首页 > 最新文献

Information processing in medical imaging : proceedings of the ... conference最新文献

英文 中文
Model-Informed Deep Learning for Surface Segmentation in Medical Imaging 基于模型的医学影像表面分割深度学习
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_63
Xiaodong Wu, Leixin Zhou, F. Zaman, B. Qiu, J. Buatti
{"title":"Model-Informed Deep Learning for Surface Segmentation in Medical Imaging","authors":"Xiaodong Wu, Leixin Zhou, F. Zaman, B. Qiu, J. Buatti","doi":"10.1007/978-3-031-34048-2_63","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_63","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"46 1","pages":"822-834"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81145586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Information Processing in Medical Imaging: 28th International Conference, IPMI 2023, San Carlos de Bariloche, Argentina, June 18–23, 2023, Proceedings 医学成像中的信息处理:第28届国际会议,IPMI 2023, San Carlos de Bariloche,阿根廷,6月18-23日,2023,Proceedings
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2
{"title":"Information Processing in Medical Imaging: 28th International Conference, IPMI 2023, San Carlos de Bariloche, Argentina, June 18–23, 2023, Proceedings","authors":"","doi":"10.1007/978-3-031-34048-2","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78651196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UPL-TTA: Uncertainty-Aware Pseudo Label Guided Fully Test Time Adaptation for Fetal Brain Segmentation 不确定性感知伪标签引导下胎儿脑分割的全测试时间适应
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_19
Jianghao Wu, Ran Gu, Tao Lu, Shaoting Zhang, Guotai Wang
{"title":"UPL-TTA: Uncertainty-Aware Pseudo Label Guided Fully Test Time Adaptation for Fetal Brain Segmentation","authors":"Jianghao Wu, Ran Gu, Tao Lu, Shaoting Zhang, Guotai Wang","doi":"10.1007/978-3-031-34048-2_19","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_19","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"4 1","pages":"237-249"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83209823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
S2DGAN: Generating Dual-energy CT from Single-energy CT for Real-time Determination of Intracerebral Hemorrhage S2DGAN:由单能CT生成双能CT实时检测脑出血
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_29
C. Jiang, Yongsheng Pan, Tianyu Wang, Qing Chen, Junwei Yang, Li Ding, Jiameng Liu, Zhongxiang Ding, Dinggang Shen
{"title":"S2DGAN: Generating Dual-energy CT from Single-energy CT for Real-time Determination of Intracerebral Hemorrhage","authors":"C. Jiang, Yongsheng Pan, Tianyu Wang, Qing Chen, Junwei Yang, Li Ding, Jiameng Liu, Zhongxiang Ding, Dinggang Shen","doi":"10.1007/978-3-031-34048-2_29","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_29","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"21 1","pages":"375-387"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77711689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HoloBrain: A Harmonic Holography for Self-organized Brain Function 全息脑:自组织脑功能的谐波全息
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_3
Huan Liu, Tingting Dan, Zhuobin Huang, Defu Yang, Won Hwa Kim, Minjeong Kim, P. Laurienti, Guorong Wu
{"title":"HoloBrain: A Harmonic Holography for Self-organized Brain Function","authors":"Huan Liu, Tingting Dan, Zhuobin Huang, Defu Yang, Won Hwa Kim, Minjeong Kim, P. Laurienti, Guorong Wu","doi":"10.1007/978-3-031-34048-2_3","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_3","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"32 1","pages":"29-40"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75504741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Physics-Informed Super-Resolution of Cardiac 4D-Flow MRI 心脏4d血流MRI的深度物理信息超分辨率
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_39
Fergus Shone, N. Ravikumar, T. Lassila, Michael MacRaild, Yongxing Wang, Z. Taylor, P. Jimack, E. D. Armellina, Alejandro F Frangi
{"title":"Deep Physics-Informed Super-Resolution of Cardiac 4D-Flow MRI","authors":"Fergus Shone, N. Ravikumar, T. Lassila, Michael MacRaild, Yongxing Wang, Z. Taylor, P. Jimack, E. D. Armellina, Alejandro F Frangi","doi":"10.1007/978-3-031-34048-2_39","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_39","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"34 1","pages":"511-522"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84007690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge-Based Graph Neural Networks for Cell-Graph Modeling and Prediction 基于边缘的图神经网络在细胞图建模和预测中的应用
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-34048-2_21
Taiyo Hasegawa, Helena Arvidsson, N. Tudzarovski, K. Meinke, R. Sugars, A. Nair
{"title":"Edge-Based Graph Neural Networks for Cell-Graph Modeling and Prediction","authors":"Taiyo Hasegawa, Helena Arvidsson, N. Tudzarovski, K. Meinke, R. Sugars, A. Nair","doi":"10.1007/978-3-031-34048-2_21","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_21","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"1 1","pages":"265-277"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89766452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Implicit k-Space for Binning-free Non-Cartesian Cardiac MR Imaging 无binning非笛卡儿心脏MR成像的神经隐式k空间
Pub Date : 2022-12-16 DOI: 10.48550/arXiv.2212.08479
Wenqi Huang, Hongwei Li, G. Cruz, Jia-Yu Pan, D. Rueckert, K. Hammernik
In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation.We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR.
在这项工作中,我们提出了一种新的图像重建框架,该框架直接学习了心电图触发的非笛卡尔心脏磁共振成像(CMR)在k空间中的神经隐式表示。虽然现有的方法是从邻近的时间点获取数据来重建心脏运动的一个阶段,但我们的框架允许连续的、无分节的和特定于受试者的k空间表示。我们为每个采样的k空间点分配一个由时间、线圈指数和频域位置组成的唯一坐标。然后,我们使用具有频域正则化的多层感知器学习从这些唯一坐标到k空间强度的主题特定映射。在推理过程中,我们获得了笛卡尔坐标的完整k空间和任意时间分辨率。一个简单的傅里叶反变换恢复图像,消除了对非笛卡尔数据的密度补偿和昂贵的非均匀傅里叶变换的需要。这个新的成像框架在来自6个受试者的42个径向采样数据集上进行了测试。所提出的方法在定性和定量上优于其他技术,使用来自四个和一个心跳(s)和30个心相的数据。我们对50个心相的一次心跳重建的结果显示,伪影去除和时空分辨率得到了改善,充分利用了实时CMR的潜力。
{"title":"Neural Implicit k-Space for Binning-free Non-Cartesian Cardiac MR Imaging","authors":"Wenqi Huang, Hongwei Li, G. Cruz, Jia-Yu Pan, D. Rueckert, K. Hammernik","doi":"10.48550/arXiv.2212.08479","DOIUrl":"https://doi.org/10.48550/arXiv.2212.08479","url":null,"abstract":"In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation.We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"59 1","pages":"548-560"},"PeriodicalIF":0.0,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85622232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
SADM: Sequence-Aware Diffusion Model for Longitudinal Medical Image Generation 纵向医学图像生成的序列感知扩散模型
Pub Date : 2022-12-16 DOI: 10.1007/978-3-031-34048-2_30
Jee Seok Yoon, Chenghao Zhang, Heung-Il Suk, Jia Guo, Xiaoxia Li
{"title":"SADM: Sequence-Aware Diffusion Model for Longitudinal Medical Image Generation","authors":"Jee Seok Yoon, Chenghao Zhang, Heung-Il Suk, Jia Guo, Xiaoxia Li","doi":"10.1007/978-3-031-34048-2_30","DOIUrl":"https://doi.org/10.1007/978-3-031-34048-2_30","url":null,"abstract":"","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"20 1","pages":"388-400"},"PeriodicalIF":0.0,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82576653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Human-machine Interactive Tissue Prototype Learning for Label-efficient Histopathology Image Segmentation 用于标记高效组织病理学图像分割的人机交互组织原型学习
Pub Date : 2022-11-26 DOI: 10.48550/arXiv.2211.14491
W. Pan, Jiangpeng Yan, Hanbo Chen, Jiawei Yang, Zhe Xu, Xiu Li, Jianhua Yao
Recently, deep neural networks have greatly advanced histopathology image segmentation but usually require abundant annotated data. However, due to the gigapixel scale of whole slide images and pathologists' heavy daily workload, obtaining pixel-level labels for supervised learning in clinical practice is often infeasible. Alternatively, weakly-supervised segmentation methods have been explored with less laborious image-level labels, but their performance is unsatisfactory due to the lack of dense supervision. Inspired by the recent success of self-supervised learning methods, we present a label-efficient tissue prototype dictionary building pipeline and propose to use the obtained prototypes to guide histopathology image segmentation. Particularly, taking advantage of self-supervised contrastive learning, an encoder is trained to project the unlabeled histopathology image patches into a discriminative embedding space where these patches are clustered to identify the tissue prototypes by efficient pathologists' visual examination. Then, the encoder is used to map the images into the embedding space and generate pixel-level pseudo tissue masks by querying the tissue prototype dictionary. Finally, the pseudo masks are used to train a segmentation network with dense supervision for better performance. Experiments on two public datasets demonstrate that our human-machine interactive tissue prototype learning method can achieve comparable segmentation performance as the fully-supervised baselines with less annotation burden and outperform other weakly-supervised methods. Codes will be available upon publication.
近年来,深度神经网络在组织病理图像分割方面取得了很大进展,但通常需要大量的注释数据。然而,由于整个幻灯片图像的十亿像素规模和病理学家的日常工作繁重,在临床实践中获得用于监督学习的像素级标签往往是不可行的。另一种方法是使用不那么费力的图像级标签探索弱监督分割方法,但由于缺乏密集的监督,它们的性能不令人满意。受近年来成功的自监督学习方法的启发,我们提出了一个标签高效的组织原型词典构建管道,并提出使用获得的原型来指导组织病理图像分割。特别是,利用自监督对比学习的优势,训练编码器将未标记的组织病理学图像块投影到判别嵌入空间中,这些块被聚类,从而通过高效的病理学家视觉检查识别组织原型。然后,利用编码器将图像映射到嵌入空间中,通过查询组织原型字典生成像素级伪组织掩模;最后,利用伪掩码训练具有密集监督的分割网络,以获得更好的分割性能。在两个公共数据集上的实验表明,我们的人机交互组织原型学习方法可以获得与全监督基线相当的分割性能,并且注释负担更少,优于其他弱监督方法。代码将在出版后提供。
{"title":"Human-machine Interactive Tissue Prototype Learning for Label-efficient Histopathology Image Segmentation","authors":"W. Pan, Jiangpeng Yan, Hanbo Chen, Jiawei Yang, Zhe Xu, Xiu Li, Jianhua Yao","doi":"10.48550/arXiv.2211.14491","DOIUrl":"https://doi.org/10.48550/arXiv.2211.14491","url":null,"abstract":"Recently, deep neural networks have greatly advanced histopathology image segmentation but usually require abundant annotated data. However, due to the gigapixel scale of whole slide images and pathologists' heavy daily workload, obtaining pixel-level labels for supervised learning in clinical practice is often infeasible. Alternatively, weakly-supervised segmentation methods have been explored with less laborious image-level labels, but their performance is unsatisfactory due to the lack of dense supervision. Inspired by the recent success of self-supervised learning methods, we present a label-efficient tissue prototype dictionary building pipeline and propose to use the obtained prototypes to guide histopathology image segmentation. Particularly, taking advantage of self-supervised contrastive learning, an encoder is trained to project the unlabeled histopathology image patches into a discriminative embedding space where these patches are clustered to identify the tissue prototypes by efficient pathologists' visual examination. Then, the encoder is used to map the images into the embedding space and generate pixel-level pseudo tissue masks by querying the tissue prototype dictionary. Finally, the pseudo masks are used to train a segmentation network with dense supervision for better performance. Experiments on two public datasets demonstrate that our human-machine interactive tissue prototype learning method can achieve comparable segmentation performance as the fully-supervised baselines with less annotation burden and outperform other weakly-supervised methods. Codes will be available upon publication.","PeriodicalId":73379,"journal":{"name":"Information processing in medical imaging : proceedings of the ... conference","volume":"89 1","pages":"679-691"},"PeriodicalIF":0.0,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77622616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Information processing in medical imaging : proceedings of the ... conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1