首页 > 最新文献

Function (Oxford, England)最新文献

英文 中文
BMAL1 in the Adrenal Gland: It's About Time-A Perspective on "Adrenal-Specific KO of the Circadian Clock Protein BMAL1 Alters Blood Pressure Rhythm and Timing of Eating Behavior". 肾上腺中的 BMAL1:昼夜节律时钟蛋白 BMAL1 的肾上腺特异性 KO 改变了血压节律和进食行为的时间"。
IF 5.1 Q2 CELL BIOLOGY Pub Date : 2023-02-16 eCollection Date: 2023-01-01 DOI: 10.1093/function/zqad008
Brittni N Moore, Jennifer L Pluznick
{"title":"BMAL1 in the Adrenal Gland: It's About Time-A Perspective on \"Adrenal-Specific KO of the Circadian Clock Protein BMAL1 Alters Blood Pressure Rhythm and Timing of Eating Behavior\".","authors":"Brittni N Moore, Jennifer L Pluznick","doi":"10.1093/function/zqad008","DOIUrl":"10.1093/function/zqad008","url":null,"abstract":"","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9115352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adrenal-Specific KO of the Circadian Clock Protein BMAL1 Alters Blood Pressure Rhythm and Timing of Eating Behavior. 肾上腺特异性 KO 昼夜节律时钟蛋白 BMAL1 会改变血压节律和进食行为的时间。
Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-09 eCollection Date: 2023-01-01 DOI: 10.1093/function/zqad001
Hannah M Costello, G Ryan Crislip, Kit-Yan Cheng, I Jeanette Lynch, Alexandria Juffre, Phillip Bratanatawira, Annalisse Mckee, Ryanne S Thelwell, Victor M Mendez, Charles S Wingo, Lauren G Douma, Michelle L Gumz

Brain and muscle ARNT-like 1 (BMAL1) is a core circadian clock protein and transcription factor that regulates many physiological functions, including blood pressure (BP). Male global Bmal1 knockout (KO) mice exhibit ∼10 mmHg reduction in BP, as well as a blunting of BP rhythm. The mechanisms of how BMAL1 regulates BP remains unclear. The adrenal gland synthesizes hormones, including glucocorticoids and mineralocorticoids, that influence BP rhythm. To determine the role of adrenal BMAL1 on BP regulation, adrenal-specific Bmal1 (ASCre/+ ::Bmal1) KO mice were generated using aldosterone synthase Cre recombinase to KO Bmal1 in the adrenal gland zona glomerulosa. We confirmed the localization and efficacy of the KO of BMAL1 to the zona glomerulosa. Male ASCre/+ ::Bmal1 KO mice displayed a shortened BP and activity period/circadian cycle (typically 24 h) by ∼1 h and delayed peak of BP and activity by ∼2 and 3 h, respectively, compared with littermate Cre- control mice. This difference was only evident when KO mice were in metabolic cages, which acted as a stressor, as serum corticosterone was increased in metabolic cages compared with home cages. AS Cre/+ ::Bmal1 KO mice also displayed altered diurnal variation in serum corticosterone. Furthermore, these mice have altered eating behaviors where they have a blunted night/day ratio of food intake, but no change in overall food consumed compared with controls. Overall, these data suggest that adrenal BMAL1 has a role in the regulation of BP rhythm and eating behaviors.

脑和肌肉 ARNT 样 1(BMAL1)是一种核心昼夜节律钟蛋白和转录因子,可调节多种生理功能,包括血压(BP)。雄性全基因 Bmal1 敲除(KO)小鼠的血压降低了 10 mmHg,血压节律也变得迟钝。BMAL1 调节血压的机制仍不清楚。肾上腺合成的激素(包括糖皮质激素和矿物质皮质激素)会影响血压节律。为了确定肾上腺 BMAL1 在血压调节中的作用,我们利用醛固酮合成酶 Cre 重组技术在肾上腺肾小球上 KO 了肾上腺特异性 Bmal1(ASCre/+ ::Bmal1 )小鼠。我们证实了 BMAL1 在肾小球肾上腺的定位和 KO 效果。与同窝 Cre- 对照组小鼠相比,雄性 ASCre/+ ::Bmal1 KO 小鼠的血压和活动期/昼夜节律周期(通常为 24 小时)缩短了 ∼ 1 小时,血压和活动的峰值分别延迟了 ∼ 2 小时和 3 小时。只有当 KO 小鼠被关在作为应激源的代谢笼中时,这种差异才会明显,因为与家庭笼相比,代谢笼中的血清皮质酮增加了。AS Cre/+ ::Bmal1 KO小鼠的血清皮质酮昼夜变化也发生了改变。此外,这些小鼠的进食行为也发生了改变,与对照组相比,它们的夜间/白天食物摄入比减弱,但总体食物摄入量没有变化。总之,这些数据表明肾上腺 BMAL1 在调节血压节律和进食行为中发挥作用。
{"title":"Adrenal-Specific KO of the Circadian Clock Protein BMAL1 Alters Blood Pressure Rhythm and Timing of Eating Behavior.","authors":"Hannah M Costello, G Ryan Crislip, Kit-Yan Cheng, I Jeanette Lynch, Alexandria Juffre, Phillip Bratanatawira, Annalisse Mckee, Ryanne S Thelwell, Victor M Mendez, Charles S Wingo, Lauren G Douma, Michelle L Gumz","doi":"10.1093/function/zqad001","DOIUrl":"10.1093/function/zqad001","url":null,"abstract":"<p><p>Brain and muscle ARNT-like 1 (BMAL1) is a core circadian clock protein and transcription factor that regulates many physiological functions, including blood pressure (BP). Male global <i>Bmal1</i> knockout (KO) mice exhibit ∼10 mmHg reduction in BP, as well as a blunting of BP rhythm. The mechanisms of how BMAL1 regulates BP remains unclear. The adrenal gland synthesizes hormones, including glucocorticoids and mineralocorticoids, that influence BP rhythm. To determine the role of adrenal BMAL1 on BP regulation, adrenal-specific <i>Bmal1</i> (<i>AS<sup>Cre/+</sup></i> ::<i>Bmal1</i>) KO mice were generated using aldosterone synthase Cre recombinase to KO <i>Bmal1</i> in the adrenal gland zona glomerulosa. We confirmed the localization and efficacy of the KO of BMAL1 to the zona glomerulosa. Male <i>AS<sup>Cre/+</sup></i> ::<i>Bmal1</i> KO mice displayed a shortened BP and activity period/circadian cycle (typically 24 h) by ∼1 h and delayed peak of BP and activity by ∼2 and 3 h, respectively, compared with littermate Cre- control mice. This difference was only evident when KO mice were in metabolic cages, which acted as a stressor, as serum corticosterone was increased in metabolic cages compared with home cages. <i>A</i>S <i><sup>Cre/+</sup></i> ::<i>Bmal1</i> KO mice also displayed altered diurnal variation in serum corticosterone. Furthermore, these mice have altered eating behaviors where they have a blunted night/day ratio of food intake, but no change in overall food consumed compared with controls. Overall, these data suggest that adrenal BMAL1 has a role in the regulation of BP rhythm and eating behaviors.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/c0/zqad001.PMC9909366.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10822439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential Control of Small-conductance Calcium-activated Potassium Channel Diffusion by Actin in Different Neuronal Subcompartments. 不同神经元亚室中肌动蛋白对小电导钙活化钾通道扩散的差异控制。
Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1093/function/zqad018
Shiju Gu, Anastasios V Tzingounis, George Lykotrafitis

Small-conductance calcium-activated potassium (SK) channels show a ubiquitous distribution on neurons, in both somatodendritic and axonal regions. SK channels are associated with neuronal activity regulating action potential frequency, dendritic excitability, and synaptic plasticity. Although the physiology of SK channels and the mechanisms that control their surface expression levels have been investigated extensively, little is known about what controls SK channel diffusion in the neuronal plasma membrane. This aspect is important, as the diffusion of SK channels at the surface may control their localization and proximity to calcium channels, hence increasing the likelihood of SK channel activation by calcium. In this study, we successfully investigated the diffusion of SK channels labeled with quantum dots on human embryonic kidney cells and dissociated hippocampal neurons by combining a single-particle tracking method with total internal reflection fluorescence microscopy. We observed that actin filaments interfere with SK mobility, decreasing their diffusion coefficient. We also found that during neuronal maturation, SK channel diffusion was gradually inhibited in somatodendritic compartments. Importantly, we observed that axon barriers formed at approximately days in vitro 6 and restricted the diffusion of SK channels on the axon initial segment (AIS). However, after neuron maturation, SK channels on the AIS were strongly immobilized, even after disruption of the actin network, suggesting that crowding may cause this effect. Altogether, our work provides insight into how SK channels diffuse on the neuronal plasma membrane and how actin and membrane crowding impacts SK channel diffusion.

小电导钙活化钾(SK)通道在神经元上普遍分布,在体突和轴突区域均有分布。SK通道与调节动作电位频率、树突兴奋性和突触可塑性的神经元活动有关。尽管SK通道的生理学和控制其表面表达水平的机制已被广泛研究,但对神经元质膜中SK通道扩散的控制机制知之甚少。这方面很重要,因为SK通道在表面的扩散可以控制它们的定位和靠近钙通道,从而增加了钙激活SK通道的可能性。本研究采用单粒子跟踪法和全内反射荧光显微镜相结合的方法,成功地研究了量子点标记的SK通道在人胚胎肾细胞和游离海马神经元上的扩散。我们观察到肌动蛋白丝干扰SK迁移率,降低其扩散系数。我们还发现,在神经元成熟过程中,SK通道的扩散在体树突室中逐渐被抑制。重要的是,我们观察到轴突屏障在体外大约几天形成,并限制了SK通道在轴突初始段(AIS)上的扩散。然而,在神经元成熟后,AIS上的SK通道被强烈固定,即使在肌动蛋白网络被破坏后也是如此,这表明拥挤可能导致了这种影响。总之,我们的工作提供了SK通道如何在神经元质膜上扩散以及肌动蛋白和膜拥挤如何影响SK通道扩散的见解。
{"title":"Differential Control of Small-conductance Calcium-activated Potassium Channel Diffusion by Actin in Different Neuronal Subcompartments.","authors":"Shiju Gu,&nbsp;Anastasios V Tzingounis,&nbsp;George Lykotrafitis","doi":"10.1093/function/zqad018","DOIUrl":"https://doi.org/10.1093/function/zqad018","url":null,"abstract":"<p><p>Small-conductance calcium-activated potassium (SK) channels show a ubiquitous distribution on neurons, in both somatodendritic and axonal regions. SK channels are associated with neuronal activity regulating action potential frequency, dendritic excitability, and synaptic plasticity. Although the physiology of SK channels and the mechanisms that control their surface expression levels have been investigated extensively, little is known about what controls SK channel diffusion in the neuronal plasma membrane. This aspect is important, as the diffusion of SK channels at the surface may control their localization and proximity to calcium channels, hence increasing the likelihood of SK channel activation by calcium. In this study, we successfully investigated the diffusion of SK channels labeled with quantum dots on human embryonic kidney cells and dissociated hippocampal neurons by combining a single-particle tracking method with total internal reflection fluorescence microscopy. We observed that actin filaments interfere with SK mobility, decreasing their diffusion coefficient. We also found that during neuronal maturation, SK channel diffusion was gradually inhibited in somatodendritic compartments. Importantly, we observed that axon barriers formed at approximately days <i>in vitro</i> 6 and restricted the diffusion of SK channels on the axon initial segment (AIS). However, after neuron maturation, SK channels on the AIS were strongly immobilized, even after disruption of the actin network, suggesting that crowding may cause this effect. Altogether, our work provides insight into how SK channels diffuse on the neuronal plasma membrane and how actin and membrane crowding impacts SK channel diffusion.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/70/69/zqad018.PMC10165553.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9691399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
What Does Physiological Mean? 生理是什么意思?
Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1093/function/zqad042
Ole H Petersen
S © t a r ecentl y r e vie wed an original paper with a title including he words “physiological stimulation.” In this particular case, t turned out that the stim ulation w as far fr om physiological. he concentration of the hormone used for acti v ation w as w ay bov e the maximal level ever observed in vivo, and this made e think about the use, and misuse, of the word “physiologial.” It is a word that we (physiologists) employ fr equentl y and erhaps too fr equentl y. Papers in physiological, and other, jourals often refer to “physiological conditions,” which sometimes s taken to indicate experiments in vi v o, but also fr equentl y ust means that experiments on single cells or tissue fragents were carried out with stimulation protocols and under ircumstances that are not unlike those that could happen n vi v o. We hav e li v ed thr ough a long and pr oducti v e period of singleell biology. Very important discoveries of real significance have een made, but it is now becoming incr easingl y clear that ther e r e many criticall y important inter actions betw een different djacent cell types in most tissues. To c har acterize these proesses, it is necessary to observe simultaneously more than one ell type in individual organs or tissues. Furthermore, the behavor of a particular cell type in isolation may not be the same as hen it is embedded in its normal environment. Of particular oncern is the tacit assumption in many studies that processes n cell lines reflect those in normal cells in situ. It may therefore e useful to reflect on the usefulness of working under real physological conditions, notwithstanding the obvious difficulties of oing so. In what follows, I’ll try to illuminate these issues by xamples from immunology, epithelial physiology, and neurocience. Ca 2 + signaling studies in imm une cells hav e been immensel y uccessful in unravelling key Ca 2 + transport events and, in articular, the properties of the Ca 2 + r elease acti v ated Ca 2 + CRAC) channel of the Orai type and its molecular control echanism. 1 Unlike the situation in epithelial cells, where Ca 2 +
{"title":"What Does Physiological Mean?","authors":"Ole H Petersen","doi":"10.1093/function/zqad042","DOIUrl":"https://doi.org/10.1093/function/zqad042","url":null,"abstract":"S © t a r ecentl y r e vie wed an original paper with a title including he words “physiological stimulation.” In this particular case, t turned out that the stim ulation w as far fr om physiological. he concentration of the hormone used for acti v ation w as w ay bov e the maximal level ever observed in vivo, and this made e think about the use, and misuse, of the word “physiologial.” It is a word that we (physiologists) employ fr equentl y and erhaps too fr equentl y. Papers in physiological, and other, jourals often refer to “physiological conditions,” which sometimes s taken to indicate experiments in vi v o, but also fr equentl y ust means that experiments on single cells or tissue fragents were carried out with stimulation protocols and under ircumstances that are not unlike those that could happen n vi v o. We hav e li v ed thr ough a long and pr oducti v e period of singleell biology. Very important discoveries of real significance have een made, but it is now becoming incr easingl y clear that ther e r e many criticall y important inter actions betw een different djacent cell types in most tissues. To c har acterize these proesses, it is necessary to observe simultaneously more than one ell type in individual organs or tissues. Furthermore, the behavor of a particular cell type in isolation may not be the same as hen it is embedded in its normal environment. Of particular oncern is the tacit assumption in many studies that processes n cell lines reflect those in normal cells in situ. It may therefore e useful to reflect on the usefulness of working under real physological conditions, notwithstanding the obvious difficulties of oing so. In what follows, I’ll try to illuminate these issues by xamples from immunology, epithelial physiology, and neurocience. Ca 2 + signaling studies in imm une cells hav e been immensel y uccessful in unravelling key Ca 2 + transport events and, in articular, the properties of the Ca 2 + r elease acti v ated Ca 2 + CRAC) channel of the Orai type and its molecular control echanism. 1 Unlike the situation in epithelial cells, where Ca 2 +","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10424847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Watching Ion Channels on the Move. 在移动中观看离子频道。
Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1093/function/zqac072
Luis A Pardo
Ion channels remain fascinating molecular machines implicated in virtually every cellular function. Their activity can be studied in deep detail using biophysical techniques down to the single-molecule level. However, as large hydrophobic proteins embedded in a lipidic environment, their structure has traditionally been very difficult to study. Cryo-EM approaches have boosted our knowledge in the last few years, expanding the collection of resolved structures almost on a weekly basis. Yet, there are still open questions regarding the structure-function of the channels that are now starting to find answers. Ion channels react rapidly to a wide range of stimuli, opening a pathway for the flow of ions across the membrane. The coupling of the stimulus to the opening of the gate can be studied in ligand-gated channels by comparing the structures of the ligand-bound and unbound channels. Still, such a comparison is more difficult to achieve when the channel responds to physical rather than chemical stimuli, as is the case of voltage-gated channels. The molecular principles of voltage-dependent gating of ion channels have been known for four decades. The mechanism consists, in essence, of the movement of some parts of the protein (the voltage-sensing domains) relative to others. The displacement results in a conformational change that produces the opening of the gate, but the intimate molecular mechanisms linking both events remain only partly known in many cases. Although the problem might appear like an academic discussion for experts at first glance, it has many practical implications. On the one hand—mainly
{"title":"Watching Ion Channels on the Move.","authors":"Luis A Pardo","doi":"10.1093/function/zqac072","DOIUrl":"https://doi.org/10.1093/function/zqac072","url":null,"abstract":"Ion channels remain fascinating molecular machines implicated in virtually every cellular function. Their activity can be studied in deep detail using biophysical techniques down to the single-molecule level. However, as large hydrophobic proteins embedded in a lipidic environment, their structure has traditionally been very difficult to study. Cryo-EM approaches have boosted our knowledge in the last few years, expanding the collection of resolved structures almost on a weekly basis. Yet, there are still open questions regarding the structure-function of the channels that are now starting to find answers. Ion channels react rapidly to a wide range of stimuli, opening a pathway for the flow of ions across the membrane. The coupling of the stimulus to the opening of the gate can be studied in ligand-gated channels by comparing the structures of the ligand-bound and unbound channels. Still, such a comparison is more difficult to achieve when the channel responds to physical rather than chemical stimuli, as is the case of voltage-gated channels. The molecular principles of voltage-dependent gating of ion channels have been known for four decades. The mechanism consists, in essence, of the movement of some parts of the protein (the voltage-sensing domains) relative to others. The displacement results in a conformational change that produces the opening of the gate, but the intimate molecular mechanisms linking both events remain only partly known in many cases. Although the problem might appear like an academic discussion for experts at first glance, it has many practical implications. On the one hand—mainly","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10740532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Perspective on "Hypoxia Resistance is an Inherent Phenotype of the Mouse Flexor Digitorum Brevis Skeletal Muscle". “耐缺氧是小鼠指屈肌短骨骼肌的一种固有表型”的观点。
Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1093/function/zqad024
Camila Padilha, Ashleigh M Philp
; Hypoxias; r esistance; inher ent; phenotype; mouse Skeletal muscle is reliant on a constant oxygen supply for mov ement, cellular r espiration, and thermogenesis. Heter oge-neous fibre types exist in skeletal muscle as a continuum from slow- to fast-twitch to facilitate specialized function. Type I (oxidati v e fibr es) pr esent a slow-twitc h phenotype , c har acterized by high oxygen capacity and increased fatigue resistance. In contrast, type IIa (fast oxidati v e gl ycol ytic phenotype) and type IIx (fast gl ycol ytic) pr esent faster twitc h speeds and contr
{"title":"A Perspective on \"Hypoxia Resistance is an Inherent Phenotype of the Mouse Flexor Digitorum Brevis Skeletal Muscle\".","authors":"Camila Padilha,&nbsp;Ashleigh M Philp","doi":"10.1093/function/zqad024","DOIUrl":"https://doi.org/10.1093/function/zqad024","url":null,"abstract":"; Hypoxias; r esistance; inher ent; phenotype; mouse Skeletal muscle is reliant on a constant oxygen supply for mov ement, cellular r espiration, and thermogenesis. Heter oge-neous fibre types exist in skeletal muscle as a continuum from slow- to fast-twitch to facilitate specialized function. Type I (oxidati v e fibr es) pr esent a slow-twitc h phenotype , c har acterized by high oxygen capacity and increased fatigue resistance. In contrast, type IIa (fast oxidati v e gl ycol ytic phenotype) and type IIx (fast gl ycol ytic) pr esent faster twitc h speeds and contr","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9713055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox Bridling of GIRK Channel Activity. GIRK通道活性的氧化还原约束。
Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1093/function/zqad027
Anna Boccaccio, Rocio K Finol-Urdaneta
pr otein-gated inw ardl y r ectifying potassium (GIRK, Kir3.x) hannels belong to the large family of inw ardl y r ectifying potasium (Kir) channels expressed throughout the body. Activation nd consequent opening of GIRK channels allow inward flow of otassium (K + ) ions into the cell resulting in membrane potenial hyperpolarization and decr eased excita bility. Thus, GIRK hannels play a key role in regulating the activity of neurons and ontrolling important physiological processes including neuonal excita bility, heart r ate , and pain per ception. 1 GIRK channels are integral membrane proteins, existing s homoor heterotetr amers. Eac h monomer features two embrane-spanning helices (M1 and M2), a re-entrant P-loop or controlling ion permeation and selectivity, and extensive ntracellular aminoand carboxy-termini crucial for channel ating. Permeation is regulated by an inner helix gate formed y the M2 segments and a cytoplasmic G-loop gate. 1 Acti v ation of GIRK channels is mediated by the direct interction of G βγ subunits, released from various G protein-coupled ece ptors (GPCRs) upon the acti v ation of inhibitory neuroransmitter r ece ptors. Howev er, the acti vity of GIRK channels epends on the presence of the membrane anionic phospholipid hosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 or PIP 2 ) while it s also modulated by ubiquitously present sodium (Na + ) ions. urthermore , GIRK c hannels ar e too r e gulated by c holesterol, hosphorylation, ethanol, etcetera. 1 The crystal structures of ecombinant GIRK channels have offered valuable insights into ow they are functionally regulated by various ligands. Thus, hannel opening is facilitated by PIP 2 at the plasma membrane, hereas G βγ and Na + modulate the c hannel’s inter action with IP 2 through conformational changes that govern the gating proess. 2 The intracellular milieu is a reducing environment charcterized by a balanced redox state. This state is crucial to upport cellular processes while serving as a pr otecti v e shield
{"title":"Redox Bridling of GIRK Channel Activity.","authors":"Anna Boccaccio,&nbsp;Rocio K Finol-Urdaneta","doi":"10.1093/function/zqad027","DOIUrl":"https://doi.org/10.1093/function/zqad027","url":null,"abstract":"pr otein-gated inw ardl y r ectifying potassium (GIRK, Kir3.x) hannels belong to the large family of inw ardl y r ectifying potasium (Kir) channels expressed throughout the body. Activation nd consequent opening of GIRK channels allow inward flow of otassium (K + ) ions into the cell resulting in membrane potenial hyperpolarization and decr eased excita bility. Thus, GIRK hannels play a key role in regulating the activity of neurons and ontrolling important physiological processes including neuonal excita bility, heart r ate , and pain per ception. 1 GIRK channels are integral membrane proteins, existing s homoor heterotetr amers. Eac h monomer features two embrane-spanning helices (M1 and M2), a re-entrant P-loop or controlling ion permeation and selectivity, and extensive ntracellular aminoand carboxy-termini crucial for channel ating. Permeation is regulated by an inner helix gate formed y the M2 segments and a cytoplasmic G-loop gate. 1 Acti v ation of GIRK channels is mediated by the direct interction of G βγ subunits, released from various G protein-coupled ece ptors (GPCRs) upon the acti v ation of inhibitory neuroransmitter r ece ptors. Howev er, the acti vity of GIRK channels epends on the presence of the membrane anionic phospholipid hosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 or PIP 2 ) while it s also modulated by ubiquitously present sodium (Na + ) ions. urthermore , GIRK c hannels ar e too r e gulated by c holesterol, hosphorylation, ethanol, etcetera. 1 The crystal structures of ecombinant GIRK channels have offered valuable insights into ow they are functionally regulated by various ligands. Thus, hannel opening is facilitated by PIP 2 at the plasma membrane, hereas G βγ and Na + modulate the c hannel’s inter action with IP 2 through conformational changes that govern the gating proess. 2 The intracellular milieu is a reducing environment charcterized by a balanced redox state. This state is crucial to upport cellular processes while serving as a pr otecti v e shield","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9713057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urine-based Detection of Congenital Portosystemic Shunt in C57BL/6 Mice. C57BL/6小鼠先天性门系统分流的尿基检测。
Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1093/function/zqad040
Beng San Yeoh, Rachel M Golonka, Piu Saha, Mrunmayee R Kandalgaonkar, Yuan Tian, Islam Osman, Andrew D Patterson, Andrew T Gewirtz, Bina Joe, Matam Vijay-Kumar

Sporadic occurrence of congenital portosystemic shunt (PSS) at a rate of ∼1 out of 10 among C57BL/6 J mice, which are widely used in biomedical research, results in aberrancies in serologic, metabolic, and physiologic parameters. Therefore, mice with PSS should be identified as outliers in research. Accordingly, we sought methods to, reliably and efficiently, identify PSS mice. Serum total bile acids ≥ 40 µm is a bona fide biomarker of PSS in mice but utility of this biomarker is limited by its cost and invasiveness, particularly if large numbers of mice are to be screened. This led us to investigate if assay of urine might serve as a simple, inexpensive, noninvasive means of PSS diagnosis. Metabolome profiling uncovered that Krebs cycle intermediates, that is, citrate, α-ketoglutarate, and fumarate, were strikingly and distinctly elevated in the urine of PSS mice. We leveraged the iron-chelating and pH-lowering properties of such metabolites as the basis for 3 urine-based PSS screening tests: urinary iron-chelation assay, pH strip test, and phenol red assay. Our findings demonstrate the feasibility of using these colorimetric assays, whereby their readout can be assessed by direct observation, to diagnose PSS in an inexpensive, rapid, and noninvasive manner. Application of our urinary PSS screening protocols can aid biomedical research by enabling stratification of PSS mice, which, at present, likely confound numerous ongoing studies.

在广泛用于生物医学研究的C57BL/6 J小鼠中,先天性门系统分流(PSS)的偶发发生率约为1 / 10,导致血清学、代谢和生理参数的异常。因此,在研究中应将PSS小鼠视为异常值。因此,我们寻求可靠、高效地鉴定PSS小鼠的方法。血清总胆汁酸≥40µm是小鼠PSS的真正生物标志物,但这种生物标志物的效用受到其成本和侵入性的限制,特别是如果要筛选大量小鼠。这促使我们研究尿液检测是否可以作为一种简单、廉价、无创的PSS诊断方法。代谢组学分析发现,克雷布斯循环中间体,即柠檬酸盐、α-酮戊二酸盐和富马酸盐,在PSS小鼠的尿液中显著升高。我们利用这些代谢物的铁螯合和降低pH值的特性作为3种基于尿液的PSS筛选试验的基础:尿铁螯合试验、pH条试验和酚红试验。我们的研究结果证明了使用这些比色法的可行性,通过直接观察可以评估其读数,以一种廉价、快速和无创的方式诊断PSS。应用我们的尿液PSS筛查方案可以通过使PSS小鼠分层来帮助生物医学研究,目前,这可能会混淆许多正在进行的研究。
{"title":"Urine-based Detection of Congenital Portosystemic Shunt in C57BL/6 Mice.","authors":"Beng San Yeoh,&nbsp;Rachel M Golonka,&nbsp;Piu Saha,&nbsp;Mrunmayee R Kandalgaonkar,&nbsp;Yuan Tian,&nbsp;Islam Osman,&nbsp;Andrew D Patterson,&nbsp;Andrew T Gewirtz,&nbsp;Bina Joe,&nbsp;Matam Vijay-Kumar","doi":"10.1093/function/zqad040","DOIUrl":"https://doi.org/10.1093/function/zqad040","url":null,"abstract":"<p><p>Sporadic occurrence of congenital portosystemic shunt (PSS) at a rate of ∼1 out of 10 among C57BL/6 J mice, which are widely used in biomedical research, results in aberrancies in serologic, metabolic, and physiologic parameters. Therefore, mice with PSS should be identified as outliers in research. Accordingly, we sought methods to, reliably and efficiently, identify PSS mice. Serum total bile acids ≥ 40 µm is a <i>bona fide</i> biomarker of PSS in mice but utility of this biomarker is limited by its cost and invasiveness, particularly if large numbers of mice are to be screened. This led us to investigate if assay of urine might serve as a simple, inexpensive, noninvasive means of PSS diagnosis. Metabolome profiling uncovered that Krebs cycle intermediates, that is, citrate, α-ketoglutarate, and fumarate, were strikingly and distinctly elevated in the urine of PSS mice. We leveraged the iron-chelating and pH-lowering properties of such metabolites as the basis for 3 urine-based PSS screening tests: urinary iron-chelation assay, pH strip test, and phenol red assay. Our findings demonstrate the feasibility of using these colorimetric assays, whereby their readout can be assessed by direct observation, to diagnose PSS in an inexpensive, rapid, and noninvasive manner. Application of our urinary PSS screening protocols can aid biomedical research by enabling stratification of PSS mice, which, at present, likely confound numerous ongoing studies.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d4/cc/zqad040.PMC10413929.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10062481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Gut Microbiome-Endocannabinoidome Axis: A New Way of Controlling Metabolism, Inflammation, and Behavior. 肠道微生物组-内源性大麻素轴:控制代谢、炎症和行为的新途径。
Q2 CELL BIOLOGY Pub Date : 2023-01-01 DOI: 10.1093/function/zqad003
Cristoforo Silvestri, Vincenzo Di Marzo
1Centre de Recherche de l’Institut de Pneumologie et Cardiologie de l’Université Laval, Département de médecine, Faculté de Médecine, Université Laval, Québec G1V 4G5, Canada, 2Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Québec G1V 0A6, Canada, 3Canada Research Excellence Chair on the Microbiome–Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec G1V 0A6, Canada and 4École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec G1V 0A6, Canada ∗Address correspondence to V.D. (e-mail: vincenzo.dimarzo@criucpq.ulaval.ca)
{"title":"The Gut Microbiome-Endocannabinoidome Axis: A New Way of Controlling Metabolism, Inflammation, and Behavior.","authors":"Cristoforo Silvestri,&nbsp;Vincenzo Di Marzo","doi":"10.1093/function/zqad003","DOIUrl":"https://doi.org/10.1093/function/zqad003","url":null,"abstract":"1Centre de Recherche de l’Institut de Pneumologie et Cardiologie de l’Université Laval, Département de médecine, Faculté de Médecine, Université Laval, Québec G1V 4G5, Canada, 2Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Québec G1V 0A6, Canada, 3Canada Research Excellence Chair on the Microbiome–Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec G1V 0A6, Canada and 4École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec G1V 0A6, Canada ∗Address correspondence to V.D. (e-mail: vincenzo.dimarzo@criucpq.ulaval.ca)","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10799506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lymphatic contractile dysfunction in mouse models of Cantú Syndrome with KATP channel gain-of-function. KATP通道功能获得性Cantú综合征小鼠模型的淋巴收缩功能障碍。
Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.1093/function/zqad017
Michael J Davis, Jorge A Castorena-Gonzalez, Hae Jin Kim, Min Li, Maria Remedi, Colin G Nichols

Cantú Syndrome (CS) is an autosomal dominant disorder caused by gain-of-function (GoF) mutations in the Kir6.1 and SUR2 subunits of KATP channels. KATP overactivity results in a chronic reduction in arterial tone and hypotension, leading to other systemic cardiovascular complications. However, the underlying mechanism of lymphedema, developed by >50% of CS patients, is unknown. We investigated whether lymphatic contractile dysfunction occurs in mice expressing CS mutations in Kir6.1 (Kir6.1[V65M]) or SUR2 (SUR2[A478V], SUR2[R1154Q]). Pressure myograph tests of contractile function of popliteal lymphatic vessels over the physiological pressure range revealed significantly impaired contractile strength and reduced frequency of spontaneous contractions at all pressures in heterozygous Kir6.1[V65M] vessels, compared to control littermates. Contractile dysfunction of intact popliteal lymphatics in vivo was confirmed using near-infrared fluorescence microscopy. Homozygous SUR2[A478V] vessels exhibited profound contractile dysfunction ex vivo, but heterozygous SUR2[A478V] vessels showed essentially normal contractile function. However, further investigation of vessels from all three GoF mouse strains revealed significant disruption in contraction wave entrainment, decreased conduction speed and distance, multiple pacemaker sites, and reversing wave direction. Tests of 2-valve lymphatic vessels forced to pump against an adverse pressure gradient revealed that all CS-associated genotypes were essentially incapable of pumping under an imposed outflow load. Our results show that varying degrees of lymphatic contractile dysfunction occur in proportion to the degree of molecular GoF in Kir6.1 or SUR2. This is the first example of lymphatic contractile dysfunction caused by a smooth muscle ion channel mutation and potentially explains the susceptibility of CS patients to lymphedema.

Cantú综合征(CS)是一种常染色体显性遗传病,由KATP通道Kir6.1和SUR2亚基的功能获得(GoF)突变引起。KATP过度活动导致动脉张力的慢性降低和低血压,导致其他系统性心血管并发症。然而,50%以上的CS患者出现淋巴水肿的潜在机制尚不清楚。我们研究了表达CS基因Kir6.1 (Kir6.1[V65M])或SUR2 (SUR2[A478V], SUR2[R1154Q])突变的小鼠是否会发生淋巴收缩功能障碍。在生理压力范围内腘窝淋巴管收缩功能的压力肌图测试显示,与对照组相比,杂合子Kir6.1[V65M]血管在所有压力下的收缩强度明显受损,自发收缩频率降低。在近红外荧光显微镜下证实了完整腘窝淋巴在体内的收缩功能障碍。纯合子SUR2[A478V]血管在体外表现出严重的收缩功能障碍,而杂合子SUR2[A478V]血管在体外表现出基本正常的收缩功能。然而,对所有三种GoF小鼠品系血管的进一步研究显示,收缩波携带明显中断,传导速度和距离减少,起搏器位点多,波方向逆转。对2阀淋巴管在逆压梯度下被迫泵送的试验显示,所有cs相关基因型在施加的流出负荷下基本上不能泵送。我们的研究结果表明,不同程度的淋巴收缩功能障碍与Kir6.1或SUR2中分子GoF的程度成正比。这是由平滑肌离子通道突变引起的淋巴收缩功能障碍的第一个例子,可能解释了CS患者对淋巴水肿的易感性。
{"title":"Lymphatic contractile dysfunction in mouse models of Cantú Syndrome with K<sub>ATP</sub> channel gain-of-function.","authors":"Michael J Davis,&nbsp;Jorge A Castorena-Gonzalez,&nbsp;Hae Jin Kim,&nbsp;Min Li,&nbsp;Maria Remedi,&nbsp;Colin G Nichols","doi":"10.1093/function/zqad017","DOIUrl":"https://doi.org/10.1093/function/zqad017","url":null,"abstract":"<p><p>Cantú Syndrome (CS) is an autosomal dominant disorder caused by gain-of-function (GoF) mutations in the Kir6.1 and SUR2 subunits of K<sub>ATP</sub> channels. K<sub>ATP</sub> overactivity results in a chronic reduction in arterial tone and hypotension, leading to other systemic cardiovascular complications. However, the underlying mechanism of lymphedema, developed by >50% of CS patients, is unknown. We investigated whether lymphatic contractile dysfunction occurs in mice expressing CS mutations in Kir6.1 (Kir6.1[V65M]) or SUR2 (SUR2[A478V], SUR2[R1154Q]). Pressure myograph tests of contractile function of popliteal lymphatic vessels over the physiological pressure range revealed significantly impaired contractile strength and reduced frequency of spontaneous contractions at all pressures in heterozygous Kir6.1[V65M] vessels, compared to control littermates. Contractile dysfunction of intact popliteal lymphatics in vivo was confirmed using near-infrared fluorescence microscopy. Homozygous SUR2[A478V] vessels exhibited profound contractile dysfunction ex vivo, but heterozygous SUR2[A478V] vessels showed essentially normal contractile function. However, further investigation of vessels from all three GoF mouse strains revealed significant disruption in contraction wave entrainment, decreased conduction speed and distance, multiple pacemaker sites, and reversing wave direction. Tests of 2-valve lymphatic vessels forced to pump against an adverse pressure gradient revealed that all CS-associated genotypes were essentially incapable of pumping under an imposed outflow load. Our results show that varying degrees of lymphatic contractile dysfunction occur in proportion to the degree of molecular GoF in Kir6.1 or SUR2. This is the first example of lymphatic contractile dysfunction caused by a smooth muscle ion channel mutation and potentially explains the susceptibility of CS patients to lymphedema.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194823/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10057746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Function (Oxford, England)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1