首页 > 最新文献

Function (Oxford, England)最新文献

英文 中文
Pancreatic ductal adenocarcinoma, β-blockers and antihistamines: A clinical trial is needed. 胰腺导管腺癌、β-受体阻滞剂和抗组胺药:需要进行临床试验。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-15 DOI: 10.1093/function/zqae050
Jillian G Baker, Erica K Sloan, Kevin Pfleger, Peter J McCormick, Cristina Salmerón, Paul A Insel

Survival in pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) at just 5 months is the worst of all cancers. It is predicted to become the second highest cause of cancer deaths worldwide this decade and unlike most cancers, there has been little progress in improving survival in PDAC. Numerous studies including molecular and mechanistic studies, cancer biology studies and retrospective human epidemiological studies suggest that two well-known, approved drug classes - β-blockers and H1-antihistamines - may be beneficial and thus may potentially prolong life in patients with PDAC. In our opinion, the body of evidence has reached a point where the potential gains outweigh the very low risks involved in a clinical study in PDAC. We thus believe that it is now time for a clinical trial involving these two agents in PDAC patients. As a repurposing of generic drugs, this is not likely to be appealing to pharmaceutical companies and therefore is likely to require governmental, philanthropic and /or charitable organisational input. In this article, we opine and propose that an urgent clinical trial is needed to determine if repurposing these two orally administered, inexpensive, largely safe drug classes, either alone or in combination, could prolong survival in PDAC and thus improve the outcome for the 10,000 people worldwide who die from PDAC each week.

胰腺癌(胰腺导管腺癌,PDAC)的生存期仅为 5 个月,是所有癌症中最差的。据预测,胰腺癌将在本十年内成为全球第二大癌症死因,与大多数癌症不同的是,PDAC 在提高生存率方面进展甚微。包括分子和机理研究、癌症生物学研究和回顾性人类流行病学研究在内的大量研究表明,β-受体阻滞剂和 H1-抗组胺这两类著名的、已获批准的药物可能有益,因此有可能延长 PDAC 患者的生命。我们认为,目前的证据表明,PDAC 临床研究的潜在收益已经超过了极低的风险。因此,我们认为现在是时候对 PDAC 患者进行这两种药物的临床试验了。作为非专利药的再利用,这对制药公司可能没有吸引力,因此可能需要政府、慈善机构和/或慈善组织的投入。在本文中,我们认为并建议急需开展一项临床试验,以确定将这两种口服、廉价、基本安全的药物单独或联合使用是否能延长 PDAC 患者的生存期,从而改善全球每周死于 PDAC 的 10,000 人的预后。
{"title":"Pancreatic ductal adenocarcinoma, β-blockers and antihistamines: A clinical trial is needed.","authors":"Jillian G Baker, Erica K Sloan, Kevin Pfleger, Peter J McCormick, Cristina Salmerón, Paul A Insel","doi":"10.1093/function/zqae050","DOIUrl":"https://doi.org/10.1093/function/zqae050","url":null,"abstract":"<p><p>Survival in pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) at just 5 months is the worst of all cancers. It is predicted to become the second highest cause of cancer deaths worldwide this decade and unlike most cancers, there has been little progress in improving survival in PDAC. Numerous studies including molecular and mechanistic studies, cancer biology studies and retrospective human epidemiological studies suggest that two well-known, approved drug classes - β-blockers and H1-antihistamines - may be beneficial and thus may potentially prolong life in patients with PDAC. In our opinion, the body of evidence has reached a point where the potential gains outweigh the very low risks involved in a clinical study in PDAC. We thus believe that it is now time for a clinical trial involving these two agents in PDAC patients. As a repurposing of generic drugs, this is not likely to be appealing to pharmaceutical companies and therefore is likely to require governmental, philanthropic and /or charitable organisational input. In this article, we opine and propose that an urgent clinical trial is needed to determine if repurposing these two orally administered, inexpensive, largely safe drug classes, either alone or in combination, could prolong survival in PDAC and thus improve the outcome for the 10,000 people worldwide who die from PDAC each week.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response of the nephron arterial network and its interactions to acute hypertension: a simulation. 肾动脉网络及其相互作用对急性高血压的反应:模拟。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-12 DOI: 10.1093/function/zqae049
Donald J Marsh, Niels-Henrik Holstein-Rathlou

We simulated the dynamics of a group of 10 nephrons supplied from an arterial network and subjected to acute increases in blood pressure. Arterial lengths and topology were based on measurements of a vascular cast. The model builds on a previous version exercised at a single blood pressure with 2 additional features: pressure diuresis and the effect of blood pressure on efferent arteriolar vascular resistance. The new version simulates autoregulation, and reproduces tubule pressure oscillations. Individual nephron dynamics depended on mean arterial pressure and the axial pressure gradient required to cause blood flow through the arteries. Rhythmic blood withdrawal into afferent arterioles caused blood flow fluctuations in downstream vessels. Blood pressure dependent changes in nephron dynamics affected synchronization metrics. The combination of vascular pressure gradients and oscillations created a range of arterial pressures at the origins of the 10 afferent arterioles. Because arterial blood pressure in conscious animals has 1/f dynamics, we applied an arterial pressure pattern with such dynamics to the model. Amplitude of tubule pressure oscillations were affected by the 1/f blood pressure fluctuations, but the oscillation frequencies did not change. The pressure gradients required to deliver blood to all afferent arterioles impose a complexity that affects nephrons according to their locations in the network, but other interactions compensate to ensure the stability of the system. The sensitivity of nephron response to location on the network, and the constancy of the tubular oscillation frequency provide a spatial and time context.

我们模拟了一组由 10 个肾小球组成的动脉网络在血压急剧升高时的动态变化。动脉长度和拓扑结构基于血管铸模的测量结果。该模型是在单一血压下运行的前一版本的基础上增加了两个功能:压力利尿和血压对传出动脉血管阻力的影响。新版本模拟了自动调节,并再现了肾小管压力振荡。单个肾小球的动态取决于平均动脉压和动脉血流所需的轴压梯度。有节奏地将血液抽入传入动脉血管会引起下游血管的血流波动。肾小球动力学中与血压相关的变化影响了同步指标。血管压力梯度和振荡的结合在 10 个传入动脉血管的起源处产生了一系列动脉压力。由于有意识动物的动脉血压具有 1/f 动态变化,因此我们在模型中应用了具有这种动态变化的动脉压力模式。肾小管压力振荡的振幅受到 1/f 血压波动的影响,但振荡频率没有变化。将血液输送到所有传入动脉血管所需的压力梯度带来了复杂性,根据肾小管在网络中的位置对其产生影响,但其他相互作用起到了补偿作用,确保了系统的稳定性。肾小球的反应对网络中位置的敏感性以及肾小管振荡频率的恒定性提供了一个空间和时间背景。
{"title":"Response of the nephron arterial network and its interactions to acute hypertension: a simulation.","authors":"Donald J Marsh, Niels-Henrik Holstein-Rathlou","doi":"10.1093/function/zqae049","DOIUrl":"https://doi.org/10.1093/function/zqae049","url":null,"abstract":"<p><p>We simulated the dynamics of a group of 10 nephrons supplied from an arterial network and subjected to acute increases in blood pressure. Arterial lengths and topology were based on measurements of a vascular cast. The model builds on a previous version exercised at a single blood pressure with 2 additional features: pressure diuresis and the effect of blood pressure on efferent arteriolar vascular resistance. The new version simulates autoregulation, and reproduces tubule pressure oscillations. Individual nephron dynamics depended on mean arterial pressure and the axial pressure gradient required to cause blood flow through the arteries. Rhythmic blood withdrawal into afferent arterioles caused blood flow fluctuations in downstream vessels. Blood pressure dependent changes in nephron dynamics affected synchronization metrics. The combination of vascular pressure gradients and oscillations created a range of arterial pressures at the origins of the 10 afferent arterioles. Because arterial blood pressure in conscious animals has 1/f dynamics, we applied an arterial pressure pattern with such dynamics to the model. Amplitude of tubule pressure oscillations were affected by the 1/f blood pressure fluctuations, but the oscillation frequencies did not change. The pressure gradients required to deliver blood to all afferent arterioles impose a complexity that affects nephrons according to their locations in the network, but other interactions compensate to ensure the stability of the system. The sensitivity of nephron response to location on the network, and the constancy of the tubular oscillation frequency provide a spatial and time context.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thick Ascending Limb Specific Inactivation of Myh9 and Myh10 Myosin Motors Results in Progressive Kidney Disease and Drives Sex-specific Cellular Adaptation in the Distal Nephron and Collecting Duct. 粗升肢Myh9和Myh10肌球蛋白马达的特异性失活导致渐进性肾病,并驱动远端肾小球和集合管的性别特异性细胞适应。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-11-05 DOI: 10.1093/function/zqae048
Karla L Otterpohl, Brook W Busselman, Jenna L Zimmerman, Malini Mukherjee, Claire Evans, Kelly Graber, Vedant P Thakkar, Jermaine G Johnston, Arooba Ilyas, Michelle L Gumz, Douglas C Eaton, Jeff M Sands, Kameswaran Surendran, Indra Chandrasekar

Our previous work established a role for actin associated myosin motor proteins MYH9 and MYH10 in the trafficking of thick ascending limb (TAL) specific cargoes, uromodulin (UMOD) and Na + K + 2Cl- cotransporter (NKCC2). Here, we have generated a TAL-specific Myh9&10 conditional knockout (Myh9&10 TAL-cKO) mouse model to determine the cell autonomous roles for MYH9&10 proteins in TAL cargo transport and to understand the consequence of TAL dysfunction in the adult kidney. Myh9&10 TAL-cKO mice develop progressive kidney disease with pathological tubular injury confirmed by histological changes, tubular injury markers, upregulation of ER stress/unfolded protein response pathway, and higher blood urea nitrogen and serum creatinine. However, male mice survive twice as long as female mice. We determined that the sexual dimorphism in morbidity is due to adaptation of the distal nephron and the collecting ducts in response to TAL dysfunction and significantly lower NKCC2 expression. We demonstrate that this triggers a compensatory mechanism involving sex-specific cellular adaptation within the distal tubules and collecting ducts to boost sodium reabsorption. While both sexes overcompensate by activating ENaC expression in the medullary collecting ducts resulting in hypernatremia, this is subdued in male Myh9&10 TAL-cKO mice as they initially promote higher sodium chloride cotransporter (NCC) expression within the distal nephron. Our results indicate that compromised TAL function results in maladaptation of medullary collecting duct cells, which acquire cortical-like properties, including ENaC expression. This work further confirms a cell autonomous role for myosin motor proteins MYH9&10 in the maintenance of NKCC2 expression in the TAL and uncover adaptive mechanisms of the distal nephron and the collecting duct segments in response to TAL dysfunction.

我们之前的工作确定了肌动蛋白相关肌球蛋白马达蛋白MYH9和MYH10在厚上升肢(TAL)特异性货物、尿调节蛋白(UMOD)和Na + K + 2Cl- 共转运体(NKCC2)的转运中的作用。在这里,我们建立了一个TAL特异性Myh9&10条件性基因敲除(Myh9&10 TAL-cKO)小鼠模型,以确定MYH9&10蛋白在TAL货物运输中的细胞自主作用,并了解TAL功能障碍在成人肾脏中的后果。Myh9&10 TAL-cKO 小鼠会出现进行性肾病,并伴有组织学变化、肾小管损伤标记物、ER 应激/折叠蛋白反应途径上调、血尿素氮和血清肌酐升高等证实的病理性肾小管损伤。然而,雄性小鼠的存活时间是雌性小鼠的两倍。我们确定,发病率的性别双态性是由于远端肾小球和集合管对 TAL 功能障碍的适应以及 NKCC2 表达的显著降低。我们证明,这引发了一种代偿机制,涉及远端肾小管和集合管内特定性别的细胞适应,以促进钠的重吸收。虽然雌雄小鼠都会通过激活髓质集合管中ENaC的表达来过度补偿,从而导致高钠血症,但在雄性Myh9&10 TAL-cKO小鼠中,这种情况会被抑制,因为它们最初会促进远端肾小管中氯化钠共转运体(NCC)的更高表达。我们的研究结果表明,TAL 功能受损会导致髓质集合管细胞适应不良,从而获得类似皮质的特性,包括 ENaC 表达。这项工作进一步证实了肌球蛋白运动蛋白 MYH9&10 在维持 TAL 中 NKCC2 表达方面的细胞自主作用,并揭示了远端肾小球和集合管段对 TAL 功能障碍的适应机制。
{"title":"Thick Ascending Limb Specific Inactivation of Myh9 and Myh10 Myosin Motors Results in Progressive Kidney Disease and Drives Sex-specific Cellular Adaptation in the Distal Nephron and Collecting Duct.","authors":"Karla L Otterpohl, Brook W Busselman, Jenna L Zimmerman, Malini Mukherjee, Claire Evans, Kelly Graber, Vedant P Thakkar, Jermaine G Johnston, Arooba Ilyas, Michelle L Gumz, Douglas C Eaton, Jeff M Sands, Kameswaran Surendran, Indra Chandrasekar","doi":"10.1093/function/zqae048","DOIUrl":"https://doi.org/10.1093/function/zqae048","url":null,"abstract":"<p><p>Our previous work established a role for actin associated myosin motor proteins MYH9 and MYH10 in the trafficking of thick ascending limb (TAL) specific cargoes, uromodulin (UMOD) and Na + K + 2Cl- cotransporter (NKCC2). Here, we have generated a TAL-specific Myh9&10 conditional knockout (Myh9&10 TAL-cKO) mouse model to determine the cell autonomous roles for MYH9&10 proteins in TAL cargo transport and to understand the consequence of TAL dysfunction in the adult kidney. Myh9&10 TAL-cKO mice develop progressive kidney disease with pathological tubular injury confirmed by histological changes, tubular injury markers, upregulation of ER stress/unfolded protein response pathway, and higher blood urea nitrogen and serum creatinine. However, male mice survive twice as long as female mice. We determined that the sexual dimorphism in morbidity is due to adaptation of the distal nephron and the collecting ducts in response to TAL dysfunction and significantly lower NKCC2 expression. We demonstrate that this triggers a compensatory mechanism involving sex-specific cellular adaptation within the distal tubules and collecting ducts to boost sodium reabsorption. While both sexes overcompensate by activating ENaC expression in the medullary collecting ducts resulting in hypernatremia, this is subdued in male Myh9&10 TAL-cKO mice as they initially promote higher sodium chloride cotransporter (NCC) expression within the distal nephron. Our results indicate that compromised TAL function results in maladaptation of medullary collecting duct cells, which acquire cortical-like properties, including ENaC expression. This work further confirms a cell autonomous role for myosin motor proteins MYH9&10 in the maintenance of NKCC2 expression in the TAL and uncover adaptive mechanisms of the distal nephron and the collecting duct segments in response to TAL dysfunction.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of STIM1 and STIM2 in salivary glands disrupts ANO1 function but does not induce Sjogren's disease. 唾液腺中 STIM1 和 STIM2 的缺失会破坏 ANO1 的功能,但不会诱发 Sjogren 病。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-10-30 DOI: 10.1093/function/zqae047
Ga-Yeon Son, Anna Zou, Amanda Wahl, Kai Ting Huang, Saruul Zorgit, Manikandan Vinu, Fang Zhou, Larry Wagner, Youssef Idaghdour, David I Yule, Stefan Feske, Rodrigo S Lacruz

Ca2+ signaling via the store operated Ca2+ entry (SOCE) mediated by STIM1 and STIM2 proteins and the ORAI1 Ca2+ channel is important in saliva fluid secretion and has been associated with Sjogren's disease (SjD). However, there are no studies addressing STIM1/2 dysfunction in salivary glands or SjD in animal models. We report that mice lacking Stim1 and Stim2 (Stim1/2K14Cre(+)) in salivary glands exhibited reduced Ca2+ levels and hyposalivate. SOCE was functionally required for the activation of the Ca2+ activated Cl- channel ANO1. Ageing Stim1/2K14Cre(+) mice showed no evidence of lymphocytic infiltration or increased levels of autoantibodies characteristic of SjD, possibly associated with a downregulation of toll-like receptor 8 (Tlr8) expression. Salivary gland biopsies of SjD patients showed increased expression of STIM1 and TLR7/8. Our study shows that SOCE activates ANO1 function and fluid secretion in salivary glands and highlights a potential link between SOCE and TLR signaling in SjD.

由 STIM1 和 STIM2 蛋白及 ORAI1 Ca2+ 通道介导的贮存操作 Ca2+ 进入(SOCE)信号在唾液分泌中起着重要作用,并与 Sjogren 病(SjD)有关。然而,目前还没有针对唾液腺或 SjD 动物模型中 STIM1/2 功能障碍的研究。我们报告说,唾液腺中缺乏 Stim1 和 Stim2(Stim1/2K14Cre(+))的小鼠表现出 Ca2+ 水平降低和唾液分泌过少。激活 Ca2+ 激活的 Cl- 通道 ANO1 在功能上需要 SOCE。老龄化的 Stim1/2K14Cre(+) 小鼠没有出现淋巴细胞浸润或 SjD 特征性自身抗体水平升高的迹象,这可能与收费样受体 8 (Tlr8) 表达下调有关。SjD患者唾液腺活检结果显示,STIM1和TLR7/8的表达增加。我们的研究表明,SOCE能激活唾液腺中的ANO1功能和液体分泌,并强调了SOCE和TLR信号在SjD中的潜在联系。
{"title":"Loss of STIM1 and STIM2 in salivary glands disrupts ANO1 function but does not induce Sjogren's disease.","authors":"Ga-Yeon Son, Anna Zou, Amanda Wahl, Kai Ting Huang, Saruul Zorgit, Manikandan Vinu, Fang Zhou, Larry Wagner, Youssef Idaghdour, David I Yule, Stefan Feske, Rodrigo S Lacruz","doi":"10.1093/function/zqae047","DOIUrl":"10.1093/function/zqae047","url":null,"abstract":"<p><p>Ca2+ signaling via the store operated Ca2+ entry (SOCE) mediated by STIM1 and STIM2 proteins and the ORAI1 Ca2+ channel is important in saliva fluid secretion and has been associated with Sjogren's disease (SjD). However, there are no studies addressing STIM1/2 dysfunction in salivary glands or SjD in animal models. We report that mice lacking Stim1 and Stim2 (Stim1/2K14Cre(+)) in salivary glands exhibited reduced Ca2+ levels and hyposalivate. SOCE was functionally required for the activation of the Ca2+ activated Cl- channel ANO1. Ageing Stim1/2K14Cre(+) mice showed no evidence of lymphocytic infiltration or increased levels of autoantibodies characteristic of SjD, possibly associated with a downregulation of toll-like receptor 8 (Tlr8) expression. Salivary gland biopsies of SjD patients showed increased expression of STIM1 and TLR7/8. Our study shows that SOCE activates ANO1 function and fluid secretion in salivary glands and highlights a potential link between SOCE and TLR signaling in SjD.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute Metabolic Stress Induces Lymphatic Dysfunction Through KATP Channel Activation. 急性代谢压力通过激活 KATP 通道诱发淋巴功能障碍
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-09-10 DOI: 10.1093/function/zqae033
Hae Jin Kim, Charles E Norton, Scott D Zawieja, Jorge A Castorena-Gonzalez, Michael J Davis

Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.

淋巴功能障碍是包括糖尿病、肥胖症和代谢综合征在内的多种代谢性疾病的基本组成部分。我们研究了 KATP 通道在抑制线粒体电子传递链诱导的急性代谢压力下淋巴收缩功能障碍中的作用。将小鼠腘窝淋巴管暴露于电子传递链抑制剂抗霉素 A 和鱼藤酮或氧化磷酸化抑制剂/质子拮抗剂 CCCP。每种抑制剂都会导致自发淋巴收缩频率和计算出的泵流量显著降低,但收缩幅度没有明显变化。KATP通道抑制剂格列本脲可恢复收缩频率。全面缺乏 Kir6.1 或表达平滑肌特异性显性阴性 Kir6.1 通道的小鼠的淋巴管对抑制具有抵抗力。抗霉素 A 可抑制淋巴管肌肉产生的自发动作电位,格列本脲可逆转这种效应,从而证实了 KATP 通道的作用。抗霉素 A(而非鱼藤酮或 CCCP)可增加淋巴肌中的二氢罗丹明荧光,这表明有 ROS 生成。用铁或过氧化氢酶预处理可阻止抗霉素 A 对野生型淋巴管的影响,这与抗霉素 A 由 ROS 介导的作用一致。我们的研究结果支持这样的结论,即急性代谢应激导致线粒体 ATP 生成减少或 ROS 生成减少,可直接激活淋巴管肌肉中的 KATP 通道,通过抑制控制淋巴管自发收缩的离子起搏器,导致收缩功能障碍。我们认为,KATP 通道的类似激活也会导致代谢性疾病中的淋巴功能障碍。
{"title":"Acute Metabolic Stress Induces Lymphatic Dysfunction Through KATP Channel Activation.","authors":"Hae Jin Kim, Charles E Norton, Scott D Zawieja, Jorge A Castorena-Gonzalez, Michael J Davis","doi":"10.1093/function/zqae033","DOIUrl":"10.1093/function/zqae033","url":null,"abstract":"<p><p>Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial-adipocyte Cx43 Mediated Gap Junctions Can Regulate Adiposity. 内皮细胞-脂肪细胞 Cx43 介导的间隙连接可调节肥胖。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-09-10 DOI: 10.1093/function/zqae029
Melissa A Luse, Luke S Dunaway, Shruthi Nyshadham, Alicia Carvalho, Meghan W Sedovy, Claire A Ruddiman, Rachel Tessema, Karen Hirschi, Scott R Johnstone, Brant E Isakson

Obesity is a multifactorial metabolic disorder associated with endothelial dysfunction and increased risk of cardiovascular disease. Adipose capillary adipose endothelial cells (CaECs) plays a crucial role in lipid transport and storage. Here, we investigated the mechanisms underlying CaEC-adipocyte interaction and its impact on metabolic function. Single-cell RNA sequencing (scRNAseq) revealed an enrichment of fatty acid handling machinery in CaECs from high fat diet (HFD) mice, suggesting their specialized role in lipid metabolism. Transmission electron microscopy (TEM) confirmed direct heterocellular contact between CaECs and adipocytes. To model this, we created an in vitro co-culture transwell system to model the heterocellular contact observed with TEM. Contact between ECs and adipocytes in vitro led to upregulation of fatty acid binding protein 4 in response to lipid stimulation, hinting intercellular signaling may be important between ECs and adipocytes. We mined our and others scRNAseq datasets to examine which connexins may be present in adipose capillaries and adipocytes and consistently identified connexin 43 (Cx43) in mouse and humans. Genetic deletion of endothelial Cx43 resulted in increased epididymal fat pad (eWAT) adiposity and dyslipidemia in HFD mice. Consistent with this observation, phosphorylation of Cx43 at serine 368, which closes gap junctions, was increased in HFD mice and lipid-treated ECs. Mice resistant to this post-translational modification, Cx43S368A, were placed on an HFD and were found to have reduced eWAT adiposity and improved lipid profiles. These findings suggest Cx43-mediated heterocellular communication as a possible regulatory mechanism of adipose tissue function.

肥胖是一种多因素代谢紊乱,与内皮功能障碍和心血管疾病风险增加有关。脂肪毛细血管脂肪内皮细胞(CaECs)在脂质运输和储存中起着至关重要的作用。在这里,我们研究了 CaEC 与脂肪细胞相互作用的机制及其对代谢功能的影响。单细胞 RNA 测序揭示了高脂饮食(HFD)小鼠 CaECs 中脂肪酸处理机制的富集,这表明它们在脂质代谢中扮演着特殊的角色。透射电子显微镜(TEM)证实了 CaECs 和脂肪细胞之间的直接异细胞接触。为了模拟这种情况,我们创建了一个体外共培养的透孔系统,以模拟透射电子显微镜观察到的异细胞接触。ECs 和脂肪细胞之间的体外接触导致脂肪酸结合蛋白 4 在脂质刺激下上调,这表明 ECs 和脂肪细胞之间的细胞间信号传递可能很重要。我们挖掘了自己和其他人的 scRNAseq 数据集,研究脂肪毛细血管和脂肪细胞中可能存在哪些连接蛋白,结果在小鼠和人类中一致发现了连接蛋白 43 (Cx43)。基因缺失内皮细胞 Cx43 会导致高脂血症小鼠附睾脂肪垫(eWAT)脂肪增加和血脂异常。与这一观察结果相一致的是,在高脂血症小鼠和经脂质处理的内皮细胞中,Cx43 在丝氨酸 368 处的磷酸化增加,而丝氨酸 368 可关闭间隙连接。将抗这种翻译后修饰的小鼠(Cx43S368A)置于高脂饮食中,发现它们的eWAT脂肪含量降低,血脂状况得到改善。这些发现表明,Cx43 介导的异细胞通讯可能是脂肪组织功能的一种调节机制。
{"title":"Endothelial-adipocyte Cx43 Mediated Gap Junctions Can Regulate Adiposity.","authors":"Melissa A Luse, Luke S Dunaway, Shruthi Nyshadham, Alicia Carvalho, Meghan W Sedovy, Claire A Ruddiman, Rachel Tessema, Karen Hirschi, Scott R Johnstone, Brant E Isakson","doi":"10.1093/function/zqae029","DOIUrl":"10.1093/function/zqae029","url":null,"abstract":"<p><p>Obesity is a multifactorial metabolic disorder associated with endothelial dysfunction and increased risk of cardiovascular disease. Adipose capillary adipose endothelial cells (CaECs) plays a crucial role in lipid transport and storage. Here, we investigated the mechanisms underlying CaEC-adipocyte interaction and its impact on metabolic function. Single-cell RNA sequencing (scRNAseq) revealed an enrichment of fatty acid handling machinery in CaECs from high fat diet (HFD) mice, suggesting their specialized role in lipid metabolism. Transmission electron microscopy (TEM) confirmed direct heterocellular contact between CaECs and adipocytes. To model this, we created an in vitro co-culture transwell system to model the heterocellular contact observed with TEM. Contact between ECs and adipocytes in vitro led to upregulation of fatty acid binding protein 4 in response to lipid stimulation, hinting intercellular signaling may be important between ECs and adipocytes. We mined our and others scRNAseq datasets to examine which connexins may be present in adipose capillaries and adipocytes and consistently identified connexin 43 (Cx43) in mouse and humans. Genetic deletion of endothelial Cx43 resulted in increased epididymal fat pad (eWAT) adiposity and dyslipidemia in HFD mice. Consistent with this observation, phosphorylation of Cx43 at serine 368, which closes gap junctions, was increased in HFD mice and lipid-treated ECs. Mice resistant to this post-translational modification, Cx43S368A, were placed on an HFD and were found to have reduced eWAT adiposity and improved lipid profiles. These findings suggest Cx43-mediated heterocellular communication as a possible regulatory mechanism of adipose tissue function.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Megalin as a Metabolic Modulator in the Kidney and Beyond. 作为肾脏及其他部位代谢调节剂的巨球蛋白
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-09-10 DOI: 10.1093/function/zqae032
Rebekah J Nicholson, Nirupama Ramkumar, Aylin R Rodan
{"title":"Megalin as a Metabolic Modulator in the Kidney and Beyond.","authors":"Rebekah J Nicholson, Nirupama Ramkumar, Aylin R Rodan","doi":"10.1093/function/zqae032","DOIUrl":"10.1093/function/zqae032","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384898/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrophysiology of Human iPSC-derived Vascular Smooth Muscle Cells and Cell-autonomous Consequences of Cantú Syndrome Mutations. 人类 iPSC 衍生血管平滑肌细胞的电生理学和坎图综合征突变的细胞自主后果。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-09-10 DOI: 10.1093/function/zqae027
Alex Hanson, Conor McClenaghan, Kuo-Chan Weng, Sarah Colijn, Amber N Stratman, Carmen M Halabi, Dorothy K Grange, Jonathan R Silva, Colin G Nichols

Cantú syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by gain-of-function (GoF) variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels and is characterized by low systemic vascular resistance, as well as tortuous, dilated, vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell autonomously within vascular smooth muscle cells (VSMCs) or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Whole-cell voltage clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild-type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were similar to those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs and suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs .

目的:坎图综合征(CS)是一种具有复杂心血管表型的多系统疾病:坎图综合征(Cantu Syndrome,CS)是一种具有复杂心血管表型的多系统疾病,由 ATP 敏感钾(KATP)通道 Kir6.1/SUR2 亚基的 GoF 变异引起,其特征是全身血管阻力低、血管迂曲、扩张和脉搏波速度降低。因此,CS 血管功能障碍是多因素的,既有肌张力低下的因素,也有高弹性的因素。为了剖析这种复杂性是血管平滑肌细胞(VSMCs)细胞自主产生的,还是对病理生理环境的继发反应,我们评估了从对照组和CS患者来源的hiPSCs分化而来的人类诱导多能干细胞衍生VSMCs(hiPSC-VSMCs)以及小鼠原生对照组和CS VSMCs的电特性和基因表达:对从野生型(WT)小鼠和 Kir6.1[V65M](CS)小鼠分离的主动脉和肠系膜动脉 VSMCs 进行全细胞电压钳夹后发现,电压门控 K+ (Kv) 或 Ca2+ 电流没有明显差异。从对照组和 CS 患者来源的 hiPSC 中分化出的经过验证的 hiPSC-VSMCs 的 Kv 和 Ca2+ 电流也没有差异。虽然对照组 hiPSC-VSMCs 中对 pinacidil 敏感的 KATP 电流与 WT 小鼠 VSMCs 中的一致,但 CS hiPSC-VSMCs 中的 KATP 电流要大得多。在电流钳条件下,CS hiPSC-VSMCs 也出现超极化,这与基础 K 传导增加一致,并为 CS 的张力下降和血管阻力降低提供了解释。在离体 CS 小鼠主动脉中观察到顺应性增加,这与弹性蛋白 mRNA 表达增加有关。这与 CS hiPSC-VSMCs 中较高水平的弹性蛋白 mRNA 相一致,表明 CS 血管病变的高弹性成分是血管 KATP GoF 的细胞自主结果:结论:研究结果表明,hiPSC-VSMCs 与原代 VSMCs 重现了相同的主要离子电流的表达,验证了使用这些细胞研究血管疾病的有效性。从 CS 患者细胞中提取的 hiPSC-VSMCs 结果表明,CS 血管病变的低肌张力和高弹性成分都是由 VSMCs 内的 KATP 过度活跃驱动的细胞自主现象。
{"title":"Electrophysiology of Human iPSC-derived Vascular Smooth Muscle Cells and Cell-autonomous Consequences of Cantú Syndrome Mutations.","authors":"Alex Hanson, Conor McClenaghan, Kuo-Chan Weng, Sarah Colijn, Amber N Stratman, Carmen M Halabi, Dorothy K Grange, Jonathan R Silva, Colin G Nichols","doi":"10.1093/function/zqae027","DOIUrl":"10.1093/function/zqae027","url":null,"abstract":"<p><p>Cantú syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by gain-of-function (GoF) variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels and is characterized by low systemic vascular resistance, as well as tortuous, dilated, vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell autonomously within vascular smooth muscle cells (VSMCs) or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Whole-cell voltage clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild-type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were similar to those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs and suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs .</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Managing Sex as a Biological Variable in Physiological Research: Best Practices. 管理生理学研究中的 SABV:最佳实践。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-09-10 DOI: 10.1093/function/zqae034
Candee T Barris, Emily Burns-Ray, Jennifer C Sullivan
{"title":"Managing Sex as a Biological Variable in Physiological Research: Best Practices.","authors":"Candee T Barris, Emily Burns-Ray, Jennifer C Sullivan","doi":"10.1093/function/zqae034","DOIUrl":"10.1093/function/zqae034","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MoTrPAC Animal Aerobic Exercise Protocol and Biorepository: A Novel Resource for Uncovering Systemic Adaptations to Aerobic Exercise and Extending Healthspan. MoTrPAC 动物有氧运动协议和生物库:发现有氧运动的系统适应性和延长健康寿命的新资源。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2024-09-10 DOI: 10.1093/function/zqae040
Robert T Mankowski, Raymond Jones, Thomas W Buford
{"title":"MoTrPAC Animal Aerobic Exercise Protocol and Biorepository: A Novel Resource for Uncovering Systemic Adaptations to Aerobic Exercise and Extending Healthspan.","authors":"Robert T Mankowski, Raymond Jones, Thomas W Buford","doi":"10.1093/function/zqae040","DOIUrl":"10.1093/function/zqae040","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Function (Oxford, England)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1