, reduction in one inflammatory biomarker reached close to statistical significance, but not all of the measured biomarkers. The study did not finish its endline measurements at 6-month as designed due to COVID 19 pandemic. This has greatly impacted the interpretation of the results as we could not establish a decreasing trend in biomarker concentration with continued yogurt feeding.","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84152141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3389/frmbi.2023.1113635
K. Peng, Jianqiang Qiu, Chaozheng Li, Huijie Lu, Z. Liu, Ding Liu, Wen-bo Huang
Soybean meal is considered as one of the major components of Litopenaeus vannamei diets. However, most previous studies have focused on evaluating the effects of soybean meal on L. vannamei from the perspective of growth, physiology, and feed utilization; information regarding the analysis of serum metabolites, antioxidant and immune response, and intestinal microbiota is limited. Five diets were prepared, comprising 20% (T20), 28% (T28), 35% (T35), 42% (T42), and 50% (T50) soybean meal. A total of 600 shrimp were randomly distributed into 20 tanks (i.e., 30 shrimp per tank), with four tanks assigned to each dietary group. Shrimp were fed to apparent satiation during the 42-day feeding trial. The results showed that levels of serum globulin, alanine aminotransferase, and aspartate aminotransferase linearly increased (p < 0.01), but levels of high-density lipoprotein cholesterol linearly decreased (p < 0.001) as the proportion of soybean meal in the diet increased. Supplementation of shrimp diets with soybean meal linearly and quadratically increased (p < 0.05) serum total antioxidant capacity, levels of malondialdehyde, and activities of catalase, nitric oxide synthase and phenoloxidase. Hepatocytes in T35, T42, and T50 were shown to have different degrees of vacuolar degeneration, hepatic corpuscle atrophy, and star-like lumen loss. Dietary inclusion of soybean meal altered the composition of intestinal bacterial microbiota at phylum level, especially increasing the abundance of on other bacterial genera, whereas it had minimal impact on other bacterial genera and had no significant influence on the bacterial diversity. This study suggests that dietary supplementation of L. vannamei diets with soybean meal at concentrations exceeding 28% induces inflammation and oxidant damage of the hepatopancreas, and increases the risk of intestinal disease.
{"title":"A multi-angle analysis of injury induced by supplementation of soybean meal in Litopenaeus vannamei diets","authors":"K. Peng, Jianqiang Qiu, Chaozheng Li, Huijie Lu, Z. Liu, Ding Liu, Wen-bo Huang","doi":"10.3389/frmbi.2023.1113635","DOIUrl":"https://doi.org/10.3389/frmbi.2023.1113635","url":null,"abstract":"Soybean meal is considered as one of the major components of Litopenaeus vannamei diets. However, most previous studies have focused on evaluating the effects of soybean meal on L. vannamei from the perspective of growth, physiology, and feed utilization; information regarding the analysis of serum metabolites, antioxidant and immune response, and intestinal microbiota is limited. Five diets were prepared, comprising 20% (T20), 28% (T28), 35% (T35), 42% (T42), and 50% (T50) soybean meal. A total of 600 shrimp were randomly distributed into 20 tanks (i.e., 30 shrimp per tank), with four tanks assigned to each dietary group. Shrimp were fed to apparent satiation during the 42-day feeding trial. The results showed that levels of serum globulin, alanine aminotransferase, and aspartate aminotransferase linearly increased (p < 0.01), but levels of high-density lipoprotein cholesterol linearly decreased (p < 0.001) as the proportion of soybean meal in the diet increased. Supplementation of shrimp diets with soybean meal linearly and quadratically increased (p < 0.05) serum total antioxidant capacity, levels of malondialdehyde, and activities of catalase, nitric oxide synthase and phenoloxidase. Hepatocytes in T35, T42, and T50 were shown to have different degrees of vacuolar degeneration, hepatic corpuscle atrophy, and star-like lumen loss. Dietary inclusion of soybean meal altered the composition of intestinal bacterial microbiota at phylum level, especially increasing the abundance of on other bacterial genera, whereas it had minimal impact on other bacterial genera and had no significant influence on the bacterial diversity. This study suggests that dietary supplementation of L. vannamei diets with soybean meal at concentrations exceeding 28% induces inflammation and oxidant damage of the hepatopancreas, and increases the risk of intestinal disease.","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89605304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-16DOI: 10.3389/frmbi.2023.1147082
Stefano Leo, O. F. Cetiner, Laure F. Pittet, N. Messina, W. Jakob, L. Falquet, N. Curtis, P. Zimmermann
Introduction The early-life intestinal microbiome plays a crucial role in the development and regulation of the immune system. Perturbations in its composition during this critical period have been linked to the development of allergic diseases. Objective This study aimed to investigate the association between the composition of the early-life intestinal microbiome and the presence of eczema in the first year of life using shotgun metagenomic sequencing and functional analyses (metabolic pathways). Methods Stool samples from 393 healthy term infants collected at 1 week of age were analyzed with shotgun metagenomic sequencing. Environmental and clinical data were prospectively collected using 3-monthly validated questionnaires. Participants were clinically assessed during study visits at 12 months of age. Eczema was diagnosed by the UK diagnostic tool and by a research nurse. Data analysis was stratified by delivery mode. Results Eczema was diagnosed in 16.4% (60/366) of participants by nurse diagnosis. Infants born by cesarean section (CS) with nurse-diagnosed eczema had a higher relative abundance of Escherichia, Shigella, Enterobacter, and Citrobacter and a lower relative abundance of Veillonella than CS-born infants without eczema. In addition, CS-born infants without eczema had a higher abundance of genes involved in lactic fermentation. Vaginally born infants with eczema had a higher relative abundance of Bacteroides and a lower abundance of Streptococcus. Conclusion There is an association between the bacterial composition of the intestinal microbiome at 1 week of age and the presence of eczema in the first 12 months of life. Graphical Abstract
{"title":"The association between the composition of the early-life intestinal microbiome and eczema in the first year of life","authors":"Stefano Leo, O. F. Cetiner, Laure F. Pittet, N. Messina, W. Jakob, L. Falquet, N. Curtis, P. Zimmermann","doi":"10.3389/frmbi.2023.1147082","DOIUrl":"https://doi.org/10.3389/frmbi.2023.1147082","url":null,"abstract":"Introduction The early-life intestinal microbiome plays a crucial role in the development and regulation of the immune system. Perturbations in its composition during this critical period have been linked to the development of allergic diseases. Objective This study aimed to investigate the association between the composition of the early-life intestinal microbiome and the presence of eczema in the first year of life using shotgun metagenomic sequencing and functional analyses (metabolic pathways). Methods Stool samples from 393 healthy term infants collected at 1 week of age were analyzed with shotgun metagenomic sequencing. Environmental and clinical data were prospectively collected using 3-monthly validated questionnaires. Participants were clinically assessed during study visits at 12 months of age. Eczema was diagnosed by the UK diagnostic tool and by a research nurse. Data analysis was stratified by delivery mode. Results Eczema was diagnosed in 16.4% (60/366) of participants by nurse diagnosis. Infants born by cesarean section (CS) with nurse-diagnosed eczema had a higher relative abundance of Escherichia, Shigella, Enterobacter, and Citrobacter and a lower relative abundance of Veillonella than CS-born infants without eczema. In addition, CS-born infants without eczema had a higher abundance of genes involved in lactic fermentation. Vaginally born infants with eczema had a higher relative abundance of Bacteroides and a lower abundance of Streptococcus. Conclusion There is an association between the bacterial composition of the intestinal microbiome at 1 week of age and the presence of eczema in the first 12 months of life. Graphical Abstract","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81649994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-15DOI: 10.3389/frmbi.2023.1123064
P. Morgan, P. Parbie, Desmond Opoku Ntiamoah, A. A. Boadu, P. Asare, Ivy Naa Koshie Lamptey, Cecilia Nancy Gorman, Emmanuel Afreh, Adwoa Asante-Poku, I. Otchere, S. Aboagye, D. Yeboah-Manu
Background The gut microbiota is known to play a critical role in shaping the host immunity, and metabolism and influences the onset and progression of both communicable and non-communicable diseases. This study assessed the gut microbiome of tuberculosis (TB) cases with diabetes mellitus (DM) or HIV comorbidities before anti-TB therapy and after the intensive phase anti-TB therapy. Methods Ninety cases comprising 60 TB-only, 23 TB-DM, 7 TB-HIV were recruited, among which 35 TB-only, 10 TB-DM, 5 TB-HIV were also sampled after 2 months of anti-TB treatment. Total gut microbiome was detected by 16S rRNA gene sequencing of DNA extracted from collected stool specimen. The taxonomic and functional diversity of the different groups were compared in addition to changes that could occur after 2 months antibiotics use. Results Compared to the healthy controls, the gut microbiome of all the TB cohorts was characterized by a significant decreased alpha diversity and significant compositional changes. All the three TB cohorts were enriched with inflammatory related microorganisms of the genera Escherichia-shigella, Streptococcus, Enterococcus and Erysipelatoclostridium with depletion in beneficial taxa of the genera Faecalibacterium, Bifidobacterium and Clostridium. In pairwise comparison with the healthy controls, the TB-only cohort were enriched with Streptococcus and Erysipelatoclostridium, the TB-DM enriched with Bacteroides, and TB-HIV enriched with Escherichia-shigella, Dialister and Erysipelatoclostridium. After the intensive phase anti-TB therapy, there was general enrichment of the genera Erysipelotrichaceae_UCG 003, Veillonella and Fusobacterium. Conclusion Our findings show a dysbiotic gut microbiome and associated upregulation of inflammation related microorganism in gut microbiome of TB individuals with or without comorbidity.
{"title":"Gut microbiome variation in pulmonary TB patients with diabetes or HIV comorbidities","authors":"P. Morgan, P. Parbie, Desmond Opoku Ntiamoah, A. A. Boadu, P. Asare, Ivy Naa Koshie Lamptey, Cecilia Nancy Gorman, Emmanuel Afreh, Adwoa Asante-Poku, I. Otchere, S. Aboagye, D. Yeboah-Manu","doi":"10.3389/frmbi.2023.1123064","DOIUrl":"https://doi.org/10.3389/frmbi.2023.1123064","url":null,"abstract":"Background The gut microbiota is known to play a critical role in shaping the host immunity, and metabolism and influences the onset and progression of both communicable and non-communicable diseases. This study assessed the gut microbiome of tuberculosis (TB) cases with diabetes mellitus (DM) or HIV comorbidities before anti-TB therapy and after the intensive phase anti-TB therapy. Methods Ninety cases comprising 60 TB-only, 23 TB-DM, 7 TB-HIV were recruited, among which 35 TB-only, 10 TB-DM, 5 TB-HIV were also sampled after 2 months of anti-TB treatment. Total gut microbiome was detected by 16S rRNA gene sequencing of DNA extracted from collected stool specimen. The taxonomic and functional diversity of the different groups were compared in addition to changes that could occur after 2 months antibiotics use. Results Compared to the healthy controls, the gut microbiome of all the TB cohorts was characterized by a significant decreased alpha diversity and significant compositional changes. All the three TB cohorts were enriched with inflammatory related microorganisms of the genera Escherichia-shigella, Streptococcus, Enterococcus and Erysipelatoclostridium with depletion in beneficial taxa of the genera Faecalibacterium, Bifidobacterium and Clostridium. In pairwise comparison with the healthy controls, the TB-only cohort were enriched with Streptococcus and Erysipelatoclostridium, the TB-DM enriched with Bacteroides, and TB-HIV enriched with Escherichia-shigella, Dialister and Erysipelatoclostridium. After the intensive phase anti-TB therapy, there was general enrichment of the genera Erysipelotrichaceae_UCG 003, Veillonella and Fusobacterium. Conclusion Our findings show a dysbiotic gut microbiome and associated upregulation of inflammation related microorganism in gut microbiome of TB individuals with or without comorbidity.","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77201045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.3389/frmbi.2023.1085508
K. Barfod, J. Lui, Signe Schmidt Kjølner Hansen, Sreyoshee Sengupta, L. Zachariassen, A. K. Hansen, J. Sørli
Early-life changes to lung and gut microbiota have been linked to alterations in immune responses that may lead to pulmonary diseases later in life. Associations between early-life microbiota, germ-free status, lung gene expression, lung development and function are not well described. In this study, we compare early-life lung gene transcription under germ-free and different perinatal microbial exposures, and analyze with a predetermined focus on lung capacity and lung surfactant. We also analyze the later-in-life physiological measures of breathing patterns and lung surfactant function between the germ-free, gnotophoric and gnotobiotic offspring. To achieve this, we kept pregnant BALB/c germ-free mice in separate germ-free isolators until exposure to either A: no exposure (GF), B: Bifidobacterium animalis ssp. Lactis (BI04) or C: full cecum content harvested from other female SPF mice (Cecum). Subsequently, perinatally exposed offspring were used for the analyses. Lung tissue transcriptomics analysis was done at postnatal day 10 (PNday10) at the first phase of lung alveolar development. Head-out plethysmography for breathing pattern analysis was performed on the siblings at PNday23 followed by lung surfactant collection. The function of the collected lung surfactant was then analyzed ex vivo using the constrained drop surfactometer. Our results show that lung transcriptomics had differentially expressed genes related to surfactant turnover between groups and sex at PNday10. They also show that the GF and BI04 animals had lower respiratory rate than Cecum mice, or compared to age-matched specific pathogen-free (SPF) reference animals. We also see changes in lung surfactant function ex vivo. The overall conclusions are that 10-day-old GF mice do not have a markedly different lung gene transcription compared to gnotophoric or gnotobiotic mice, but genes related to surfactant metabolism are among the few differentially expressed genes. We show here for the first time that early-life microbiome status correlates with early-life surfactant-gene transcription and to later-in-life lung surfactant function and associated respiratory-rate changes in mice.
{"title":"The impact of bacterial exposure in early life on lung surfactant gene expression, function and respiratory rate in germ-free mice","authors":"K. Barfod, J. Lui, Signe Schmidt Kjølner Hansen, Sreyoshee Sengupta, L. Zachariassen, A. K. Hansen, J. Sørli","doi":"10.3389/frmbi.2023.1085508","DOIUrl":"https://doi.org/10.3389/frmbi.2023.1085508","url":null,"abstract":"Early-life changes to lung and gut microbiota have been linked to alterations in immune responses that may lead to pulmonary diseases later in life. Associations between early-life microbiota, germ-free status, lung gene expression, lung development and function are not well described. In this study, we compare early-life lung gene transcription under germ-free and different perinatal microbial exposures, and analyze with a predetermined focus on lung capacity and lung surfactant. We also analyze the later-in-life physiological measures of breathing patterns and lung surfactant function between the germ-free, gnotophoric and gnotobiotic offspring. To achieve this, we kept pregnant BALB/c germ-free mice in separate germ-free isolators until exposure to either A: no exposure (GF), B: Bifidobacterium animalis ssp. Lactis (BI04) or C: full cecum content harvested from other female SPF mice (Cecum). Subsequently, perinatally exposed offspring were used for the analyses. Lung tissue transcriptomics analysis was done at postnatal day 10 (PNday10) at the first phase of lung alveolar development. Head-out plethysmography for breathing pattern analysis was performed on the siblings at PNday23 followed by lung surfactant collection. The function of the collected lung surfactant was then analyzed ex vivo using the constrained drop surfactometer. Our results show that lung transcriptomics had differentially expressed genes related to surfactant turnover between groups and sex at PNday10. They also show that the GF and BI04 animals had lower respiratory rate than Cecum mice, or compared to age-matched specific pathogen-free (SPF) reference animals. We also see changes in lung surfactant function ex vivo. The overall conclusions are that 10-day-old GF mice do not have a markedly different lung gene transcription compared to gnotophoric or gnotobiotic mice, but genes related to surfactant metabolism are among the few differentially expressed genes. We show here for the first time that early-life microbiome status correlates with early-life surfactant-gene transcription and to later-in-life lung surfactant function and associated respiratory-rate changes in mice.","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88029862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-03DOI: 10.3389/frmbi.2023.1143303
A. Marsh, M. Azcarate-Peril, M. Aljumaah, Jessica Neville, Maryanne T. Perrin, L. Dean, M. Wheeler, Ian N Hines, R. Pawlak
{"title":"Corrigendum: Fatty acid profile driven by maternal diet is associated with the composition of human milk microbiota","authors":"A. Marsh, M. Azcarate-Peril, M. Aljumaah, Jessica Neville, Maryanne T. Perrin, L. Dean, M. Wheeler, Ian N Hines, R. Pawlak","doi":"10.3389/frmbi.2023.1143303","DOIUrl":"https://doi.org/10.3389/frmbi.2023.1143303","url":null,"abstract":"","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78944440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-03DOI: 10.3389/frmbi.2023.1061193
Jacob Dehinsilu, Chrysi Sergaki, G. Amos, V. Fontana, M. Pirmohamed
The advent of immune checkpoint inhibitor therapy was a significant step in the development of treatments for cancer. It is, however, a double-edged sword. Immune related adverse events are the result of unleashing brakes on the immune system and affect many patients undergoing checkpoint inhibitor therapy, often being debilitating and occasionally lethal. It has been shown both in mice and in humans that the presence of certain families, genera and species of bacteria are associated with improved responses to checkpoint inhibitor therapy, whereas in their absence the response to therapy is often poor. Recent studies have demonstrated that immune related adverse events to checkpoint inhibitor therapy can be perturbed and perhaps predicted based on the composition and functional capacity of the gut microbiota and parts of the immune system. In the case of colitis associated with immune checkpoint inhibitor therapy, one interesting avenue of investigation is based on the activity of secretory immunoglobulin A (SIgA). Produced by plasma cells, IgA is present in high concentrations at the gut mucosa and is involved in both the maturation and maintenance of the microbiota as well as the development of IBD. Here we summarise the current literature surrounding the interplay between the gut microbiota and response to CPI therapy. Additionally, we overview the colonic immune system, paying particular attention to IgA, as a key component of the microbiota-immune system interaction.
{"title":"The interplay between the microbiome and colonic immune system in checkpoint inhibitor therapy","authors":"Jacob Dehinsilu, Chrysi Sergaki, G. Amos, V. Fontana, M. Pirmohamed","doi":"10.3389/frmbi.2023.1061193","DOIUrl":"https://doi.org/10.3389/frmbi.2023.1061193","url":null,"abstract":"The advent of immune checkpoint inhibitor therapy was a significant step in the development of treatments for cancer. It is, however, a double-edged sword. Immune related adverse events are the result of unleashing brakes on the immune system and affect many patients undergoing checkpoint inhibitor therapy, often being debilitating and occasionally lethal. It has been shown both in mice and in humans that the presence of certain families, genera and species of bacteria are associated with improved responses to checkpoint inhibitor therapy, whereas in their absence the response to therapy is often poor. Recent studies have demonstrated that immune related adverse events to checkpoint inhibitor therapy can be perturbed and perhaps predicted based on the composition and functional capacity of the gut microbiota and parts of the immune system. In the case of colitis associated with immune checkpoint inhibitor therapy, one interesting avenue of investigation is based on the activity of secretory immunoglobulin A (SIgA). Produced by plasma cells, IgA is present in high concentrations at the gut mucosa and is involved in both the maturation and maintenance of the microbiota as well as the development of IBD. Here we summarise the current literature surrounding the interplay between the gut microbiota and response to CPI therapy. Additionally, we overview the colonic immune system, paying particular attention to IgA, as a key component of the microbiota-immune system interaction.","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87840583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-02DOI: 10.3389/frmbi.2023.1078024
D. Naylor, Katherine Naasko, Montana L. Smith, Sneha P. Couvillion, C. Nicora, Jesse Trejo, S. Fransen, R. Danczak, R. Mcclure, K. Hofmockel, J. Jansson
Two factors that are well-known to influence soil microbiomes are the depth of the soil as well as the level of moisture. Previous works have demonstrated that climate change will increase the incidence of drought in soils, but it is unknown how fluctuations in moisture availability affect soil microbiome composition and functioning down the depth profile. Here, we investigated soil and wheatgrass rhizosphere microbiomes in a single common field setting under four different levels of irrigation (100%, 75%, 50%, and 25%) and three depths (0-5 cm, 5-15 cm, and 15-25 cm from the surface). We demonstrated that there is a significant interactive effect between depth and irrigation, where changes in soil moisture more strongly affect soil microbiomes at the surface layer than at deeper layers. This was true for not only microbiome community composition and diversity metrics, but also for functional profiles (transcriptomic and metabolomic datasets). Meanwhile, in rhizosphere communities the influence of irrigation was similar across the different depths. However, for the ‘Alkar’ wheatgrass cultivar, the rhizosphere microbial communities responded more strongly to changes in irrigation level than did the communities for the ‘Jose’ cultivar rhizosphere. The lessened response of deeper soil microbiomes to changes in irrigation may be due to higher incidence of slow-growing, stress-resistant microbes. These results demonstrate that the soil microbiome response to moisture content is depth-dependent. As such, it will be optimal for soil microbiome studies to incorporate deeper as well as surface soils, to get a more accurate picture of the soil microbiome response to stress.
{"title":"Interactive effects of depth and differential irrigation on soil microbiome composition and functioning","authors":"D. Naylor, Katherine Naasko, Montana L. Smith, Sneha P. Couvillion, C. Nicora, Jesse Trejo, S. Fransen, R. Danczak, R. Mcclure, K. Hofmockel, J. Jansson","doi":"10.3389/frmbi.2023.1078024","DOIUrl":"https://doi.org/10.3389/frmbi.2023.1078024","url":null,"abstract":"Two factors that are well-known to influence soil microbiomes are the depth of the soil as well as the level of moisture. Previous works have demonstrated that climate change will increase the incidence of drought in soils, but it is unknown how fluctuations in moisture availability affect soil microbiome composition and functioning down the depth profile. Here, we investigated soil and wheatgrass rhizosphere microbiomes in a single common field setting under four different levels of irrigation (100%, 75%, 50%, and 25%) and three depths (0-5 cm, 5-15 cm, and 15-25 cm from the surface). We demonstrated that there is a significant interactive effect between depth and irrigation, where changes in soil moisture more strongly affect soil microbiomes at the surface layer than at deeper layers. This was true for not only microbiome community composition and diversity metrics, but also for functional profiles (transcriptomic and metabolomic datasets). Meanwhile, in rhizosphere communities the influence of irrigation was similar across the different depths. However, for the ‘Alkar’ wheatgrass cultivar, the rhizosphere microbial communities responded more strongly to changes in irrigation level than did the communities for the ‘Jose’ cultivar rhizosphere. The lessened response of deeper soil microbiomes to changes in irrigation may be due to higher incidence of slow-growing, stress-resistant microbes. These results demonstrate that the soil microbiome response to moisture content is depth-dependent. As such, it will be optimal for soil microbiome studies to incorporate deeper as well as surface soils, to get a more accurate picture of the soil microbiome response to stress.","PeriodicalId":73089,"journal":{"name":"Frontiers in microbiomes","volume":"81 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83067824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}