Pub Date : 2022-03-08eCollection Date: 2022-01-01DOI: 10.3389/fmmed.2022.836418
Nicolò Mangraviti, Leon J De Windt
Heart disease represents one of the main challenges in modern medicine with insufficient treatment options. Whole genome sequencing allowed for the discovery of several classes of non-coding RNA (ncRNA) and widened our understanding of disease regulatory circuits. The intrinsic ability of long ncRNAs (lncRNAs) and circular RNAs (circRNAs) to regulate gene expression by a plethora of mechanisms make them candidates for conceptually new treatment options. However, important questions remain to be addressed before we can fully exploit the therapeutic potential of these molecules. Increasing our knowledge of their mechanisms of action and refining the approaches for modulating lncRNAs expression are just a few of the challenges we face. The accurate identification of novel lncRNAs is hampered by their relatively poor cross-species sequence conservation and their low and context-dependent expression pattern. Nevertheless, progress has been made in their annotation in recent years, while a few experimental studies have confirmed the value of lncRNAs as new mechanisms in the development of cardiac hypertrophy and other cardiovascular diseases. Here, we explore cardiac lncRNA biology and the evidence that this class of molecules has therapeutic benefit to treat cardiac hypertrophy.
{"title":"Long Non-Coding RNAs in Cardiac Hypertrophy.","authors":"Nicolò Mangraviti, Leon J De Windt","doi":"10.3389/fmmed.2022.836418","DOIUrl":"10.3389/fmmed.2022.836418","url":null,"abstract":"<p><p>Heart disease represents one of the main challenges in modern medicine with insufficient treatment options. Whole genome sequencing allowed for the discovery of several classes of non-coding RNA (ncRNA) and widened our understanding of disease regulatory circuits. The intrinsic ability of long ncRNAs (lncRNAs) and circular RNAs (circRNAs) to regulate gene expression by a plethora of mechanisms make them candidates for conceptually new treatment options. However, important questions remain to be addressed before we can fully exploit the therapeutic potential of these molecules. Increasing our knowledge of their mechanisms of action and refining the approaches for modulating lncRNAs expression are just a few of the challenges we face. The accurate identification of novel lncRNAs is hampered by their relatively poor cross-species sequence conservation and their low and context-dependent expression pattern. Nevertheless, progress has been made in their annotation in recent years, while a few experimental studies have confirmed the value of lncRNAs as new mechanisms in the development of cardiac hypertrophy and other cardiovascular diseases. Here, we explore cardiac lncRNA biology and the evidence that this class of molecules has therapeutic benefit to treat cardiac hypertrophy.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":" ","pages":"836418"},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41486308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-22eCollection Date: 2022-01-01DOI: 10.3389/fmmed.2022.827340
Anna Visibelli, Vittoria Cicaloni, Ottavia Spiga, Annalisa Santucci
Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease caused by a mutation in the homogentisate 1,2-dioxygenase gene. One of the main obstacles in studying AKU and other ultra-rare diseases, is the lack of a standardized methodology to assess disease severity or response to treatment. Based on that, a multi-purpose digital platform, called ApreciseKUre, was implemented to facilitate data collection, integration and analysis for patients affected by AKU. It includes genetic, biochemical, histopathological, clinical, therapeutic resources and Quality of Life (QoL) scores that can be shared among registered researchers and clinicians to create a Precision Medicine Ecosystem. The combination of machine learning applications to analyse and re-interpret data available in the ApreciseKUre clearly indicated the potential direct benefits to achieve patients' stratification and the consequent tailoring of care and treatments to a specific subgroup of patients. In order to generate a comprehensive patient profile, computational modeling and database construction support the identification of potential new biomarkers, paving the way for more personalized therapy to maximize the benefit-risk ratio. In this work, different Machine Learning implemented approaches were described.
{"title":"Computational Approaches Integrated in a Digital Ecosystem Platform for a Rare Disease.","authors":"Anna Visibelli, Vittoria Cicaloni, Ottavia Spiga, Annalisa Santucci","doi":"10.3389/fmmed.2022.827340","DOIUrl":"10.3389/fmmed.2022.827340","url":null,"abstract":"<p><p>Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease caused by a mutation in the homogentisate 1,2-dioxygenase gene. One of the main obstacles in studying AKU and other ultra-rare diseases, is the lack of a standardized methodology to assess disease severity or response to treatment. Based on that, a multi-purpose digital platform, called ApreciseKUre, was implemented to facilitate data collection, integration and analysis for patients affected by AKU. It includes genetic, biochemical, histopathological, clinical, therapeutic resources and Quality of Life (QoL) scores that can be shared among registered researchers and clinicians to create a Precision Medicine Ecosystem. The combination of machine learning applications to analyse and re-interpret data available in the ApreciseKUre clearly indicated the potential direct benefits to achieve patients' stratification and the consequent tailoring of care and treatments to a specific subgroup of patients. In order to generate a comprehensive patient profile, computational modeling and database construction support the identification of potential new biomarkers, paving the way for more personalized therapy to maximize the benefit-risk ratio. In this work, different Machine Learning implemented approaches were described.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":" ","pages":"827340"},"PeriodicalIF":0.0,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46888665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-22eCollection Date: 2022-01-01DOI: 10.3389/fmmed.2022.839338
Jana-Charlotte Hegenbarth, Giuliana Lezzoche, Leon J De Windt, Monika Stoll
The heart has been the center of numerous transcriptomic studies in the past decade. Even though our knowledge of the key organ in our cardiovascular system has significantly increased over the last years, it is still not fully understood yet. In recent years, extensive efforts were made to understand the genetic and transcriptomic contribution to cardiac function and failure in more detail. The advent of Next Generation Sequencing (NGS) technologies has brought many discoveries but it is unable to comprehend the finely orchestrated interactions between and within the various cell types of the heart. With the emergence of single-cell sequencing more than 10 years ago, researchers gained a valuable new tool to enable the exploration of new subpopulations of cells, cell-cell interactions, and integration of multi-omic approaches at a single-cell resolution. Despite this innovation, it is essential to make an informed choice regarding the appropriate technique for transcriptomic studies, especially when working with myocardial tissue. Here, we provide a primer for researchers interested in transcriptomics using NGS technologies.
{"title":"Perspectives on Bulk-Tissue RNA Sequencing and Single-Cell RNA Sequencing for Cardiac Transcriptomics.","authors":"Jana-Charlotte Hegenbarth, Giuliana Lezzoche, Leon J De Windt, Monika Stoll","doi":"10.3389/fmmed.2022.839338","DOIUrl":"10.3389/fmmed.2022.839338","url":null,"abstract":"<p><p>The heart has been the center of numerous transcriptomic studies in the past decade. Even though our knowledge of the key organ in our cardiovascular system has significantly increased over the last years, it is still not fully understood yet. In recent years, extensive efforts were made to understand the genetic and transcriptomic contribution to cardiac function and failure in more detail. The advent of Next Generation Sequencing (NGS) technologies has brought many discoveries but it is unable to comprehend the finely orchestrated interactions between and within the various cell types of the heart. With the emergence of single-cell sequencing more than 10 years ago, researchers gained a valuable new tool to enable the exploration of new subpopulations of cells, cell-cell interactions, and integration of multi-omic approaches at a single-cell resolution. Despite this innovation, it is essential to make an informed choice regarding the appropriate technique for transcriptomic studies, especially when working with myocardial tissue. Here, we provide a primer for researchers interested in transcriptomics using NGS technologies.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":" ","pages":"839338"},"PeriodicalIF":0.0,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49259346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-12eCollection Date: 2021-01-01DOI: 10.3389/fmmed.2021.791931
Iokfai Cheang, Qingqing Zhu, Shengen Liao, Xinli Li
The relationship regarding non-coding genomes and cardiovascular disease (CVD) has been explored in the past decade. As one of the leading causes of death, there remains a lack of sensitive and specific genomic biomarkers in the diagnosis and prognosis of CVD. Piwi-interacting RNA (piRNA) is a group of small non-coding RNA (ncRNA) which associated with Piwi proteins. There is an emerging strong body of evidence in support of a role for ncRNAs, including piRNAs, in pathogenesis and prognosis of CVD. This article reviews the current evidence for piRNA-regulated mechanisms in CVD, which could lead to the development of new therapeutic strategies for prevention and treatment.
{"title":"Current Understanding of piRNA in Cardiovascular Diseases.","authors":"Iokfai Cheang, Qingqing Zhu, Shengen Liao, Xinli Li","doi":"10.3389/fmmed.2021.791931","DOIUrl":"10.3389/fmmed.2021.791931","url":null,"abstract":"<p><p>The relationship regarding non-coding genomes and cardiovascular disease (CVD) has been explored in the past decade. As one of the leading causes of death, there remains a lack of sensitive and specific genomic biomarkers in the diagnosis and prognosis of CVD. Piwi-interacting RNA (piRNA) is a group of small non-coding RNA (ncRNA) which associated with Piwi proteins. There is an emerging strong body of evidence in support of a role for ncRNAs, including piRNAs, in pathogenesis and prognosis of CVD. This article reviews the current evidence for piRNA-regulated mechanisms in CVD, which could lead to the development of new therapeutic strategies for prevention and treatment.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"1 1","pages":"791931"},"PeriodicalIF":0.0,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42487574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3389/fmmed.2022.887733
Pieterjan Dierickx, Bryce J Carpenter, Isaac Celwyn, Daniel P Kelly, Joseph A Baur, Mitchell A Lazar
The REV-ERB nuclear receptors are key components of the circadian clock. Loss of REV-ERBs in the mouse heart causes dilated cardiomyopathy and premature lethality. This is associated with a marked reduction in NAD+ production, but whether this plays a role in the pathophysiology of this heart failure model is not known. Here, we show that supplementation with the NAD+ precursor NR as a dietary supplement improves heart function and extends the lifespan of female mice lacking cardiac REV-ERBs. Thus, boosting NAD+ levels can improve cardiac function in a setting of heart failure caused by disruption of circadian clock factors, providing new insights into the links between the circadian clock, energy metabolism, and cardiac function.
{"title":"Nicotinamide Riboside Improves Cardiac Function and Prolongs Survival After Disruption of the Cardiomyocyte Clock.","authors":"Pieterjan Dierickx, Bryce J Carpenter, Isaac Celwyn, Daniel P Kelly, Joseph A Baur, Mitchell A Lazar","doi":"10.3389/fmmed.2022.887733","DOIUrl":"https://doi.org/10.3389/fmmed.2022.887733","url":null,"abstract":"<p><p>The REV-ERB nuclear receptors are key components of the circadian clock. Loss of REV-ERBs in the mouse heart causes dilated cardiomyopathy and premature lethality. This is associated with a marked reduction in NAD<sup>+</sup> production, but whether this plays a role in the pathophysiology of this heart failure model is not known. Here, we show that supplementation with the NAD<sup>+</sup> precursor NR as a dietary supplement improves heart function and extends the lifespan of female mice lacking cardiac REV-ERBs. Thus, boosting NAD<sup>+</sup> levels can improve cardiac function in a setting of heart failure caused by disruption of circadian clock factors, providing new insights into the links between the circadian clock, energy metabolism, and cardiac function.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9770881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-03-15DOI: 10.3389/fmmed.2022.842558
Ksenija Bernau, Melissa Skibba, Jonathan P Leet, Sierra Furey, Carson Gehl, Yi Li, Jia Zhou, Nathan Sandbo, Allan R Brasier
Idiopathic pulmonary fibrosis is a lethal disease driven by myofibroblast expansion. Currently no therapies exist that target the epigenetic mechanisms controlling myofibroblast transdifferentiation, which is responsible for unregulated extracellular matrix (ECM) production. We have recently shown that bromodomain-containing protein 4 (BRD4), an epigenetic regulator that forms a scaffold for nuclear activators and transcription factors, is essential for TGFβ-induced myofibroblast transdifferentiation. However, its role in the development and progression of pulmonary fibrosis in vivo has not been established. Here, we evaluate the hypothesis that BRD4 bromodomain interactions mediate myofibroblast expansion and fibrosing disease in vivo. C57BL/6J mice challenged with intratracheal bleomycin were systemically treated with a selective allosteric inhibitor of the BRD4 bromodomain 1 (BD1), ZL0591 (10 mg/kg), during the established fibrotic phase (14 days post-bleomycin) in a rigorous therapeutic paradigm. Eleven days after initiation of ZL0591 treatment (25 days post-bleomycin), we detected a significant improvement in blood O2 saturation compared to bleomycin/vehicle control. Twenty-eight days post-bleomycin, we observed a reduction in the volumetric Hounsfield Unit (HU) density by micro computed tomography (μCT) in the ZL0591-treated group, as well as a reduction in collagen deposition (hydroxyproline content) and severity of injury (Ashcroft scoring). Myofibroblast transdifferentiation was measured by smooth muscle α-actin (αSMA) staining, indicating a loss of this cell population in the ZL0591-treated group, and corresponded to reduced transcript levels of myofibroblast-associated extracellular matrix genes, tenascin-C and collagen 1α1. We conclude that BRD4 BD1 interactions are critical for myofibroblast transdifferentiation and fibrotic progression in a mouse model of pulmonary fibrosis.
{"title":"Selective Inhibition of Bromodomain-Containing Protein 4 Reduces Myofibroblast Transdifferentiation and Pulmonary Fibrosis.","authors":"Ksenija Bernau, Melissa Skibba, Jonathan P Leet, Sierra Furey, Carson Gehl, Yi Li, Jia Zhou, Nathan Sandbo, Allan R Brasier","doi":"10.3389/fmmed.2022.842558","DOIUrl":"https://doi.org/10.3389/fmmed.2022.842558","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis is a lethal disease driven by myofibroblast expansion. Currently no therapies exist that target the epigenetic mechanisms controlling myofibroblast transdifferentiation, which is responsible for unregulated extracellular matrix (ECM) production. We have recently shown that bromodomain-containing protein 4 (BRD4), an epigenetic regulator that forms a scaffold for nuclear activators and transcription factors, is essential for TGFβ-induced myofibroblast transdifferentiation. However, its role in the development and progression of pulmonary fibrosis <i>in vivo</i> has not been established. Here, we evaluate the hypothesis that BRD4 bromodomain interactions mediate myofibroblast expansion and fibrosing disease <i>in vivo</i>. C57BL/6J mice challenged with intratracheal bleomycin were systemically treated with a selective allosteric inhibitor of the BRD4 bromodomain 1 (BD1), ZL0591 (10 mg/kg), during the established fibrotic phase (14 days post-bleomycin) in a rigorous therapeutic paradigm. Eleven days after initiation of ZL0591 treatment (25 days post-bleomycin), we detected a significant improvement in blood O<sub>2</sub> saturation compared to bleomycin/vehicle control. Twenty-eight days post-bleomycin, we observed a reduction in the volumetric Hounsfield Unit (HU) density by micro computed tomography (μCT) in the ZL0591-treated group, as well as a reduction in collagen deposition (hydroxyproline content) and severity of injury (Ashcroft scoring). Myofibroblast transdifferentiation was measured by smooth muscle α-actin (αSMA) staining, indicating a loss of this cell population in the ZL0591-treated group, and corresponded to reduced transcript levels of myofibroblast-associated extracellular matrix genes, tenascin-C and collagen 1α1. We conclude that BRD4 BD1 interactions are critical for myofibroblast transdifferentiation and fibrotic progression in a mouse model of pulmonary fibrosis.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40556920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-16eCollection Date: 2021-01-01DOI: 10.3389/fmmed.2021.777088
Morgan Williamson, Naima Moustaid-Moussa, Lauren Gollahon
Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of "metabolic syndrome" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern "Western-style" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.
{"title":"The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation).","authors":"Morgan Williamson, Naima Moustaid-Moussa, Lauren Gollahon","doi":"10.3389/fmmed.2021.777088","DOIUrl":"10.3389/fmmed.2021.777088","url":null,"abstract":"<p><p>Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of \"metabolic syndrome\" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern \"Western-style\" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"1 1","pages":"777088"},"PeriodicalIF":0.0,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42057773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-20eCollection Date: 2021-01-01DOI: 10.3389/fmmed.2021.749283
Timothy Crook, Darshana Patil, Rajnish Nagarkar, Andrew Gaya, Nicholas Plowman, Sewanti Limaye, Navin Srivastava, Dadasaheb Akolkar, Anantbhushan Ranade, Amit Bhatt, Vineet Datta, Chirantan Bose, Sachin Apurwa, Sanket Patil, Prashant Kumar, Ajay Srinivasan, Rajan Datar
Background: Angiogenic factors are commonly activated in solid tumors and present a viable therapeutic target. However, anticancer treatment with angiogenesis inhibitors (AGI) is limited to a few cancers, mostly as monotherapy and not selected based on molecular indications. We aimed to determine whether patient-specific combination regimens with AGI and other anticancer agents when selected based on multi-analyte tumor interrogation (ETA: Encyclopedic Tumor Analysis) can expand the scope of AGIs in advanced refractory solid organ cancers with improved treatment responses. Methods: We evaluated treatment outcomes in 60 patients with advanced, refractory solid organ cancers who received ETA-guided combination regimens of AGI with other targeted, endocrine or cytotoxic agents. Radiological evaluation of treatment response was followed by determination of Objective Response Rate (ORR), Disease Control Rate (DCR), Progression Free Survival (PFS) and Overall Survival (OS). Results: Among the 60 patients, Partial Response (PR) was observed in 28 cases (46.7%), Stable Disease (SD) was observed in 29 cases (48.3%) and Disease Progression (PD, within 60 days) was observed in 3 cases (5.0%). The ORR was 46.7% and DCR was 95.0%. At the most recent follow-up the median PFS (mPFS) was 5.0 months and median OS (mOS) was 8.9 months. There were no Grade 4 therapy related adverse events or treatment related deaths. Conclusion: ETA-guided patient-specific combination regimens with AGI and other anti-neoplastic agents, can yield improved outcomes over AGI monotherapy. Trial Registration: Details of all trials are available at WHO-ICTRP: https://apps.who.int/trialsearch/. RESILIENT ID CTRI/2018/02/011,808. LIQUID IMPACT ID CTRI/2019/02/017,548.
{"title":"Angiogenesis Inhibitors in Personalized Combination Regimens for the Treatment of Advanced Refractory Cancers.","authors":"Timothy Crook, Darshana Patil, Rajnish Nagarkar, Andrew Gaya, Nicholas Plowman, Sewanti Limaye, Navin Srivastava, Dadasaheb Akolkar, Anantbhushan Ranade, Amit Bhatt, Vineet Datta, Chirantan Bose, Sachin Apurwa, Sanket Patil, Prashant Kumar, Ajay Srinivasan, Rajan Datar","doi":"10.3389/fmmed.2021.749283","DOIUrl":"10.3389/fmmed.2021.749283","url":null,"abstract":"<p><p><b>Background:</b> Angiogenic factors are commonly activated in solid tumors and present a viable therapeutic target. However, anticancer treatment with angiogenesis inhibitors (AGI) is limited to a few cancers, mostly as monotherapy and not selected based on molecular indications. We aimed to determine whether patient-specific combination regimens with AGI and other anticancer agents when selected based on multi-analyte tumor interrogation (ETA: Encyclopedic Tumor Analysis) can expand the scope of AGIs in advanced refractory solid organ cancers with improved treatment responses. <b>Methods:</b> We evaluated treatment outcomes in 60 patients with advanced, refractory solid organ cancers who received ETA-guided combination regimens of AGI with other targeted, endocrine or cytotoxic agents. Radiological evaluation of treatment response was followed by determination of Objective Response Rate (ORR), Disease Control Rate (DCR), Progression Free Survival (PFS) and Overall Survival (OS). <b>Results:</b> Among the 60 patients, Partial Response (PR) was observed in 28 cases (46.7%), Stable Disease (SD) was observed in 29 cases (48.3%) and Disease Progression (PD, within 60 days) was observed in 3 cases (5.0%). The ORR was 46.7% and DCR was 95.0%. At the most recent follow-up the median PFS (mPFS) was 5.0 months and median OS (mOS) was 8.9 months. There were no Grade 4 therapy related adverse events or treatment related deaths. <b>Conclusion:</b> ETA-guided patient-specific combination regimens with AGI and other anti-neoplastic agents, can yield improved outcomes over AGI monotherapy. Trial Registration: Details of all trials are available at WHO-ICTRP: https://apps.who.int/trialsearch/. RESILIENT ID CTRI/2018/02/011,808. LIQUID IMPACT ID CTRI/2019/02/017,548.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":" ","pages":"749283"},"PeriodicalIF":0.0,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44473055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-22eCollection Date: 2021-01-01DOI: 10.3389/fmmed.2021.734659
Frank Emmert-Streib
{"title":"Grand Challenges for Artificial Intelligence in Molecular Medicine.","authors":"Frank Emmert-Streib","doi":"10.3389/fmmed.2021.734659","DOIUrl":"10.3389/fmmed.2021.734659","url":null,"abstract":"","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":" ","pages":"734659"},"PeriodicalIF":0.0,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47502712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-15eCollection Date: 2021-01-01DOI: 10.3389/fmmed.2021.720577
Masuko Katoh, Masaru Katoh
{"title":"Grand Challenges in Molecular Medicine for Disease Prevention and Treatment Through Cyclical Innovation.","authors":"Masuko Katoh, Masaru Katoh","doi":"10.3389/fmmed.2021.720577","DOIUrl":"10.3389/fmmed.2021.720577","url":null,"abstract":"","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":" ","pages":"720577"},"PeriodicalIF":0.0,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49272954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}