Pub Date : 2013-07-24eCollection Date: 2013-01-01DOI: 10.3389/fneng.2013.00006
Anja Richter, Yijing Xie, Anett Schumacher, Susanne Löffler, Robert D Kirch, Jaafar Al-Hasani, Daniel H Rapoport, Charli Kruse, Andreas Moser, Volker Tronnier, Sandra Danner, Ulrich G Hofmann
A long term functional and reliable coupling between neural tissue and implanted microelectrodes is the key issue in acquiring neural electrophysiological signals or therapeutically excite neural tissue. The currently often used rigid micro-electrodes are thought to cause a severe foreign body reaction resulting in a thick glial scar and consequently a poor tissue-electrode coupling in the chronic phase. We hypothesize, that this adverse effect might be remedied by probes compliant to the soft brain tissue, i.e., replacing rigid electrodes by flexible ones. Unfortunately, this flexibility comes at the price of a low stiffness, which makes targeted low trauma implantation very challenging. In this study, we demonstrate an adaptable and simple method to implant extremely flexible microprobes even to deep areas of rat's brain. Implantation of flexible probes is achieved by rod supported stereotactic insertion fostered by a hydrogel (2% agarose in PBS) cushion on the exposed skull. We were thus able to implant very flexible micro-probes in 70 rats as deep as the rodent's subthalamic nucleus. This work describes in detail the procedures and steps needed for minimal invasive, but reliable implantation of flexible probes.
{"title":"A simple implantation method for flexible, multisite microelectrodes into rat brains.","authors":"Anja Richter, Yijing Xie, Anett Schumacher, Susanne Löffler, Robert D Kirch, Jaafar Al-Hasani, Daniel H Rapoport, Charli Kruse, Andreas Moser, Volker Tronnier, Sandra Danner, Ulrich G Hofmann","doi":"10.3389/fneng.2013.00006","DOIUrl":"https://doi.org/10.3389/fneng.2013.00006","url":null,"abstract":"<p><p>A long term functional and reliable coupling between neural tissue and implanted microelectrodes is the key issue in acquiring neural electrophysiological signals or therapeutically excite neural tissue. The currently often used rigid micro-electrodes are thought to cause a severe foreign body reaction resulting in a thick glial scar and consequently a poor tissue-electrode coupling in the chronic phase. We hypothesize, that this adverse effect might be remedied by probes compliant to the soft brain tissue, i.e., replacing rigid electrodes by flexible ones. Unfortunately, this flexibility comes at the price of a low stiffness, which makes targeted low trauma implantation very challenging. In this study, we demonstrate an adaptable and simple method to implant extremely flexible microprobes even to deep areas of rat's brain. Implantation of flexible probes is achieved by rod supported stereotactic insertion fostered by a hydrogel (2% agarose in PBS) cushion on the exposed skull. We were thus able to implant very flexible micro-probes in 70 rats as deep as the rodent's subthalamic nucleus. This work describes in detail the procedures and steps needed for minimal invasive, but reliable implantation of flexible probes. </p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"6 ","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2013-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2013.00006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31617573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-07-22eCollection Date: 2013-01-01DOI: 10.3389/fneng.2013.00005
Borys Lysyansky, Oleksandr V Popovych, Peter A Tass
In this computational study we investigate coordinated reset (CR) neuromodulation designed for an effective control of synchronization by multi-site stimulation of neuronal target populations. This method was suggested to effectively counteract pathological neuronal synchrony characteristic for several neurological disorders. We study how many stimulation sites are required for optimal CR-induced desynchronization. We found that a moderate increase of the number of stimulation sites may significantly prolong the post-stimulation desynchronized transient after the stimulation is completely switched off. This can, in turn, reduce the amount of the administered stimulation current for the intermittent ON-OFF CR stimulation protocol, where time intervals with stimulation ON are recurrently followed by time intervals with stimulation OFF. In addition, we found that the optimal number of stimulation sites essentially depends on how strongly the administered current decays within the neuronal tissue with increasing distance from the stimulation site. In particular, for a broad spatial stimulation profile, i.e., for a weak spatial decay rate of the stimulation current, CR stimulation can optimally be delivered via a small number of stimulation sites. Our findings may contribute to an optimization of therapeutic applications of CR neuromodulation.
{"title":"Optimal number of stimulation contacts for coordinated reset neuromodulation.","authors":"Borys Lysyansky, Oleksandr V Popovych, Peter A Tass","doi":"10.3389/fneng.2013.00005","DOIUrl":"https://doi.org/10.3389/fneng.2013.00005","url":null,"abstract":"<p><p>In this computational study we investigate coordinated reset (CR) neuromodulation designed for an effective control of synchronization by multi-site stimulation of neuronal target populations. This method was suggested to effectively counteract pathological neuronal synchrony characteristic for several neurological disorders. We study how many stimulation sites are required for optimal CR-induced desynchronization. We found that a moderate increase of the number of stimulation sites may significantly prolong the post-stimulation desynchronized transient after the stimulation is completely switched off. This can, in turn, reduce the amount of the administered stimulation current for the intermittent ON-OFF CR stimulation protocol, where time intervals with stimulation ON are recurrently followed by time intervals with stimulation OFF. In addition, we found that the optimal number of stimulation sites essentially depends on how strongly the administered current decays within the neuronal tissue with increasing distance from the stimulation site. In particular, for a broad spatial stimulation profile, i.e., for a weak spatial decay rate of the stimulation current, CR stimulation can optimally be delivered via a small number of stimulation sites. Our findings may contribute to an optimization of therapeutic applications of CR neuromodulation. </p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"6 ","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2013-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2013.00005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31605776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-07-12eCollection Date: 2013-01-01DOI: 10.3389/fneng.2013.00003
Laleh Golestanirad, Behzad Elahi, Alberto Molina, Juan R Mosig, Claudio Pollo, Robert Chen, Simon J Graham
Planar electrodes are increasingly used in therapeutic neural stimulation techniques such as functional electrical stimulation, epidural spinal cord stimulation (ESCS), and cortical stimulation. Recently, optimized electrode geometries have been shown to increase the efficiency of neural stimulation by increasing the variation of current density on the electrode surface. In the present work, a new family of modified fractal electrode geometries is developed to enhance the efficiency of neural stimulation. It is shown that a promising approach in increasing the neural activation function is to increase the "edginess" of the electrode surface, a concept that is explained and quantified by fractal mathematics. Rigorous finite element simulations were performed to compute electric potential produced by proposed modified fractal geometries. The activation of 256 model axons positioned around the electrodes was then quantified, showing that modified fractal geometries required a 22% less input power while maintaining the same level of neural activation. Preliminary in vivo experiments investigating muscle evoked potentials due to median nerve stimulation showed encouraging results, supporting the feasibility of increasing neural stimulation efficiency using modified fractal geometries.
{"title":"Analysis of fractal electrodes for efficient neural stimulation.","authors":"Laleh Golestanirad, Behzad Elahi, Alberto Molina, Juan R Mosig, Claudio Pollo, Robert Chen, Simon J Graham","doi":"10.3389/fneng.2013.00003","DOIUrl":"https://doi.org/10.3389/fneng.2013.00003","url":null,"abstract":"<p><p>Planar electrodes are increasingly used in therapeutic neural stimulation techniques such as functional electrical stimulation, epidural spinal cord stimulation (ESCS), and cortical stimulation. Recently, optimized electrode geometries have been shown to increase the efficiency of neural stimulation by increasing the variation of current density on the electrode surface. In the present work, a new family of modified fractal electrode geometries is developed to enhance the efficiency of neural stimulation. It is shown that a promising approach in increasing the neural activation function is to increase the \"edginess\" of the electrode surface, a concept that is explained and quantified by fractal mathematics. Rigorous finite element simulations were performed to compute electric potential produced by proposed modified fractal geometries. The activation of 256 model axons positioned around the electrodes was then quantified, showing that modified fractal geometries required a 22% less input power while maintaining the same level of neural activation. Preliminary in vivo experiments investigating muscle evoked potentials due to median nerve stimulation showed encouraging results, supporting the feasibility of increasing neural stimulation efficiency using modified fractal geometries. </p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"6 ","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2013-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2013.00003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31596964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-07-10eCollection Date: 2013-01-01DOI: 10.3389/fneng.2013.00004
Christopher L Macdonald, Gabriel A Silva
We constructed a model of calcium signaling in astrocyte neural glial cells that incorporates a positive feedback nucleation mechanism, whereby small microdomain increases in local calcium can stochastically produce global cellular and intercellular network scale dynamics. The model is able to simultaneously capture dynamic spatial and temporal heterogeneities associated with intracellular calcium transients in individual cells and intercellular calcium waves (ICW) in spatially realistic networks of astrocytes, i.e., networks where the positions of cells were taken from real in vitro experimental data of spontaneously forming sparse networks, as opposed to artificially constructed grid networks or other non-realistic geometries. This is the first work we are aware of where an intracellular model of calcium signaling that reproduces intracellular dynamics inherently accounts for intercellular network dynamics. These results suggest that a nucleation type mechanism should be further investigated experimentally in order to test its contribution to calcium signaling in astrocytes and in other cells more broadly. It may also be of interest in engineered neuromimetic network systems that attempt to emulate biological signaling and information processing properties in synthetic hardwired neuromorphometric circuits or coded algorithms.
{"title":"A positive feedback cell signaling nucleation model of astrocyte dynamics.","authors":"Christopher L Macdonald, Gabriel A Silva","doi":"10.3389/fneng.2013.00004","DOIUrl":"https://doi.org/10.3389/fneng.2013.00004","url":null,"abstract":"<p><p>We constructed a model of calcium signaling in astrocyte neural glial cells that incorporates a positive feedback nucleation mechanism, whereby small microdomain increases in local calcium can stochastically produce global cellular and intercellular network scale dynamics. The model is able to simultaneously capture dynamic spatial and temporal heterogeneities associated with intracellular calcium transients in individual cells and intercellular calcium waves (ICW) in spatially realistic networks of astrocytes, i.e., networks where the positions of cells were taken from real in vitro experimental data of spontaneously forming sparse networks, as opposed to artificially constructed grid networks or other non-realistic geometries. This is the first work we are aware of where an intracellular model of calcium signaling that reproduces intracellular dynamics inherently accounts for intercellular network dynamics. These results suggest that a nucleation type mechanism should be further investigated experimentally in order to test its contribution to calcium signaling in astrocytes and in other cells more broadly. It may also be of interest in engineered neuromimetic network systems that attempt to emulate biological signaling and information processing properties in synthetic hardwired neuromorphometric circuits or coded algorithms. </p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"6 ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2013.00004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31219163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-03-04eCollection Date: 2013-01-01DOI: 10.3389/fneng.2013.00002
Miranda Mladinic, Andrea Nistri
Microelectrode arrays (MEAs) represent an important tool to study the basic characteristics of spinal networks that control locomotion in physiological conditions. Fundamental properties of this neuronal rhythmicity like burst origin, propagation, coordination, and resilience can, thus, be investigated at multiple sites within a certain spinal topography and neighboring circuits. A novel challenge will be to apply this technology to unveil the mechanisms underlying pathological processes evoked by spinal cord injury (SCI). To achieve this goal, it is necessary to fully identify spinal networks that make up the locomotor central pattern generator (CPG) and to understand their operational rules. In this review, the use of isolated spinal cord preparations from rodents, or organotypic spinal slice cultures is discussed to study rhythmic activity. In particular, this review surveys our recently developed in vitro models of SCI by evoking excitotoxic (or even hypoxic/dysmetabolic) damage to spinal networks and assessing the impact on rhythmic activity and cell survival. These pathological processes which evolve via different cell death mechanisms are discussed as a paradigm to apply MEA recording for detailed mapping of the functional damage and its time-dependent evolution.
{"title":"Microelectrode arrays in combination with in vitro models of spinal cord injury as tools to investigate pathological changes in network activity: facts and promises.","authors":"Miranda Mladinic, Andrea Nistri","doi":"10.3389/fneng.2013.00002","DOIUrl":"https://doi.org/10.3389/fneng.2013.00002","url":null,"abstract":"<p><p>Microelectrode arrays (MEAs) represent an important tool to study the basic characteristics of spinal networks that control locomotion in physiological conditions. Fundamental properties of this neuronal rhythmicity like burst origin, propagation, coordination, and resilience can, thus, be investigated at multiple sites within a certain spinal topography and neighboring circuits. A novel challenge will be to apply this technology to unveil the mechanisms underlying pathological processes evoked by spinal cord injury (SCI). To achieve this goal, it is necessary to fully identify spinal networks that make up the locomotor central pattern generator (CPG) and to understand their operational rules. In this review, the use of isolated spinal cord preparations from rodents, or organotypic spinal slice cultures is discussed to study rhythmic activity. In particular, this review surveys our recently developed in vitro models of SCI by evoking excitotoxic (or even hypoxic/dysmetabolic) damage to spinal networks and assessing the impact on rhythmic activity and cell survival. These pathological processes which evolve via different cell death mechanisms are discussed as a paradigm to apply MEA recording for detailed mapping of the functional damage and its time-dependent evolution.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"6 ","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2013.00002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31280151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-02-25eCollection Date: 2013-01-01DOI: 10.3389/fneng.2013.00001
Emanuela Formaggio, Silvia F Storti, Vincenzo Tramontano, Agnese Casarin, Alessandra Bertoldo, Antonio Fiaschi, Andrea Talacchi, Francesco Sala, Gianna M Toffolo, Paolo Manganotti
Electrocortical stimulation remains the standard for functional brain mapping of eloquent areas to prevent postoperative functional deficits. The aim of this study was to investigate whether the short-train technique (monopolar stimulation) and Penfield's technique (bipolar stimulation) would induce different effects on brain oscillatory activity in awake patients, as quantified by electrocorticography (ECoG). The study population was seven patients undergoing brain tumor surgery. Intraoperative bipolar and monopolar electrical stimulation for cortical mapping was performed during awake surgery. ECoG was recorded using 1 × 8 electrode strip. Spectral estimation was calculated using a parametric approach based on an autoregressive model. Wavelet-based time-frequency analysis was then applied to evaluate the temporal evolution of brain oscillatory activity. Both monopolar and bipolar stimulation produced an increment in delta and a decrease in beta powers for the motor and the sensory channels. These phenomena lasted about 4 s. Comparison between monopolar and bipolar stimulation showed no significant difference in brain activity. Given the importance of quantitative signal analysis for evaluating response accuracy, ECoG recording during electrical stimulation is necessary to characterize the dynamic processes underlying changes in cortical responses in vivo. This study is a preliminary approach to the quantitative analysis of post-stimulation ECoG signals.
{"title":"Frequency and time-frequency analysis of intraoperative ECoG during awake brain stimulation.","authors":"Emanuela Formaggio, Silvia F Storti, Vincenzo Tramontano, Agnese Casarin, Alessandra Bertoldo, Antonio Fiaschi, Andrea Talacchi, Francesco Sala, Gianna M Toffolo, Paolo Manganotti","doi":"10.3389/fneng.2013.00001","DOIUrl":"10.3389/fneng.2013.00001","url":null,"abstract":"<p><p>Electrocortical stimulation remains the standard for functional brain mapping of eloquent areas to prevent postoperative functional deficits. The aim of this study was to investigate whether the short-train technique (monopolar stimulation) and Penfield's technique (bipolar stimulation) would induce different effects on brain oscillatory activity in awake patients, as quantified by electrocorticography (ECoG). The study population was seven patients undergoing brain tumor surgery. Intraoperative bipolar and monopolar electrical stimulation for cortical mapping was performed during awake surgery. ECoG was recorded using 1 × 8 electrode strip. Spectral estimation was calculated using a parametric approach based on an autoregressive model. Wavelet-based time-frequency analysis was then applied to evaluate the temporal evolution of brain oscillatory activity. Both monopolar and bipolar stimulation produced an increment in delta and a decrease in beta powers for the motor and the sensory channels. These phenomena lasted about 4 s. Comparison between monopolar and bipolar stimulation showed no significant difference in brain activity. Given the importance of quantitative signal analysis for evaluating response accuracy, ECoG recording during electrical stimulation is necessary to characterize the dynamic processes underlying changes in cortical responses in vivo. This study is a preliminary approach to the quantitative analysis of post-stimulation ECoG signals.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"6 ","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2013-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2013.00001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31359483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-03eCollection Date: 2012-01-01DOI: 10.3389/fneng.2012.00019
Ron A Jortner
One of the most basic and general tasks faced by all nervous systems is extracting relevant information from the organism's surrounding world. While physical signals available to sensory systems are often continuous, variable, overlapping, and noisy, high-level neuronal representations used for decision-making tend to be discrete, specific, invariant, and highly separable. This study addresses the question of how neuronal specificity is generated. Inspired by experimental findings on network architecture in the olfactory system of the locust, I construct a highly simplified theoretical framework which allows for analytic solution of its key properties. For generalized feed-forward systems, I show that an intermediate range of connectivity values between source- and target-populations leads to a combinatorial explosion of wiring possibilities, resulting in input spaces which are, by their very nature, exquisitely sparsely populated. In particular, connection probability ½, as found in the locust antennal-lobe-mushroom-body circuit, serves to maximize separation of neuronal representations across the target Kenyon cells (KCs), and explains their specific and reliable responses. This analysis yields a function expressing response specificity in terms of lower network parameters; together with appropriate gain control this leads to a simple neuronal algorithm for generating arbitrarily sparse and selective codes and linking network architecture and neural coding. I suggest a straightforward way to construct ecologically meaningful representations from this code.
{"title":"Network architecture underlying maximal separation of neuronal representations.","authors":"Ron A Jortner","doi":"10.3389/fneng.2012.00019","DOIUrl":"10.3389/fneng.2012.00019","url":null,"abstract":"<p><p>One of the most basic and general tasks faced by all nervous systems is extracting relevant information from the organism's surrounding world. While physical signals available to sensory systems are often continuous, variable, overlapping, and noisy, high-level neuronal representations used for decision-making tend to be discrete, specific, invariant, and highly separable. This study addresses the question of how neuronal specificity is generated. Inspired by experimental findings on network architecture in the olfactory system of the locust, I construct a highly simplified theoretical framework which allows for analytic solution of its key properties. For generalized feed-forward systems, I show that an intermediate range of connectivity values between source- and target-populations leads to a combinatorial explosion of wiring possibilities, resulting in input spaces which are, by their very nature, exquisitely sparsely populated. In particular, connection probability ½, as found in the locust antennal-lobe-mushroom-body circuit, serves to maximize separation of neuronal representations across the target Kenyon cells (KCs), and explains their specific and reliable responses. This analysis yields a function expressing response specificity in terms of lower network parameters; together with appropriate gain control this leads to a simple neuronal algorithm for generating arbitrarily sparse and selective codes and linking network architecture and neural coding. I suggest a straightforward way to construct ecologically meaningful representations from this code.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"19"},"PeriodicalIF":0.0,"publicationDate":"2013-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31158846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-10-29eCollection Date: 2012-01-01DOI: 10.3389/fneng.2012.00022
Paul A Rhodes, Todd O Anderson
To provide a platform to enable the study of simulated olfactory circuitry in context, we have integrated a simulated neural olfactorimotor system with a virtual world which simulates both computational fluid dynamics as well as a robotic agent capable of exploring the simulated plumes. A number of the elements which we developed for this purpose have not, to our knowledge, been previously assembled into an integrated system, including: control of a simulated agent by a neural olfactorimotor system; continuous interaction between the simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and background odor; the systematic use of artificial evolution driven by olfactorimotor performance (e.g., time to locate a plume source) to specify parameter values; the incorporation of the realities of an imperfect physical robot using a hybrid model where a physical robot encounters a simulated plume. We close by describing ongoing work toward engineering a high dimensional, reversible, low power electronic olfactory sensor which will allow olfactorimotor neural circuitry evolved in the virtual world to control an autonomous olfactory robot in the physical world. The platform described here is intended to better test theories of olfactory circuit function, as well as provide robust odor source localization in realistic environments.
{"title":"Evolving a neural olfactorimotor system in virtual and real olfactory environments.","authors":"Paul A Rhodes, Todd O Anderson","doi":"10.3389/fneng.2012.00022","DOIUrl":"https://doi.org/10.3389/fneng.2012.00022","url":null,"abstract":"<p><p>To provide a platform to enable the study of simulated olfactory circuitry in context, we have integrated a simulated neural olfactorimotor system with a virtual world which simulates both computational fluid dynamics as well as a robotic agent capable of exploring the simulated plumes. A number of the elements which we developed for this purpose have not, to our knowledge, been previously assembled into an integrated system, including: control of a simulated agent by a neural olfactorimotor system; continuous interaction between the simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and background odor; the systematic use of artificial evolution driven by olfactorimotor performance (e.g., time to locate a plume source) to specify parameter values; the incorporation of the realities of an imperfect physical robot using a hybrid model where a physical robot encounters a simulated plume. We close by describing ongoing work toward engineering a high dimensional, reversible, low power electronic olfactory sensor which will allow olfactorimotor neural circuitry evolved in the virtual world to control an autonomous olfactory robot in the physical world. The platform described here is intended to better test theories of olfactory circuit function, as well as provide robust odor source localization in realistic environments.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"22"},"PeriodicalIF":0.0,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31016441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-10-29eCollection Date: 2012-01-01DOI: 10.3389/fneng.2012.00024
Ramon Huerta, Thomas Nowotny
It is widely recognized that further breakthroughs in science and technology may rely on multidisciplinary research efforts. Breaking the boundaries of well-established research fields and combining methodologies from disparate areas can foster innovative and translational research. Chemical sensing is no exception. Perhaps more than any other sensory modality, chemical sensing is plagued with major technical and conceptual challenges: the turbulent nature of the signal carrier, the long term instability, lack of sensitivity, and slow response times of sensors and the lack of a reliable odor map to characterize mammalian perception. When facing these hurdles, the designers of artificial devices for gas recognition look at the olfactory system of animals for inspiration because animals seemingly effortlessly accomplish some of the unsolved challenging problems in machine olfaction: recognizing odors and odor mixtures from a chemical background, segmenting mixtures of odors into components, being sensitive and robust and extracting the same odor percept over a wide range of concentrations. Our challenge in bio-mimetic chemical sensing is to identify at all levels from the olfactory receptors to the central nervous system, what are the key ingredients to these impressive abilities. The goal of this research topic is to document highlights from this ongoing effort and to compile an up-to-date overview not only from the academic point of view but also with respect to industrial applications. This research topic emanates from our own effort to bridge the anatomical and physiological data of the olfactory system, in particular in insects, to explain pattern recognition (Huerta et al., 2004; Nowotny et al., 2005; Huerta and Nowotny, 2009) and apply them to real problems with artificial sensor arrays and other applications (Muezzinoglu et al., 2008, 2009; Huerta et al., 2012). This research topic therefore brings together researchers from chemistry, neuroscience, physics, biology, and computer science, and the described work extends from fundamental scientific questions to technological applications. On the scientific side the contributions tackle three core issues: concentration-invariant representations of odors, properties, and the potential role of oscillations in the olfactory system and the nature of odor interactions in mixtures. Cleland et al. (2012) address concentration-invariant odor perception in rats and find that there are six known mechanisms that combine to achieve odor representations that do only minimally depend on concentration. Yamani et al. (2012) take a different view on concentration-invariant odor perception. Taking inspiration from the convergence of olfactory receptor neurons onto glomeruli and the use of latency as the coding signal they design a bio-mimetic information processing method for a metal oxide gas sensor array. Martinelli et al. (2011) on the other hand have identified another advantage of latency coding
{"title":"Bio-inspired solutions to the challenges of chemical sensing.","authors":"Ramon Huerta, Thomas Nowotny","doi":"10.3389/fneng.2012.00024","DOIUrl":"https://doi.org/10.3389/fneng.2012.00024","url":null,"abstract":"It is widely recognized that further breakthroughs in science and technology may rely on multidisciplinary research efforts. Breaking the boundaries of well-established research fields and combining methodologies from disparate areas can foster innovative and translational research. Chemical sensing is no exception. Perhaps more than any other sensory modality, chemical sensing is plagued with major technical and conceptual challenges: the turbulent nature of the signal carrier, the long term instability, lack of sensitivity, and slow response times of sensors and the lack of a reliable odor map to characterize mammalian perception. When facing these hurdles, the designers of artificial devices for gas recognition look at the olfactory system of animals for inspiration because animals seemingly effortlessly accomplish some of the unsolved challenging problems in machine olfaction: recognizing odors and odor mixtures from a chemical background, segmenting mixtures of odors into components, being sensitive and robust and extracting the same odor percept over a wide range of concentrations. \u0000 \u0000Our challenge in bio-mimetic chemical sensing is to identify at all levels from the olfactory receptors to the central nervous system, what are the key ingredients to these impressive abilities. The goal of this research topic is to document highlights from this ongoing effort and to compile an up-to-date overview not only from the academic point of view but also with respect to industrial applications. \u0000 \u0000This research topic emanates from our own effort to bridge the anatomical and physiological data of the olfactory system, in particular in insects, to explain pattern recognition (Huerta et al., 2004; Nowotny et al., 2005; Huerta and Nowotny, 2009) and apply them to real problems with artificial sensor arrays and other applications (Muezzinoglu et al., 2008, 2009; Huerta et al., 2012). This research topic therefore brings together researchers from chemistry, neuroscience, physics, biology, and computer science, and the described work extends from fundamental scientific questions to technological applications. \u0000 \u0000On the scientific side the contributions tackle three core issues: concentration-invariant representations of odors, properties, and the potential role of oscillations in the olfactory system and the nature of odor interactions in mixtures. \u0000 \u0000Cleland et al. (2012) address concentration-invariant odor perception in rats and find that there are six known mechanisms that combine to achieve odor representations that do only minimally depend on concentration. Yamani et al. (2012) take a different view on concentration-invariant odor perception. Taking inspiration from the convergence of olfactory receptor neurons onto glomeruli and the use of latency as the coding signal they design a bio-mimetic information processing method for a metal oxide gas sensor array. Martinelli et al. (2011) on the other hand have identified another advantage of latency coding","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"24"},"PeriodicalIF":0.0,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31016442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-09-28eCollection Date: 2012-01-01DOI: 10.3389/fneng.2012.00023
Emma Brunton, Arthur J Lowery, Ramesh Rajan
Altering the geometry of microelectrodes for use in a cortical neural prosthesis modifies the electric field generated in tissue, thereby affecting electrode efficacy and tissue damage. Commonly, electrodes with an active region located at the tip ("conical" electrodes) are used for stimulation of cortex but there is argument to believe this geometry may not be the best. Here we use finite element analysis to compare the electric fields generated by three types of electrodes, a conical electrode with exposed active tip, an annular electrode with active area located up away from the tip, and a striped annular electrode where the active annular region has bands of insulation interrupting the full active region. The results indicate that the current density on the surface of the conical electrodes can be up to 10 times greater than the current density on the annular electrodes of the same height, which may increase the propensity for tissue damage. However choosing the most efficient electrode geometry in order to reduce power consumption is dependent on the distance of the electrode to the target neurons. If neurons are located within 10 μm of the electrode, then a small conical electrode would be more power efficient. On the other hand if the target neuron is greater than 500 μm away-as happens normally when insertion of an array of electrodes into cortex results in a "kill zone" around each electrode due to insertion damage and inflammatory responses-then a large annular electrode would be more efficient.
{"title":"A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis.","authors":"Emma Brunton, Arthur J Lowery, Ramesh Rajan","doi":"10.3389/fneng.2012.00023","DOIUrl":"https://doi.org/10.3389/fneng.2012.00023","url":null,"abstract":"<p><p>Altering the geometry of microelectrodes for use in a cortical neural prosthesis modifies the electric field generated in tissue, thereby affecting electrode efficacy and tissue damage. Commonly, electrodes with an active region located at the tip (\"conical\" electrodes) are used for stimulation of cortex but there is argument to believe this geometry may not be the best. Here we use finite element analysis to compare the electric fields generated by three types of electrodes, a conical electrode with exposed active tip, an annular electrode with active area located up away from the tip, and a striped annular electrode where the active annular region has bands of insulation interrupting the full active region. The results indicate that the current density on the surface of the conical electrodes can be up to 10 times greater than the current density on the annular electrodes of the same height, which may increase the propensity for tissue damage. However choosing the most efficient electrode geometry in order to reduce power consumption is dependent on the distance of the electrode to the target neurons. If neurons are located within 10 μm of the electrode, then a small conical electrode would be more power efficient. On the other hand if the target neuron is greater than 500 μm away-as happens normally when insertion of an array of electrodes into cortex results in a \"kill zone\" around each electrode due to insertion damage and inflammatory responses-then a large annular electrode would be more efficient.</p>","PeriodicalId":73093,"journal":{"name":"Frontiers in neuroengineering","volume":"5 ","pages":"23"},"PeriodicalIF":0.0,"publicationDate":"2012-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3389/fneng.2012.00023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30972433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}