首页 > 最新文献

IEEE transactions on medical robotics and bionics最新文献

英文 中文
Design and Characterization of a Low-Profile Haptic System for Telemanipulation 用于远程操控的低矮型触觉系统的设计与特性分析
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-31 DOI: 10.1109/TMRB.2024.3488840
C. F. Blanco-Diaz;G. Degl'Innocenti;E. Vendrame;M. Uliano;M. Controzzi;L. Cappello
In telemanipulation, supplementary feedback can enhance operator perception and control precision. This study introduces a haptic interface designed to convey temporally discrete tactile cues when remotely controlling a robot. Low-profile piezoelectric sensors were integrated in the thumb of a robotic hand to capture the key events of the manipulation task (i.e., object contact and release). Synchronously with such events, pressure bursts were delivered to the operator’s fingertip through a soft textile thimble equipped with inflatable pockets. Both this haptic display and the sensing module were individually evaluated. The pneumatic system responsible for pockets inflation was characterized in terms of reaction time, proving suitable for the application with a latency of less than 70 ms. Regarding the sensing module, the behavior of the sensorized thumb was first evaluated under static conditions, identifying contact and release events when grasping with the robotic hand differently shaped objects fixed on a table. Then, the accuracy of the touch event detection was assessed while performing a more complex manipulation task (i.e., a pick and lift task). This evaluation was conducted first with the robot programmed to grasp and lift an object following pre-defined trajectories, where we measured accuracy of 100% for contact and 90% for release event detection. Then, we performed a telemanipulation pilot study involving eight participants, where the system proved capable of correctly detecting object contact and release events with an accuracy of 100% and 86.4%. Despite preliminary, these results confirmed proper functioning of the system and paved the way for the exploration of a new haptic feedback policy in telemanipulation based on temporally discrete tactile events.
在远程操控中,辅助反馈可以增强操作员的感知能力和控制精度。本研究介绍了一种触觉界面,旨在远程控制机器人时传递时间上不连续的触觉提示。低矮型压电传感器集成在机器人手的拇指上,用于捕捉操纵任务的关键事件(即物体接触和释放)。与这些事件同步,压力脉冲通过一个装有充气口袋的柔软纺织顶针传递到操作者的指尖。该触觉显示器和传感模块都经过了单独评估。对负责口袋充气的气动系统的反应时间进行了评估,结果表明该系统的延迟时间小于 70 毫秒,非常适合应用。关于传感模块,首先在静态条件下对传感拇指的行为进行了评估,确定了机器人手抓取固定在桌子上的不同形状物体时的接触和释放事件。然后,在执行更复杂的操作任务(即拾取和抬起任务)时,对触摸事件检测的准确性进行了评估。首先,我们对机器人进行了编程,让它按照预先设定的轨迹抓取和举起一个物体,在此过程中,我们测得接触事件检测的准确率为 100%,释放事件检测的准确率为 90%。然后,我们进行了一项有八名参与者参与的远程操控试验研究,结果证明该系统能够正确检测物体接触和释放事件,准确率分别为 100%和 86.4%。尽管是初步研究,但这些结果证实了系统的正常运行,并为探索基于时间离散触觉事件的远程操控新触觉反馈策略铺平了道路。
{"title":"Design and Characterization of a Low-Profile Haptic System for Telemanipulation","authors":"C. F. Blanco-Diaz;G. Degl'Innocenti;E. Vendrame;M. Uliano;M. Controzzi;L. Cappello","doi":"10.1109/TMRB.2024.3488840","DOIUrl":"https://doi.org/10.1109/TMRB.2024.3488840","url":null,"abstract":"In telemanipulation, supplementary feedback can enhance operator perception and control precision. This study introduces a haptic interface designed to convey temporally discrete tactile cues when remotely controlling a robot. Low-profile piezoelectric sensors were integrated in the thumb of a robotic hand to capture the key events of the manipulation task (i.e., object contact and release). Synchronously with such events, pressure bursts were delivered to the operator’s fingertip through a soft textile thimble equipped with inflatable pockets. Both this haptic display and the sensing module were individually evaluated. The pneumatic system responsible for pockets inflation was characterized in terms of reaction time, proving suitable for the application with a latency of less than 70 ms. Regarding the sensing module, the behavior of the sensorized thumb was first evaluated under static conditions, identifying contact and release events when grasping with the robotic hand differently shaped objects fixed on a table. Then, the accuracy of the touch event detection was assessed while performing a more complex manipulation task (i.e., a pick and lift task). This evaluation was conducted first with the robot programmed to grasp and lift an object following pre-defined trajectories, where we measured accuracy of 100% for contact and 90% for release event detection. Then, we performed a telemanipulation pilot study involving eight participants, where the system proved capable of correctly detecting object contact and release events with an accuracy of 100% and 86.4%. Despite preliminary, these results confirmed proper functioning of the system and paved the way for the exploration of a new haptic feedback policy in telemanipulation based on temporally discrete tactile events.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"100-107"},"PeriodicalIF":3.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10740009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embedded Force Sensor for Soft Robots With Deep Transformation Calibration 具有深度变换校准功能的嵌入式软机器人力传感器
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-14 DOI: 10.1109/TMRB.2024.3479878
Navid Masoumi;Andrés C. Ramos;Tannaz Torkaman;Liane S. Feldman;Jake Barralet;Javad Dargahi;Amir Hooshiar
A novel soft sensor calibration method is proposed for minimally invasive surgery, based on our developed gelatin-graphite sensor with high compliance and adaptability. This approach uses convolutional deep learning that accounts for a sensor’s non-linear behavior and reduces noise amplification. This technique offers a smaller minimum detectable force than other approaches and is particularly useful in sensitive surgical scenarios. The sensor’s performance is characterized by its fine resolution ( $leq 1$ mN) and accurate force estimation, especially for forces below 400 mN of amplitude. The best calibration (Morse) scheme provides high performance, with a Mean Absolute Error of $leq 7.9$ mN. This work was validated through comparison among other representative studies and offered a path toward future directions for optimizing and implementing soft robotic sensors in minimally invasive surgeries. The application of this sensor can revolutionize surgical procedures and capitalize on the benefits of soft robotics, potentially enhancing precision and reducing trauma in surgeries.
基于我们开发的具有高顺应性和适应性的明胶石墨传感器,为微创手术提出了一种新型软传感器校准方法。这种方法使用卷积深度学习,可考虑传感器的非线性行为并减少噪声放大。与其他方法相比,该技术的最小可探测力更小,尤其适用于敏感的手术场景。该传感器的性能特点是分辨率高(1 mN)和力估算准确,尤其是对于振幅低于 400 mN 的力。最佳校准(莫尔斯)方案提供了高性能,平均绝对误差为 7.9 mN。这项工作通过与其他代表性研究的比较得到了验证,并为微创手术中软性机器人传感器的优化和实施提供了未来发展方向。这种传感器的应用可以彻底改变外科手术程序,并充分利用软机器人技术的优势,有可能提高手术的精确度并减少创伤。
{"title":"Embedded Force Sensor for Soft Robots With Deep Transformation Calibration","authors":"Navid Masoumi;Andrés C. Ramos;Tannaz Torkaman;Liane S. Feldman;Jake Barralet;Javad Dargahi;Amir Hooshiar","doi":"10.1109/TMRB.2024.3479878","DOIUrl":"https://doi.org/10.1109/TMRB.2024.3479878","url":null,"abstract":"A novel soft sensor calibration method is proposed for minimally invasive surgery, based on our developed gelatin-graphite sensor with high compliance and adaptability. This approach uses convolutional deep learning that accounts for a sensor’s non-linear behavior and reduces noise amplification. This technique offers a smaller minimum detectable force than other approaches and is particularly useful in sensitive surgical scenarios. The sensor’s performance is characterized by its fine resolution (\u0000<inline-formula> <tex-math>$leq 1$ </tex-math></inline-formula>\u0000mN) and accurate force estimation, especially for forces below 400 mN of amplitude. The best calibration (Morse) scheme provides high performance, with a Mean Absolute Error of \u0000<inline-formula> <tex-math>$leq 7.9$ </tex-math></inline-formula>\u0000 mN. This work was validated through comparison among other representative studies and offered a path toward future directions for optimizing and implementing soft robotic sensors in minimally invasive surgeries. The application of this sensor can revolutionize surgical procedures and capitalize on the benefits of soft robotics, potentially enhancing precision and reducing trauma in surgeries.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1363-1374"},"PeriodicalIF":3.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ENTRI: Enhanced Navigational Toolkit for Robotic Interventions ENTRI:机器人干预增强导航工具包
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-14 DOI: 10.1109/TMRB.2024.3475827
Manish Sahu;Hisashi Ishida;Laura Connolly;Hongyi Fan;Anton Deguet;Peter Kazanzides;Francis X. Creighton;Russell H. Taylor;Adnan Munawar
Image-guided robotic interventions represent a transformative frontier in surgery, blending advanced imaging and robotics for improved precision and outcomes. This paper addresses the critical need for integrating open-source platforms to enhance situational awareness in image-guided robotic research. We present an open-source toolkit, named ENTRI, that seamlessly combines a physics-based constraint formulation framework, AMBF, with a state-of-the-art imaging platform application, 3D Slicer. ENTRI facilitates the creation of highly customizable interactive digital twins, that incorporate processing and visualization of medical imaging, robot kinematics, and scene dynamics for real-time robot control. Through a feasibility study, we showcase real-time synchronization of a physical robotic interventional environment in both 3D Slicer and AMBF, highlighting low-latency updates and improved visualization. The source code and supplementary materials for this study are available at https://github.com/LCSR-CIIS/ENTRI.
图像引导机器人介入是外科手术的变革前沿,它将先进的成像技术和机器人技术相结合,提高了手术的精确度和效果。本文探讨了在图像引导机器人研究中整合开源平台以提高态势感知能力的关键需求。我们提出了一个名为 ENTRI 的开源工具包,它将基于物理的约束制定框架 AMBF 与最先进的成像平台应用程序 3D Slicer 无缝地结合在一起。ENTRI 可帮助创建高度定制化的交互式数字双胞胎,将医学成像、机器人运动学和场景动力学的处理和可视化结合起来,实现实时机器人控制。通过可行性研究,我们在 3D Slicer 和 AMBF 中展示了物理机器人介入环境的实时同步,突出了低延迟更新和改进的可视化。本研究的源代码和补充材料可在 https://github.com/LCSR-CIIS/ENTRI 上获取。
{"title":"ENTRI: Enhanced Navigational Toolkit for Robotic Interventions","authors":"Manish Sahu;Hisashi Ishida;Laura Connolly;Hongyi Fan;Anton Deguet;Peter Kazanzides;Francis X. Creighton;Russell H. Taylor;Adnan Munawar","doi":"10.1109/TMRB.2024.3475827","DOIUrl":"https://doi.org/10.1109/TMRB.2024.3475827","url":null,"abstract":"Image-guided robotic interventions represent a transformative frontier in surgery, blending advanced imaging and robotics for improved precision and outcomes. This paper addresses the critical need for integrating open-source platforms to enhance situational awareness in image-guided robotic research. We present an open-source toolkit, named ENTRI, that seamlessly combines a physics-based constraint formulation framework, AMBF, with a state-of-the-art imaging platform application, 3D Slicer. ENTRI facilitates the creation of highly customizable interactive digital twins, that incorporate processing and visualization of medical imaging, robot kinematics, and scene dynamics for real-time robot control. Through a feasibility study, we showcase real-time synchronization of a physical robotic interventional environment in both 3D Slicer and AMBF, highlighting low-latency updates and improved visualization. The source code and supplementary materials for this study are available at \u0000<uri>https://github.com/LCSR-CIIS/ENTRI</uri>\u0000.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1405-1408"},"PeriodicalIF":3.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soft Crawling Robot With a Dual-Morphing Origami Configuration 采用双变形折纸结构的软体爬行机器人
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-14 DOI: 10.1109/TMRB.2024.3472858
Xuyang Ren;Yu Huan;Matteo Cianchetti;Shuxin Wang;Paolo Dario;Gastone Ciuti
Soft crawling robots demonstrated high compliance and effectiveness in performing complex tasks in unstructured and harsh environments. They can navigate inside constrained spaces and provide superior adaptability. This paper presents a soft crawling robot with a modified Yoshimura origami-based central chamber (elongation/contraction actuator) and four electrostatic adhesion feet (anchoring elements). It was designed to perform linear and steering locomotion under specific actuation sequences to avoid obstacles autonomously; it features a height-adjustable ability to squeeze under low gaps. A dual-morphing mechanism, enabling the origami-based chamber to operate with two locomotion modalities, was investigated to provide a simple but effective actuation method. Tests were carried out to validate the dual-morphing mechanism and to characterise the crawling robot’s performance. Experimental tests successfully demonstrated the robot’s capabilities, e.g., locomotion under low gaps (i.e., 20 mm, 66% of the height of the robot), obstacle avoidance, climbing on a sloped surface (i.e., 15 deg), and lifting and carrying objects (i.e., 80 g, ten times its weight).
软爬行机器人在非结构化和恶劣环境中执行复杂任务时表现出很高的顺应性和有效性。它们可以在受限空间内导航,并提供出色的适应性。本文介绍了一种软爬行机器人,它具有一个基于吉村折纸的改进型中央腔(伸长/收缩致动器)和四个静电附着脚(锚定元件)。它的设计目的是在特定的致动序列下进行线性和转向运动,以自主避开障碍物;它的特点是高度可调,能够在低间隙下进行挤压。为了提供一种简单而有效的驱动方法,研究人员研究了一种双变形机制,使基于折纸的舱体能够以两种运动模式运行。为验证双变形机制和鉴定爬行机器人的性能,进行了相关测试。实验测试成功证明了机器人的能力,例如,在低间隙(即 20 毫米,机器人高度的 66%)下运动、避开障碍物、在倾斜表面(即 15 度)上攀爬,以及举起和搬运物体(即 80 克,其重量的 10 倍)。
{"title":"Soft Crawling Robot With a Dual-Morphing Origami Configuration","authors":"Xuyang Ren;Yu Huan;Matteo Cianchetti;Shuxin Wang;Paolo Dario;Gastone Ciuti","doi":"10.1109/TMRB.2024.3472858","DOIUrl":"https://doi.org/10.1109/TMRB.2024.3472858","url":null,"abstract":"Soft crawling robots demonstrated high compliance and effectiveness in performing complex tasks in unstructured and harsh environments. They can navigate inside constrained spaces and provide superior adaptability. This paper presents a soft crawling robot with a modified Yoshimura origami-based central chamber (elongation/contraction actuator) and four electrostatic adhesion feet (anchoring elements). It was designed to perform linear and steering locomotion under specific actuation sequences to avoid obstacles autonomously; it features a height-adjustable ability to squeeze under low gaps. A dual-morphing mechanism, enabling the origami-based chamber to operate with two locomotion modalities, was investigated to provide a simple but effective actuation method. Tests were carried out to validate the dual-morphing mechanism and to characterise the crawling robot’s performance. Experimental tests successfully demonstrated the robot’s capabilities, e.g., locomotion under low gaps (i.e., 20 mm, 66% of the height of the robot), obstacle avoidance, climbing on a sloped surface (i.e., 15 deg), and lifting and carrying objects (i.e., 80 g, ten times its weight).","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1771-1780"},"PeriodicalIF":3.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating Surgical Robot Cutting of Thin Deformable Materials Using a Rope Grid Structure 利用绳网结构模拟手术机器人切割薄型可变形材料的过程
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-07 DOI: 10.1109/TMRB.2024.3475509
Mustafa Haiderbhai;Lueder A. Kahrs
Traditional methods for autonomous cutting in surgical robotics have relied on trajectory-based planning algorithms. These methods fail to compensate for dynamic changes in soft materials such as deformation and topological change. To apply recent advances such as reinforcement learning (RL), a simulation is needed that models the cutting of soft materials. In this work, we develop a surgical robotics simulation environment for cutting deformable meshes with the da Vinci Research Kit (dVRK). Our environment is built using a particle-based physics simulation to simulate a rope grid structure to create realistic physics behavior and visual rendering. Cutting is implemented with the EndoWrist Round Tip Scissors (RTS) through a system of collision checking and callbacks to detect and update cuts. To showcase the deformable mesh cutting simulation, we design a cutting task of cutting along a desired path that can be solved through manual control. The grid structure can be adapted to render different materials, and we highlight how it can be made to resemble deformable tissue or fabric while being stable with no visible artifacts. This environment is a stepping stone towards training autonomous agents for cutting 2D deformable materials and building towards cutting more complex deformable shapes.
手术机器人自主切割的传统方法依赖于基于轨迹的规划算法。这些方法无法补偿软材料的动态变化,如变形和拓扑变化。要应用强化学习(RL)等最新进展,需要对软材料切割进行模拟建模。在这项工作中,我们利用达芬奇研究工具包(dVRK)开发了一种用于切割可变形网格的手术机器人仿真环境。我们的环境使用基于粒子的物理仿真来模拟绳网结构,以创建逼真的物理行为和视觉渲染。切割是使用 EndoWrist 圆头剪刀(RTS),通过碰撞检查和回调系统来检测和更新切割。为了展示可变形网格剪切模拟,我们设计了一项剪切任务,即沿着所需的路径剪切,可通过手动控制来解决。网格结构可用于渲染不同的材料,我们重点介绍了如何使网格结构类似于可变形的组织或织物,同时保持稳定,没有明显的伪影。该环境是训练自主代理切割二维可变形材料的垫脚石,并可用于切割更复杂的可变形形状。
{"title":"Simulating Surgical Robot Cutting of Thin Deformable Materials Using a Rope Grid Structure","authors":"Mustafa Haiderbhai;Lueder A. Kahrs","doi":"10.1109/TMRB.2024.3475509","DOIUrl":"https://doi.org/10.1109/TMRB.2024.3475509","url":null,"abstract":"Traditional methods for autonomous cutting in surgical robotics have relied on trajectory-based planning algorithms. These methods fail to compensate for dynamic changes in soft materials such as deformation and topological change. To apply recent advances such as reinforcement learning (RL), a simulation is needed that models the cutting of soft materials. In this work, we develop a surgical robotics simulation environment for cutting deformable meshes with the da Vinci Research Kit (dVRK). Our environment is built using a particle-based physics simulation to simulate a rope grid structure to create realistic physics behavior and visual rendering. Cutting is implemented with the EndoWrist Round Tip Scissors (RTS) through a system of collision checking and callbacks to detect and update cuts. To showcase the deformable mesh cutting simulation, we design a cutting task of cutting along a desired path that can be solved through manual control. The grid structure can be adapted to render different materials, and we highlight how it can be made to resemble deformable tissue or fabric while being stable with no visible artifacts. This environment is a stepping stone towards training autonomous agents for cutting 2D deformable materials and building towards cutting more complex deformable shapes.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1401-1404"},"PeriodicalIF":3.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-Based Tracking Control of a Soft Growing Robot for Colonoscopy 基于模型的结肠镜检查软生长机器人跟踪控制
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-04 DOI: 10.1109/TMRB.2024.3474059
Korn Borvorntanajanya;Shen Treratanakulchai;Ferdinando Rodriguez y Rodriguez;Enrico Franco
This paper investigates the model based tracking control of soft growing robots with pneumatic actuation that extend according to the principle known as eversion. A model of the system which accounts for the pressure dynamics is presented. A new control law is constructed with a high-order sliding-mode approach and a nonlinear observer is employed to compensate for the effect of external forces. Numerical simulations and experiments demonstrate the effectiveness of the proposed controller compared to our former energy-shaping implementation and to a baseline sliding-mode controller. Experiments with a training phantom demonstrate that the new controller resulted in a reduced peak pressure, approximately 14.8% lower, a reduced tracking error, approximately 4.9% lower RMSE, and a reduced consumption of compressed air, approximately 3.9% lower, compared to a baseline sliding-mode algorithm.
本文研究了基于模型的软生长机器人跟踪控制,该机器人带有气动驱动装置,可根据所谓的 "反转 "原理进行伸展。文中提出了一个考虑到压力动态的系统模型。通过高阶滑模方法构建了新的控制法则,并采用非线性观测器来补偿外力的影响。数值模拟和实验证明,与我们之前的能量整形实施方案和基线滑模控制器相比,所提出的控制器非常有效。使用训练模型进行的实验表明,与基线滑动模式算法相比,新控制器降低了峰值压力(约低 14.8%),减少了跟踪误差(约低 4.9% RMSE),降低了压缩空气消耗量(约低 3.9%)。
{"title":"Model-Based Tracking Control of a Soft Growing Robot for Colonoscopy","authors":"Korn Borvorntanajanya;Shen Treratanakulchai;Ferdinando Rodriguez y Rodriguez;Enrico Franco","doi":"10.1109/TMRB.2024.3474059","DOIUrl":"https://doi.org/10.1109/TMRB.2024.3474059","url":null,"abstract":"This paper investigates the model based tracking control of soft growing robots with pneumatic actuation that extend according to the principle known as eversion. A model of the system which accounts for the pressure dynamics is presented. A new control law is constructed with a high-order sliding-mode approach and a nonlinear observer is employed to compensate for the effect of external forces. Numerical simulations and experiments demonstrate the effectiveness of the proposed controller compared to our former energy-shaping implementation and to a baseline sliding-mode controller. Experiments with a training phantom demonstrate that the new controller resulted in a reduced peak pressure, approximately 14.8% lower, a reduced tracking error, approximately 4.9% lower RMSE, and a reduced consumption of compressed air, approximately 3.9% lower, compared to a baseline sliding-mode algorithm.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1354-1362"},"PeriodicalIF":3.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Augmented Reality Assisted Orthopedic Surgical Robotic System With Bidirectional Surface Registration Algorithms 采用双向表面注册算法的新型增强现实辅助骨科手术机器人系统
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-03 DOI: 10.1109/TMRB.2024.3472844
Ang Zhang;Zhe Min;Zhengyan Zhang;Yingying Wang;Max Q.-H. Meng
This paper presents a novel augmented reality (AR)-assisted orthopedic surgical robotic system based on Head-Mounted Display (HMD) devices. The proposed system can overlay the preoperative plans over the patient’s anatomy and provide useful guidance for surgeons during interventions, with integrated calibration and registration components. A novel bi-directional generalised point set registration algorithm that utilises robust features is developed to accurately align the pre-operative CT and intra-operative patient spaces, which has been demonstrated to outperform existing registration methods. The efficacy of the system is both qualitatively and quantitatively assessed with an in vitro study representing a total knee arthroplasty (TKA) procedure. The experimental results showed that 1) the system can successfully align the preoperative and intraoperative spaces, with the mean target registration error (TRE) being $2.78 ; pm ; 2.51$ mm; 2) the models can be properly overlaid to the physical scenarios with the mean AR visualization accuracy being $6.97 ; pm ; 1.57$ mm.
本文介绍了一种基于头戴式显示器(HMD)设备的新型增强现实(AR)辅助骨科手术机器人系统。该系统可将术前计划叠加到病人的解剖结构上,并通过集成的校准和注册组件在干预过程中为外科医生提供有用的指导。该系统开发了一种新颖的双向广义点集配准算法,利用稳健的特征对术前 CT 和术中患者空间进行精确配准,该算法已被证明优于现有的配准方法。通过一项代表全膝关节置换术(TKA)的体外研究,对该系统的功效进行了定性和定量评估。实验结果表明:1)该系统能成功对准术前和术中空间,平均目标配准误差(TRE)为2.78美元;2.51毫米;2)模型能正确叠加到物理场景中,平均AR可视化精度为6.97美元;1.57毫米。
{"title":"A Novel Augmented Reality Assisted Orthopedic Surgical Robotic System With Bidirectional Surface Registration Algorithms","authors":"Ang Zhang;Zhe Min;Zhengyan Zhang;Yingying Wang;Max Q.-H. Meng","doi":"10.1109/TMRB.2024.3472844","DOIUrl":"https://doi.org/10.1109/TMRB.2024.3472844","url":null,"abstract":"This paper presents a novel augmented reality (AR)-assisted orthopedic surgical robotic system based on Head-Mounted Display (HMD) devices. The proposed system can overlay the preoperative plans over the patient’s anatomy and provide useful guidance for surgeons during interventions, with integrated calibration and registration components. A novel bi-directional generalised point set registration algorithm that utilises robust features is developed to accurately align the pre-operative CT and intra-operative patient spaces, which has been demonstrated to outperform existing registration methods. The efficacy of the system is both qualitatively and quantitatively assessed with an in vitro study representing a total knee arthroplasty (TKA) procedure. The experimental results showed that 1) the system can successfully align the preoperative and intraoperative spaces, with the mean target registration error (TRE) being \u0000<inline-formula> <tex-math>$2.78 ; pm ; 2.51$ </tex-math></inline-formula>\u0000 mm; 2) the models can be properly overlaid to the physical scenarios with the mean AR visualization accuracy being \u0000<inline-formula> <tex-math>$6.97 ; pm ; 1.57$ </tex-math></inline-formula>\u0000 mm.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1555-1566"},"PeriodicalIF":3.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, Analysis, and Preliminary Validation of Magnetic Anchored and Cable Driven Endoscope for Minimally Invasive Surgery 用于微创手术的磁性锚定和电缆驱动内窥镜的设计、分析和初步验证
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-03 DOI: 10.1109/TMRB.2024.3472833
Jixiu Li;Tao Zhang;Truman Cheng;Yehui Li;Calvin Sze Hang Ng;Philip Wai Yan Chiu;Zheng Li
Magnetic anchored and guided system(MAGS) is a promising solution for minimally invasive surgery, particularly in the realm of endoscope robotics. However, the inherent tight tissue contact in MAGS limits certain degrees of freedom, constraining the surgeon’s ability to adjust the field of view. To address this, we propose a novel solution by combining magnetic actuation with a cable-driven flexible link. Our study encompasses the design, analysis of magnetic force/torque, and kinematics of the flexible link. One prototype was fabricated, and experiments, including the evaluation of magnetic coupling performance and the motion of the flexible link, were conducted. These experiments validated both the theoretical modeling and the functionality of the magnetic endoscope system.
磁锚定和制导系统(MAGS)是微创手术的一种前景广阔的解决方案,尤其是在内窥镜机器人领域。然而,MAGS 固有的紧密组织接触限制了某些自由度,制约了外科医生调整视野的能力。为了解决这个问题,我们提出了一种新颖的解决方案,将磁驱动与电缆驱动柔性链接相结合。我们的研究包括柔性链接的设计、磁力/扭矩分析和运动学。我们制作了一个原型,并进行了实验,包括磁耦合性能和柔性链接运动的评估。这些实验验证了磁性内窥镜系统的理论建模和功能。
{"title":"Design, Analysis, and Preliminary Validation of Magnetic Anchored and Cable Driven Endoscope for Minimally Invasive Surgery","authors":"Jixiu Li;Tao Zhang;Truman Cheng;Yehui Li;Calvin Sze Hang Ng;Philip Wai Yan Chiu;Zheng Li","doi":"10.1109/TMRB.2024.3472833","DOIUrl":"https://doi.org/10.1109/TMRB.2024.3472833","url":null,"abstract":"Magnetic anchored and guided system(MAGS) is a promising solution for minimally invasive surgery, particularly in the realm of endoscope robotics. However, the inherent tight tissue contact in MAGS limits certain degrees of freedom, constraining the surgeon’s ability to adjust the field of view. To address this, we propose a novel solution by combining magnetic actuation with a cable-driven flexible link. Our study encompasses the design, analysis of magnetic force/torque, and kinematics of the flexible link. One prototype was fabricated, and experiments, including the evaluation of magnetic coupling performance and the motion of the flexible link, were conducted. These experiments validated both the theoretical modeling and the functionality of the magnetic endoscope system.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1397-1400"},"PeriodicalIF":3.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MPC for Suturing Stitch Automation 用于缝合线自动化的 MPC
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-03 DOI: 10.1109/TMRB.2024.3472796
Pasquale Marra;Sajjad Hussain;Marco Caianiello;Fanny Ficuciello
Robot-assisted surgery (RAS) requires effective control strategies to ensure safety and accuracy while respecting the physical limits of the robot during tasks such as suturing and tissue manipulation. Model Predictive Control (MPC), with its inherent capability to handle complex dynamic systems, predict the future response and enforce constraints, is well-suited for these tasks. In this paper, MPC is employed to automate the suturing stitch task by mapping the operational space trajectory to the joint space while ensuring compliance with system kinematics constraints and safety requirements. To address varying requirements during suturing sub-tasks, two different objective functions and their corresponding constraint sets are used. The proposed framework is implemented using the ACADO toolkit to solve the Optimal Control Problem (OCP) and ROS to connect ACADO to CoppeliaSim/DVRK. Validation through simulations in CoppeliaSim and real-time experiments on the DVRK demonstrated that our approach achieved a positional/orientational accuracy of less than $1mm/4 ^{circ }$ in simulations, and an error norm of approximately $1.9mm$ in real world implementations, confirming its effectiveness in automating suturing task.
机器人辅助手术(RAS)需要有效的控制策略,以确保安全和精确,同时在缝合和组织操作等任务中尊重机器人的物理极限。模型预测控制(MPC)具有处理复杂动态系统、预测未来响应和执行约束的固有能力,非常适合这些任务。在本文中,通过将操作空间轨迹映射到关节空间,同时确保符合系统运动学约束和安全要求,MPC 被用于自动执行缝合缝线任务。为满足缝合子任务期间的不同要求,使用了两种不同的目标函数及其相应的约束集。建议的框架使用 ACADO 工具包来解决最优控制问题(OCP),并使用 ROS 将 ACADO 与 CoppeliaSim/DVRK 连接起来。通过在CoppeliaSim中的模拟和DVRK上的实时实验验证,我们的方法在模拟中实现了小于1mm/4 ^{circ }$的位置/方位精度,而在实际实施中的误差规范约为1.9mm$,这证实了它在自动缝合任务中的有效性。
{"title":"MPC for Suturing Stitch Automation","authors":"Pasquale Marra;Sajjad Hussain;Marco Caianiello;Fanny Ficuciello","doi":"10.1109/TMRB.2024.3472796","DOIUrl":"https://doi.org/10.1109/TMRB.2024.3472796","url":null,"abstract":"Robot-assisted surgery (RAS) requires effective control strategies to ensure safety and accuracy while respecting the physical limits of the robot during tasks such as suturing and tissue manipulation. Model Predictive Control (MPC), with its inherent capability to handle complex dynamic systems, predict the future response and enforce constraints, is well-suited for these tasks. In this paper, MPC is employed to automate the suturing stitch task by mapping the operational space trajectory to the joint space while ensuring compliance with system kinematics constraints and safety requirements. To address varying requirements during suturing sub-tasks, two different objective functions and their corresponding constraint sets are used. The proposed framework is implemented using the ACADO toolkit to solve the Optimal Control Problem (OCP) and ROS to connect ACADO to CoppeliaSim/DVRK. Validation through simulations in CoppeliaSim and real-time experiments on the DVRK demonstrated that our approach achieved a positional/orientational accuracy of less than \u0000<inline-formula> <tex-math>$1mm/4 ^{circ }$ </tex-math></inline-formula>\u0000 in simulations, and an error norm of approximately \u0000<inline-formula> <tex-math>$1.9mm$ </tex-math></inline-formula>\u0000 in real world implementations, confirming its effectiveness in automating suturing task.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1468-1477"},"PeriodicalIF":3.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imitation Learning of Compression Pattern in Robotic-Assisted Ultrasound Examination Using Kernelized Movement Primitives 利用核化运动原型模仿学习机器人辅助超声波检查中的压缩模式
IF 3.4 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-03 DOI: 10.1109/TMRB.2024.3472856
Diego Dall’Alba;Lorenzo Busellato;Thiusius Rajeeth Savarimuthu;Zhuoqi Cheng;Iñigo Iturrate
Vascular diseases are commonly diagnosed using Ultrasound (US) imaging, which can be inconsistent due to its high dependence on the operator’s skill. Among these, Deep Vein Thrombosis (DVT) is a common yet potentially fatal condition, often leading to critical complications like pulmonary embolism. Robotic US Systems (RUSs) aim to improve diagnostic test consistency but face challenges with the complex scanning pattern requiring precise control over US probe pressure, such as the one needed for indirectly detecting occlusions during DVT assessment. This work introduces an imitation learning method based on Kernelized Movement Primitives (KMP) to standardize the contact force profile during US exams by training a robotic controller using sonographer demonstrations. A new recording device design enhances demonstration acquisition, integrating with US probes and enabling seamless force and position data recording. KMPs are used to link scan trajectory and interaction force, enabling generalization beyond the demonstrations. Our approach, evaluated on synthetic models and volunteers, shows that the KMP-based RUS can replicate an expert’s force control and US image quality, even under conditions requiring compression during scanning. It outperforms previous methods using manually defined force profiles, improving exam standardization and reducing reliance on specialized sonographers.
血管疾病通常使用超声波(US)成像进行诊断,但由于高度依赖操作员的技术,这种诊断方法并不稳定。其中,深静脉血栓(DVT)是一种常见但可能致命的疾病,往往会导致肺栓塞等严重并发症。机器人 US 系统(RUS)旨在提高诊断测试的一致性,但面临着复杂扫描模式的挑战,需要精确控制 US 探头的压力,例如在 DVT 评估过程中间接检测闭塞情况所需的压力。这项研究引入了一种基于核化运动原型(KMP)的模仿学习方法,通过超声波技师的演示来训练机器人控制器,从而使超声波检查过程中的接触力曲线标准化。新的记录设备设计增强了演示采集功能,可与超声探头集成,实现无缝力和位置数据记录。KMP 用于连接扫描轨迹和相互作用力,从而实现演示之外的推广。我们的方法在合成模型和志愿者身上进行了评估,结果表明,基于 KMP 的 RUS 可以复制专家的力控制和 US 图像质量,即使在扫描过程中需要压缩的条件下也是如此。它优于以前使用手动定义力曲线的方法,提高了检查的标准化程度,减少了对专业超声技师的依赖。
{"title":"Imitation Learning of Compression Pattern in Robotic-Assisted Ultrasound Examination Using Kernelized Movement Primitives","authors":"Diego Dall’Alba;Lorenzo Busellato;Thiusius Rajeeth Savarimuthu;Zhuoqi Cheng;Iñigo Iturrate","doi":"10.1109/TMRB.2024.3472856","DOIUrl":"https://doi.org/10.1109/TMRB.2024.3472856","url":null,"abstract":"Vascular diseases are commonly diagnosed using Ultrasound (US) imaging, which can be inconsistent due to its high dependence on the operator’s skill. Among these, Deep Vein Thrombosis (DVT) is a common yet potentially fatal condition, often leading to critical complications like pulmonary embolism. Robotic US Systems (RUSs) aim to improve diagnostic test consistency but face challenges with the complex scanning pattern requiring precise control over US probe pressure, such as the one needed for indirectly detecting occlusions during DVT assessment. This work introduces an imitation learning method based on Kernelized Movement Primitives (KMP) to standardize the contact force profile during US exams by training a robotic controller using sonographer demonstrations. A new recording device design enhances demonstration acquisition, integrating with US probes and enabling seamless force and position data recording. KMPs are used to link scan trajectory and interaction force, enabling generalization beyond the demonstrations. Our approach, evaluated on synthetic models and volunteers, shows that the KMP-based RUS can replicate an expert’s force control and US image quality, even under conditions requiring compression during scanning. It outperforms previous methods using manually defined force profiles, improving exam standardization and reducing reliance on specialized sonographers.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1567-1580"},"PeriodicalIF":3.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704653","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE transactions on medical robotics and bionics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1