首页 > 最新文献

Information processing in medical imaging : proceedings of the ... conference最新文献

英文 中文
Diffusion Model based Semi-supervised Learning on Brain Hemorrhage Images for Efficient Midline Shift Quantification 基于扩散模型的半监督学习脑出血图像中线偏移定量研究
Pub Date : 2023-01-01 DOI: 10.48550/arXiv.2301.00409
Shizhan Gong, Cheng Chen, Yuqi Gong, Nga Yan Chan, Wenao Ma, C. Mak, J. Abrigo, Q. Dou
Brain midline shift (MLS) is one of the most critical factors to be considered for clinical diagnosis and treatment decision-making for intracranial hemorrhage. Existing computational methods on MLS quantification not only require intensive labeling in millimeter-level measurement but also suffer from poor performance due to their dependence on specific landmarks or simplified anatomical assumptions. In this paper, we propose a novel semi-supervised framework to accurately measure the scale of MLS from head CT scans. We formulate the MLS measurement task as a deformation estimation problem and solve it using a few MLS slices with sparse labels. Meanwhile, with the help of diffusion models, we are able to use a great number of unlabeled MLS data and 2793 non-MLS cases for representation learning and regularization. The extracted representation reflects how the image is different from a non-MLS image and regularization serves an important role in the sparse-to-dense refinement of the deformation field. Our experiment on a real clinical brain hemorrhage dataset has achieved state-of-the-art performance and can generate interpretable deformation fields.
脑中线移位(MLS)是颅内出血临床诊断和治疗决策的关键因素之一。现有的MLS量化计算方法不仅需要在毫米级测量中进行密集标记,而且由于依赖于特定的标志或简化的解剖假设,性能较差。在本文中,我们提出了一种新的半监督框架来精确测量头部CT扫描的MLS尺度。我们将MLS测量任务描述为一个变形估计问题,并使用一些带有稀疏标签的MLS切片来解决它。同时,在扩散模型的帮助下,我们能够使用大量未标记的MLS数据和2793个非MLS案例进行表示学习和正则化。提取的图像表示反映了图像与非mls图像的不同之处,正则化在变形场的稀疏到密集细化中起着重要作用。我们在一个真实的临床脑出血数据集上的实验已经达到了最先进的性能,并且可以产生可解释的变形场。
{"title":"Diffusion Model based Semi-supervised Learning on Brain Hemorrhage Images for Efficient Midline Shift Quantification","authors":"Shizhan Gong, Cheng Chen, Yuqi Gong, Nga Yan Chan, Wenao Ma, C. Mak, J. Abrigo, Q. Dou","doi":"10.48550/arXiv.2301.00409","DOIUrl":"https://doi.org/10.48550/arXiv.2301.00409","url":null,"abstract":"Brain midline shift (MLS) is one of the most critical factors to be considered for clinical diagnosis and treatment decision-making for intracranial hemorrhage. Existing computational methods on MLS quantification not only require intensive labeling in millimeter-level measurement but also suffer from poor performance due to their dependence on specific landmarks or simplified anatomical assumptions. In this paper, we propose a novel semi-supervised framework to accurately measure the scale of MLS from head CT scans. We formulate the MLS measurement task as a deformation estimation problem and solve it using a few MLS slices with sparse labels. Meanwhile, with the help of diffusion models, we are able to use a great number of unlabeled MLS data and 2793 non-MLS cases for representation learning and regularization. The extracted representation reflects how the image is different from a non-MLS image and regularization serves an important role in the sparse-to-dense refinement of the deformation field. Our experiment on a real clinical brain hemorrhage dataset has achieved state-of-the-art performance and can generate interpretable deformation fields.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"497 1","pages":"69-81"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81707350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Subtype and Stage Inference with Timescales 具有时间尺度的子类型和阶段推断
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_2
A. Young, Leon M. Aksman, Daniel C. Alexander, P. Wijeratne
{"title":"Subtype and Stage Inference with Timescales","authors":"A. Young, Leon M. Aksman, Daniel C. Alexander, P. Wijeratne","doi":"10.1007/978-3-031-34048-2_2","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_2","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"5 1","pages":"15-26"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80174423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Differentiable Gamma Index-Based Loss Functions: Accelerating Monte-Carlo Radiotherapy Dose Simulation 基于可微伽马指数的损失函数:加速蒙特卡罗放疗剂量模拟
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_37
S. Martinot, N. Komodakis, M. Vakalopoulou, N. Bus, C. Robert, É. Deutsch, N. Paragios
{"title":"Differentiable Gamma Index-Based Loss Functions: Accelerating Monte-Carlo Radiotherapy Dose Simulation","authors":"S. Martinot, N. Komodakis, M. Vakalopoulou, N. Bus, C. Robert, É. Deutsch, N. Paragios","doi":"10.1007/978-3-031-34048-2_37","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_37","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"131 1","pages":"485-496"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77975632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
POLAFFINI: Efficient Feature-Based Polyaffine Initialization for Improved Non-linear Image Registration POLAFFINI:用于改进非线性图像配准的高效基于特征的多仿射初始化
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_47
Antoine Legouhy, Ross Callaghan, H. Azadbakht, Hui Zhang
{"title":"POLAFFINI: Efficient Feature-Based Polyaffine Initialization for Improved Non-linear Image Registration","authors":"Antoine Legouhy, Ross Callaghan, H. Azadbakht, Hui Zhang","doi":"10.1007/978-3-031-34048-2_47","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_47","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"44 1","pages":"614-625"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76684255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Species-Shared and -Specific Brain Functional Connectomes Revealed by Shared-Unique Variational Autoencoder 共享-唯一变分自编码器揭示的物种共享和特异性脑功能连接体
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_4
Li Yang, Songyao Zhang, Weihan Zhang, Jingchao Zhou, Tianyang Zhong, Yaonai Wei, Xi Jiang, Tianming Liu, Jun-Feng Han, Yixuan Yuan, Tuo Zhang
{"title":"Species-Shared and -Specific Brain Functional Connectomes Revealed by Shared-Unique Variational Autoencoder","authors":"Li Yang, Songyao Zhang, Weihan Zhang, Jingchao Zhou, Tianyang Zhong, Yaonai Wei, Xi Jiang, Tianming Liu, Jun-Feng Han, Yixuan Yuan, Tuo Zhang","doi":"10.1007/978-3-031-34048-2_4","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_4","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"1326 1","pages":"41-52"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86488807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S2DGAN: Generating Dual-energy CT from Single-energy CT for Real-time Determination of Intracerebral Hemorrhage S2DGAN:由单能CT生成双能CT实时检测脑出血
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_29
C. Jiang, Yongsheng Pan, Tianyu Wang, Qing Chen, Junwei Yang, Li Ding, Jiameng Liu, Zhongxiang Ding, Dinggang Shen
{"title":"S2DGAN: Generating Dual-energy CT from Single-energy CT for Real-time Determination of Intracerebral Hemorrhage","authors":"C. Jiang, Yongsheng Pan, Tianyu Wang, Qing Chen, Junwei Yang, Li Ding, Jiameng Liu, Zhongxiang Ding, Dinggang Shen","doi":"10.1007/978-3-031-34048-2_29","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_29","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"21 1","pages":"375-387"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77711689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Information Processing in Medical Imaging: 28th International Conference, IPMI 2023, San Carlos de Bariloche, Argentina, June 18–23, 2023, Proceedings 医学成像中的信息处理:第28届国际会议,IPMI 2023, San Carlos de Bariloche,阿根廷,6月18-23日,2023,Proceedings
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2
{"title":"Information Processing in Medical Imaging: 28th International Conference, IPMI 2023, San Carlos de Bariloche, Argentina, June 18–23, 2023, Proceedings","authors":"","doi":"10.1007/978-3-031-34048-2","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78651196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filtered Trajectory Recovery: A Continuous Extension to Event-Based Model for Alzheimer's Disease Progression Modeling 过滤轨迹恢复:对基于事件的阿尔茨海默病进展模型的持续扩展
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_8
Jiangchuan Du, Yuan Zhou
{"title":"Filtered Trajectory Recovery: A Continuous Extension to Event-Based Model for Alzheimer's Disease Progression Modeling","authors":"Jiangchuan Du, Yuan Zhou","doi":"10.1007/978-3-031-34048-2_8","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_8","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"1 1","pages":"95-106"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75473731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UPL-TTA: Uncertainty-Aware Pseudo Label Guided Fully Test Time Adaptation for Fetal Brain Segmentation 不确定性感知伪标签引导下胎儿脑分割的全测试时间适应
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_19
Jianghao Wu, Ran Gu, Tao Lu, Shaoting Zhang, Guotai Wang
{"title":"UPL-TTA: Uncertainty-Aware Pseudo Label Guided Fully Test Time Adaptation for Fetal Brain Segmentation","authors":"Jianghao Wu, Ran Gu, Tao Lu, Shaoting Zhang, Guotai Wang","doi":"10.1007/978-3-031-34048-2_19","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_19","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"4 1","pages":"237-249"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83209823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Model-Informed Deep Learning for Surface Segmentation in Medical Imaging 基于模型的医学影像表面分割深度学习
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_63
Xiaodong Wu, Leixin Zhou, F. Zaman, B. Qiu, J. Buatti
{"title":"Model-Informed Deep Learning for Surface Segmentation in Medical Imaging","authors":"Xiaodong Wu, Leixin Zhou, F. Zaman, B. Qiu, J. Buatti","doi":"10.1007/978-3-031-34048-2_63","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_63","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"46 1","pages":"822-834"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81145586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Information processing in medical imaging : proceedings of the ... conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1