首页 > 最新文献

Harvard data science review最新文献

英文 中文
Conversation with Dr. Lawrence Tabak and Dr. Lyric Jorgenson on the NIH Perspective on Data Sharing and Management 与Lawrence Tabak博士和Lyric Jorgenson博士就NIH数据共享和管理的观点进行对话
Pub Date : 2022-07-28 DOI: 10.1162/99608f92.b9e4ceec
L. Tabak, Lyric A. Jorgenson, Maryann E. Martone, Richard K. Nakamura
{"title":"Conversation with Dr. Lawrence Tabak and Dr. Lyric Jorgenson on the NIH Perspective on Data Sharing and Management","authors":"L. Tabak, Lyric A. Jorgenson, Maryann E. Martone, Richard K. Nakamura","doi":"10.1162/99608f92.b9e4ceec","DOIUrl":"https://doi.org/10.1162/99608f92.b9e4ceec","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48092123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Legal Compliance and Good Data Stewardship in Data Sharing Plans 数据共享计划中的法律合规和良好的数据管理
Pub Date : 2022-07-28 DOI: 10.1162/99608f92.5ff070bf
Kristen B. Rosati
{"title":"Legal Compliance and Good Data Stewardship in Data Sharing Plans","authors":"Kristen B. Rosati","doi":"10.1162/99608f92.5ff070bf","DOIUrl":"https://doi.org/10.1162/99608f92.5ff070bf","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47006461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Building a More Robust Data Science, Toward a More Robust World 构建更强大的数据科学,走向更强大的世界
Pub Date : 2022-07-28 DOI: 10.1162/99608f92.42285dcb
D. Parkes
{"title":"Building a More Robust Data Science, Toward a More Robust World","authors":"D. Parkes","doi":"10.1162/99608f92.42285dcb","DOIUrl":"https://doi.org/10.1162/99608f92.42285dcb","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46916903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Assessing the Impact of Differential Privacy on Measures of Population and Racial Residential Segregation 评估差别隐私对人口和种族居住隔离措施的影响
Pub Date : 2022-06-24 DOI: 10.1162/99608f92.5cd8024e
Brian J. Asquith, Brad J. Hershbein, T. Kugler, S. Reed, S. Ruggles, Jonathan P. Schroeder, Steve Yesiltepe, David C. Van Riper
{"title":"Assessing the Impact of Differential Privacy on Measures of Population and Racial Residential Segregation","authors":"Brian J. Asquith, Brad J. Hershbein, T. Kugler, S. Reed, S. Ruggles, Jonathan P. Schroeder, Steve Yesiltepe, David C. Van Riper","doi":"10.1162/99608f92.5cd8024e","DOIUrl":"https://doi.org/10.1162/99608f92.5cd8024e","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46722195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Disclosure Protection in the Context of Statistical Agency Operations: Data Quality and Related Constraints 统计机构业务中的披露保护:数据质量和相关约束
Pub Date : 2022-06-24 DOI: 10.1162/99608f92.1cfad278
J. Eltinge
{"title":"Disclosure Protection in the Context of Statistical Agency Operations: Data Quality and Related Constraints","authors":"J. Eltinge","doi":"10.1162/99608f92.1cfad278","DOIUrl":"https://doi.org/10.1162/99608f92.1cfad278","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64442717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
What Will It Take to Get to Acceptable Privacy-Accuracy Combinations? 怎样才能获得可接受的隐私准确性组合?
Pub Date : 2022-06-24 DOI: 10.1162/99608f92.5d9b1a8d
Ori Heffetz
{"title":"What Will It Take to Get to Acceptable Privacy-Accuracy Combinations?","authors":"Ori Heffetz","doi":"10.1162/99608f92.5d9b1a8d","DOIUrl":"https://doi.org/10.1162/99608f92.5d9b1a8d","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45775975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Harnessing the Known Unknowns: Differential Privacy and the 2020 Census 利用已知未知:差异隐私与2020年人口普查
Pub Date : 2022-06-24 DOI: 10.1162/99608f92.cb06b469
Ruobin Gong, E. Groshen, S. Vadhan
and relative accuracy population counts in total and by race for multiple geographic levels and compare commonly used measures of residential segregation. how the accuracy varies by the global privacy loss budget and by the allocation of the privacy loss budget to geographic levels and queries. The also that can indicate either notably or notably segregation in
以及多个地理级别的总人口和按种族统计的相对准确性,并比较常用的居住隔离措施。准确性如何因全球隐私损失预算以及隐私损失预算对地理级别和查询的分配而变化。也可以表明在
{"title":"Harnessing the Known Unknowns: Differential Privacy and the 2020 Census","authors":"Ruobin Gong, E. Groshen, S. Vadhan","doi":"10.1162/99608f92.cb06b469","DOIUrl":"https://doi.org/10.1162/99608f92.cb06b469","url":null,"abstract":"and relative accuracy population counts in total and by race for multiple geographic levels and compare commonly used measures of residential segregation. how the accuracy varies by the global privacy loss budget and by the allocation of the privacy loss budget to geographic levels and queries. The also that can indicate either notably or notably segregation in","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46758324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A Chronicle of the Application of Differential Privacy to the 2020 Census 差别隐私在2020年人口普查中的应用纪事
Pub Date : 2022-06-24 DOI: 10.1162/99608f92.ff891fe5
V. Hotz, Joseph Salvo
In this article, we chronicle the U.S. Census Bureau’s development of the Disclosure Avoidance System (DAS) for the publicly released products of the 2020 Census of Population. We provide a brief history of the Census Bureau’s fulfillment of its dual mission of conducting and disseminating the constitutionally mandated decennial information on the U.S. population and its promise of safeguarding the confidentiality of that information. We discuss the basis for and development of a new DAS for released data products from the 2020 Census and the evidence that emerged from various user communities on the accuracy and usability of data produced under this new DAS. We offer some assessments of this experience, the dilemmas and challenges that the Census Bureau faces for producing usable data while safeguarding the confidentiality of the information it collects, and some recommendations for addressing these challenges in the future.
在这篇文章中,我们记录了美国人口普查局为2020年人口普查公开发布的产品开发的避免披露系统(DAS)。我们简要介绍了人口普查局履行其双重使命的情况,即执行和传播宪法规定的美国人口十年一次的信息,以及其保护这些信息机密性的承诺。我们讨论了为2020年人口普查发布的数据产品开发新DAS的基础和开发,以及来自不同用户社区的证据,证明在新DAS下生成的数据的准确性和可用性。我们对这一经验、人口普查局在保护其收集的信息机密的同时,在提供可用数据方面面临的困境和挑战进行了一些评估,并就未来应对这些挑战提出了一些建议。
{"title":"A Chronicle of the Application of Differential Privacy to the 2020 Census","authors":"V. Hotz, Joseph Salvo","doi":"10.1162/99608f92.ff891fe5","DOIUrl":"https://doi.org/10.1162/99608f92.ff891fe5","url":null,"abstract":"In this article, we chronicle the U.S. Census Bureau’s development of the Disclosure Avoidance System (DAS) for the publicly released products of the 2020 Census of Population. We provide a brief history of the Census Bureau’s fulfillment of its dual mission of conducting and disseminating the constitutionally mandated decennial information on the U.S. population and its promise of safeguarding the confidentiality of that information. We discuss the basis for and development of a new DAS for released data products from the 2020 Census and the evidence that emerged from various user communities on the accuracy and usability of data produced under this new DAS. We offer some assessments of this experience, the dilemmas and challenges that the Census Bureau faces for producing usable data while safeguarding the confidentiality of the information it collects, and some recommendations for addressing these challenges in the future.","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42721584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Private Numbers in Public Policy: Census, Differential Privacy, and Redistricting 公共政策中的私人数字:人口普查、差别隐私和重新划分选区
Pub Date : 2022-06-24 DOI: 10.1162/99608f92.22fd8a0e
A. Cohen, M. Duchin, J. Matthews, Bhushan Suwal
{"title":"Private Numbers in Public Policy: Census, Differential Privacy, and Redistricting","authors":"A. Cohen, M. Duchin, J. Matthews, Bhushan Suwal","doi":"10.1162/99608f92.22fd8a0e","DOIUrl":"https://doi.org/10.1162/99608f92.22fd8a0e","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45490087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The Effect of Differentially Private Noise Injection on Sampling Efficiency and Funding Allocations: Evidence From the 1940 Census 差别私人噪声注入对采样效率和资金分配的影响:来自1940年人口普查的证据
Pub Date : 2022-06-24 DOI: 10.1162/99608f92.a93d96fa
Quentin Brummet, E. Mulrow, K. Wolter
{"title":"The Effect of Differentially Private Noise Injection on Sampling Efficiency and Funding Allocations: Evidence From the 1940 Census","authors":"Quentin Brummet, E. Mulrow, K. Wolter","doi":"10.1162/99608f92.a93d96fa","DOIUrl":"https://doi.org/10.1162/99608f92.a93d96fa","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42201836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Harvard data science review
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1