Study question: Does receptor for advanced glycation end products (RAGE) on the surface membrane of the sperm cell function as a biomarker of low-quality sperm?
Summary answer: Membrane-bound RAGE at a cellular level directly correlates with low sperm motility, high cell permeability, decreased mitochondrial function, DNA fragmentation, and higher levels of apoptosis.
What is known already: RAGE has previously been measured by ELISA in low-quality sperm in diabetic men and has been shown to correlate with DNA fragmentation (terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay).
Study design size duration: Semen samples were recovered from 60 non-obese, non-diabetic and non-smoking subjects, washed with fresh media, and analysed directly or purified further by differential gradient centrifugation (DGC) or fractionated by direct swim-up before being analysed for sperm motility and molecular health parameters, including cell membrane permeability, cell death, mitochondrial membrane potential, DNA fragmentation, and RAGE protein expression.
Participants/materials setting methods: Sperm motility assessments were carried out by computer-assisted sperm analysis (CASA) on 1000 spermatozoa for washed samples and 300 spermatozoa for purified samples. Molecular sperm health parameters were evaluated using flow cytometry with the use of the following markers: DAPI for cell membrane permeability, Annexin V/DAPI for cell death (apoptosis and necrosis), MitoTracker® Red CMXRos for mitochondrial membrane potential, TUNEL assay for DNA fragmentation and 8-hydroxy-2-deoxyguanosine for identification of oxidative damage to sperm DNA, and contrasted to membrane-bound RAGE expression levels, which were evaluated using an anti-RAGE monoclonal mouse antibody.
Main results and the role of chance: RAGE protein was shown to be present on the acrosomal and equatorial regions of sperm, with the levels of membrane bound receptor strongly correlating with poor sperm health across all parameters tested; motility (R 2 = 0.5441, P < 0.0001) and mitochondrial membrane potential (R 2 = 0.6181, P < 0.0001) being of particular note. The analysis was performed at a single cell level thereby removing confounding complications from soluble forms of the RAGE protein that can be found in seminal plasma. The expression of the RAGE protein was shown to be stable over time and its levels are therefore not subject to variation in sample handling or preparation time.
Large scale data: N/A.
Limitations reasons for caution: Inclusion criteria for this study were non-diabetic, non-obese and non-smoking participants to assess the distribution of RAGE expression in the general population, thereby excluding disease conditions that may inc
Study question: Could sperm and leukocyte telomere length (TL) be associated with sperm quality parameters and reproductive health in men from the general population?
Summary answer: A positive association between sperm and leukocyte TL with sperm concentration and total count has been demonstrated.
What is known already: Male factors account for almost half of cases of couple infertility, and shorter TLs have been observed in sperm from men with impaired sperm parameters. However, evidence in men from the general population is limited.
Study design size duration: A total of 200 volunteers of reproductive age were recruited between February 2021 and April 2023 to participate in the Lifestyle and Environmental Determinants of Seminogram and Other Male Fertility-Related Parameters (Led-Fertyl) cross-sectional study.
Participants/materials setting methods: TLs in sperm and leukocytes were measured using quantitative polymerase chain reaction (qPCR) in 168 and 194 participants, respectively. Sperm parameters, including concentration, total count, motility, vitality, and morphology, were analyzed using a computer-assisted sperm analysis (CASA) SCA® system according to the World Health Organization (WHO) 2010 guidelines. Multivariable regression models were performed to assess the associations between sperm and leukocyte TL, either in tertiles or as continuous variables, and sperm quality parameters while adjusting for potential confounders.
Main results and the role of chance: Participants in tertiles 2 (T2) and 3 (T3) of sperm TL showed a higher sperm concentration (β: 1.09; 95% CI: 0.09-2.09 and β: 2.06; 95% CI: 1.04-3.09 for T2 and T3, respectively; P-trend < 0.001), compared to those in the reference tertile (T1). Participants in the highest tertile of sperm TL showed higher total sperm count (β: 3.83; 95% CI: 2.08-5.58 for T3 vs T1; P-trend < 0.001). Participants in the top tertile of leukocyte TL showed higher sperm concentration (β: 1.49; 95% CI: 0.44-2.54 for T3 vs T1; P-trend = 0.004), and total count (β: 3.49; 95% CI: 1.62-5.35 for T3 vs T1; P-trend < 0.001) compared with participants in T1. These results remained consistent when sperm and leukocyte TL were modelled as continuous variables.
Limitations reasons for caution: One limitation is the impossibility of establishing a cause-effect relationship due to the cross-sectional study design. Additionally, the sample size of the study cannot be considered large.
Wider implications of the findings: Sperm and leukocyte TLs are associated with sperm quality parameters in the general population. Additional determinations and further studies with larger sample sizes are needed to clarify the mechanisms underlying these associations and to investigate the further implications.
Study question: Can modelling the longitudinal morphokinetic pattern of euploid embryos during time-lapse monitoring (TLM) be helpful for selecting embryos with the highest live birth potential?
Summary answer: Longitudinal reference ranges of morphokinetic development of euploid embryos have been identified, and embryos with steadier progression during TLM are associated with higher chances of live birth.
What is known already: TLM imaging is increasingly adopted by fertility clinics as an attempt to improve the ability of selecting embryos with the highest potential for implantation. Many markers of embryonic morphokinetics have been incorporated into decision algorithms for embryo (de)selection. However, longitudinal changes during this temporal process, and the impact of such changes on embryonic competence remain unknown. Aiming to model the reference ranges of morphokinetic development of euploid embryos and using it as a single longitudinal trajectory might provide an additive value to the blastocyst morphological grade in identifying highly competent embryos.
Study design size duration: This observational, retrospective cohort study was performed in a single IVF clinic between October 2017 and June 2021 and included only autologous single euploid frozen embryo transfers (seFET).
Participants/materials setting methods: Reference ranges were developed from [hours post-insemination (hpi)] of the standard morphokinetic parameters of euploid embryos assessed as tPB2, tPNa, tPNf, t2-t9, tSC, tM, tSB, and tB. Variance in morphokinetic patterns was measured and reported as morphokinetic variance score (MVS). Nuclear errors (micronucleation, binucleation, and multinucleation) were annotated when present in at least one blastomere at the two- or four-cell stages. The blastocyst grade of expansion, trophectoderm (TE), and inner cell mass (ICM) were assessed immediately before biopsy using Gardner's criteria. Pre-implantation genetic diagnosis for aneuploidy (PGT-A) was performed by next-generation sequencing. All euploid embryos were singly transferred in a frozen transferred cycle and outcomes were assessed as live birth, pregnancy loss, or not pregnant. Association of MVS with live birth was investigated with regression analyses.
Main results and the role of chance: TLM data from 340 seFET blastocysts were included in the study, of which 189 (55.6%) resulted in a live birth. The median time for euploid embryos to reach blastulation was 109.9 hpi (95% CI: 98.8-121.0 hpi). The MVS was calculated from the variance in time taken for the embryo to reach all morphokinetic points and reflects the total morphokinetic variability it exhibits during its development. Embryos with more erratic kinetics, i.e. higher morphokinetic variance, had higher rates of pregnancy loss (P = 0.004) and no pregnancy (P < 0.001)
Study question: What is the frequency of PLCZ1, ACTL7A, and ACTL9 variants in male patients showing fertilization failure after ICSI, and how effective is assisted oocyte activation (AOA) for them?
Summary answer: Male patients with fertilization failure after ICSI manifest variants in PLCZ1 (29.09%), ACTL7A (14.81%), and ACTL9 (3.70%), which can be efficiently overcome by AOA treatment with ionomycin.
What is known already: Genetic variants in PLCZ1, and more recently, in ACTL7A, and ACTL9 male genes, have been associated with total fertilization failure or low fertilization after ICSI. A larger patient cohort is required to understand the frequency at which these variants occur, and to assess their effect on the calcium ion (Ca2+) release during oocyte activation. AOA, using ionomycin, can restore fertilization and pregnancy rates in patients with PLCZ1 variants, but it remains unknown how efficient this is for patients with ACTL7A and ACTL9 variants.
Study design size duration: This prospective study involved two patient cohorts. In the first setting, group 1 (N = 28, 2006-2020) underwent only PLCZ1 genetic screening, while group 2 (N = 27, 2020-2023) underwent PLCZ1, ACTL7A, and ACTL9 genetic screening. Patients were only recruited when they had a mean fertilization rate of ≤33.33% in at least one ICSI cycle with at least four MII oocytes. Patients underwent a mouse oocyte activation test (MOAT) and at least one ICSI-AOA cycle using calcium chloride (CaCl2) injection and double ionomycin exposure at our centre. All patients donated a saliva sample for genetic screening and a sperm sample for further diagnostic tests, including Ca2+ imaging.
Participants/materials setting methods: Genetic screening was performed via targeted next-generation sequencing. Identified variants were classified by applying the revised ACMG guidelines into a Bayesian framework and were confirmed by bidirectional Sanger sequencing. If variants of uncertain significance or likely pathogenic or pathogenic variants were found, patients underwent additional determination of the sperm Ca2+-releasing pattern in mouse (MOCA) and in IVM human (HOCA) oocytes. Additionally, ACTL7A immunofluorescence and acrosome ultrastructure analyses by transmission electron microscopy (TEM) were performed for patients with ACTL7A and/or ACTL9 variants.
Main results and the role of chance: Overall, the frequency rate of PLCZ1 variants was 29.09%. Moreover, 14.81% of patients carried ACTL7A variants and 3.70% carried ACTL9 variants. Seven different PLCZ1 variants were identified (p.Ile74Thr, p.Gln94*, p.Arg141His, p.His233Leu, p.Lys322*, p.Ile379Thr, and p.Ser500Leu), five o

