首页 > 最新文献

Information processing in medical imaging : proceedings of the ... conference最新文献

英文 中文
Hierarchical Morphology-Guided Tooth Instance Segmentation from CBCT Images 基于分层形态学的CBCT图像牙例分割
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-78191-0_12
Zhiming Cui, Bojun Zhang, C. Lian, Changjian Li, Lei Yang, Wenping Wang, Min Zhu, D. Shen
{"title":"Hierarchical Morphology-Guided Tooth Instance Segmentation from CBCT Images","authors":"Zhiming Cui, Bojun Zhang, C. Lian, Changjian Li, Lei Yang, Wenping Wang, Min Zhu, D. Shen","doi":"10.1007/978-3-030-78191-0_12","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_12","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"56 1","pages":"150-162"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74350696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Semi-Supervised Screening of COVID-19 from Positive and Unlabeled Data with Constraint Non-Negative Risk Estimator 基于约束非负风险估计器的阳性和未标记数据中COVID-19的半监督筛选
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-78191-0_47
Zhongyi Han, Rundong He, Tianyang Li, B. Wei, Jian Wang, Yilong Yin
{"title":"Semi-Supervised Screening of COVID-19 from Positive and Unlabeled Data with Constraint Non-Negative Risk Estimator","authors":"Zhongyi Han, Rundong He, Tianyang Li, B. Wei, Jian Wang, Yilong Yin","doi":"10.1007/978-3-030-78191-0_47","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_47","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"1 1","pages":"611-623"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90206705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Nested Grassmanns for Dimensionality Reduction with Applications to Shape Analysis 用于降维的嵌套格拉斯曼在形状分析中的应用
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-78191-0_11
Chun-Hao Yang, B. Vemuri
{"title":"Nested Grassmanns for Dimensionality Reduction with Applications to Shape Analysis","authors":"Chun-Hao Yang, B. Vemuri","doi":"10.1007/978-3-030-78191-0_11","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_11","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"1 1","pages":"136-149"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90210546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Quantile Regression for Uncertainty Estimation in VAEs with Applications to Brain Lesion Detection. 分位数回归的不确定性估计及其在脑损伤检测中的应用。
Pub Date : 2021-01-01 Epub Date: 2021-06-14 DOI: 10.1007/978-3-030-78191-0_53
Haleh Akrami, Anand Joshi, Sergul Aydore, Richard Leahy

The Variational AutoEncoder (VAE) has become one of the most popular models for anomaly detection in applications such as lesion detection in medical images. The VAE is a generative graphical model that is used to learn the data distribution from samples and then generate new samples from this distribution. By training on normal samples, the VAE can be used to detect inputs that deviate from this learned distribution. The VAE models the output as a conditionally independent Gaussian characterized by means and variances for each output dimension. VAEs can therefore use reconstruction probability instead of reconstruction error for anomaly detection. Unfortunately, joint optimization of both mean and variance in the VAE leads to the well-known problem of shrinkage or underestimation of variance. We describe an alternative VAE model, Quantile-Regression VAE (QR-VAE), that avoids this variance shrinkage problem by estimating conditional quantiles for the given input image. Using the estimated quantiles, we compute the conditional mean and variance for input images under the Gaussian model. We then compute reconstruction probability using this model as a principled approach to outlier or anomaly detection. We also show how our approach can be used for heterogeneous thresholding of images for detecting lesions in brain images.

变分自编码器(VAE)已成为医学图像中病变检测等应用中最流行的异常检测模型之一。VAE是一种生成图形模型,用于从样本中学习数据分布,然后从该分布中生成新的样本。通过对正态样本的训练,VAE可以用来检测偏离这个学习分布的输入。VAE将输出建模为一个条件独立的高斯模型,该模型由每个输出维度的均值和方差表征。因此,VAEs可以使用重构概率代替重构误差进行异常检测。不幸的是,在VAE中对均值和方差进行联合优化会导致众所周知的方差收缩或低估问题。我们描述了另一种VAE模型,分位数回归VAE (QR-VAE),它通过估计给定输入图像的条件分位数来避免这种方差收缩问题。利用估计的分位数,我们在高斯模型下计算输入图像的条件均值和方差。然后,我们使用该模型作为离群值或异常检测的原则方法来计算重建概率。我们还展示了我们的方法如何用于检测脑图像病变的图像的异构阈值。
{"title":"Quantile Regression for Uncertainty Estimation in VAEs with Applications to Brain Lesion Detection.","authors":"Haleh Akrami,&nbsp;Anand Joshi,&nbsp;Sergul Aydore,&nbsp;Richard Leahy","doi":"10.1007/978-3-030-78191-0_53","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_53","url":null,"abstract":"<p><p>The Variational AutoEncoder (VAE) has become one of the most popular models for anomaly detection in applications such as lesion detection in medical images. The VAE is a generative graphical model that is used to learn the data distribution from samples and then generate new samples from this distribution. By training on normal samples, the VAE can be used to detect inputs that deviate from this learned distribution. The VAE models the output as a conditionally independent Gaussian characterized by means and variances for each output dimension. VAEs can therefore use reconstruction probability instead of reconstruction error for anomaly detection. Unfortunately, joint optimization of both mean and variance in the VAE leads to the well-known problem of shrinkage or underestimation of variance. We describe an alternative VAE model, Quantile-Regression VAE (QR-VAE), that avoids this variance shrinkage problem by estimating conditional quantiles for the given input image. Using the estimated quantiles, we compute the conditional mean and variance for input images under the Gaussian model. We then compute reconstruction probability using this model as a principled approach to outlier or anomaly detection. We also show how our approach can be used for heterogeneous thresholding of images for detecting lesions in brain images.</p>","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":" ","pages":"689-700"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321392/pdf/nihms-1723560.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39264529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Velocity-To-Pressure (V2P) - Net: Inferring Relative Pressures from Time-Varying 3D Fluid Flow Velocities 速度-压力(V2P) -网络:从时变的三维流体流动速度推断相对压力
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-78191-0_42
Suprosanna Shit, Dhritiman Das, I. Ezhov, J. Paetzold, A. F. Sanches, N. Thürey, Bjoern H Menze
{"title":"Velocity-To-Pressure (V2P) - Net: Inferring Relative Pressures from Time-Varying 3D Fluid Flow Velocities","authors":"Suprosanna Shit, Dhritiman Das, I. Ezhov, J. Paetzold, A. F. Sanches, N. Thürey, Bjoern H Menze","doi":"10.1007/978-3-030-78191-0_42","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_42","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"93 1","pages":"545-558"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85490491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A Probabilistic Framework for Modeling the Variability Across Federated Datasets 跨联邦数据集可变性建模的概率框架
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-78191-0_54
Irene Balelli, R. SantiagoS.Silva, Marco Lorenzi
{"title":"A Probabilistic Framework for Modeling the Variability Across Federated Datasets","authors":"Irene Balelli, R. SantiagoS.Silva, Marco Lorenzi","doi":"10.1007/978-3-030-78191-0_54","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_54","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"106 1","pages":"701-714"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78029189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Mixture Modeling for Identifying Subtypes in Disease Course Mapping 混合模型在疾病病程制图中识别亚型
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-78191-0_44
Pierre-Emmanuel Poulet, S. Durrleman
{"title":"Mixture Modeling for Identifying Subtypes in Disease Course Mapping","authors":"Pierre-Emmanuel Poulet, S. Durrleman","doi":"10.1007/978-3-030-78191-0_44","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_44","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"45 1","pages":"571-582"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76462013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Geodesic Tubes for Uncertainty Quantification in Diffusion MRI 用于扩散MRI不确定度定量的测地线管
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-78191-0_22
Rick Sengers, L. Florack, A. Fuster
{"title":"Geodesic Tubes for Uncertainty Quantification in Diffusion MRI","authors":"Rick Sengers, L. Florack, A. Fuster","doi":"10.1007/978-3-030-78191-0_22","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_22","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"41 1","pages":"279-290"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90159376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Feature Library: A Benchmark for Cervical Lesion Segmentation 特征库:宫颈病变分割的基准
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-78191-0_34
Yuexiang Li, Jiawei Chen, Kai Ma, Yefeng Zheng
{"title":"Feature Library: A Benchmark for Cervical Lesion Segmentation","authors":"Yuexiang Li, Jiawei Chen, Kai Ma, Yefeng Zheng","doi":"10.1007/978-3-030-78191-0_34","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_34","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"1 1","pages":"440-451"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86043172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weakly Supervised Deep Learning for Aortic Valve Finite Element Mesh Generation from 3D CT Images 基于弱监督深度学习的主动脉瓣三维CT图像有限元网格生成
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-78191-0_49
Daniel H. Pak, Minliang Liu, S. Ahn, A. Caballero, John A. Onofrey, L. Liang, Wei Sun, J. Duncan
{"title":"Weakly Supervised Deep Learning for Aortic Valve Finite Element Mesh Generation from 3D CT Images","authors":"Daniel H. Pak, Minliang Liu, S. Ahn, A. Caballero, John A. Onofrey, L. Liang, Wei Sun, J. Duncan","doi":"10.1007/978-3-030-78191-0_49","DOIUrl":"https://doi.org/10.1007/978-3-030-78191-0_49","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"241 1","pages":"637-648"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75917390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Information processing in medical imaging : proceedings of the ... conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1